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Abstract

This paper concerns the multi-dimensional piston problem, which is a special initial

boundary value problem of multi-dimensional unsteady potential flow equation. The problem

is defined in a domain bounded by two conical surfaces, one of them is shock, whose location

is also to be determined. By introducing self-similar coordinates, the problem can be reduced

to a free boundary value problem of an elliptic equation. The existence of the problem is

proved by using partial hodograph transformation and nonlinear alternating iteration. The

result also shows the stability of the structure of shock front in symmetric case under small

perturbation.
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1. Introduction

In the study of mathematical theory of compressible fluid dynamics, the piston
problem is a basic prototype problem. As described in [8–10,20,21], giving a long
tube closed by a piston at one end and open at the other end, and assuming that the
gas in the tube is static with uniform pressure p0 and density r0; then any motion of
the piston will cause a corresponding motion of the air. Generally, if the piston is
pulled back, then a rarefaction wave will be formed, and otherwise, if the piston is
pushed forward, then the push will cause a compressed wave moving into the air.
Particularly, if the initial velocity of the piston is positive, then ahead of the piston

E-mail address: sxchen@fudan.ac.cn.

0022-0396/03/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 2 - 0 3 9 6 ( 0 2 ) 0 0 0 6 0 - 8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82733473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


there will be a shock front, moving into the air faster than the piston. Such
phenomena are verified by physical experiments, and also elaborately studied in its
mathematical aspects. It is natural to study the multi-dimensional version of such
piston problems.
Suppose there is uniform static gas filling up the whole space outside a given body

with moving boundary. The body is called piston in the sequel. Starting from the
initial time, the piston gradually expands and its boundary moves into the air as in
the one-dimensional case. Then, away from the piston there is a shock front moving
into the air. Ahead of the shock front the state of the air is kept unchanged, while the
location of the moving shock and the flow field in between the shock and the path of
the piston are to be determined. Such a problem is called multi-dimensional piston
problem, which is an initial boundary value problem for compressible flow equation.
For such problems, the most interesting case is that when the location of the piston
at the initial time degenerates into a single point, because such a case offers a good
model problem of multi-dimensional hyperbolic conservation laws and is related to
the study of explosive wave in physics. In the meantime, this is also the most difficult
case due to the appearance of singularity. In the sequel we are going to study such a
singular case. The main result in this paper is the existence of the solution and the
stability of the moving shock when the motion of the piston is not symmetric. We
noticed that some related problems were studied in [1–7,11–13,16,19].
Our main assumption for the motion of the piston is that the velocity of the piston

in each direction is independent of time t: Due to this fact we can use self-similar
coordinates to study such a problem. Moreover, since the normal component of the
relative velocity behind the shock front is subsonic, the reduced equation in the self-
similar coordinates ðx; ZÞ is elliptic, rather than hyperbolic in the original time-space
coordinates. Besides, since the location of the shock front is unknown, the whole
mathematical problem is a free boundary value problem for the elliptic equation.
To get rid of the difficulty caused by the free boundary, we use the partial

hodograph transformation, which played the crucial role in proving the existence of
solution to the initial value problem of multi-dimensional quasilinear potential flow
equation with discontinuous data ( cf. [15,17]). Its main idea is to change the position
of the unknown function of the problem and one coordinate variable, which is the
radius r in our problem. Such a transformation will let the free boundary become a
fixed one. However, the above transformation will also change the given path of the
piston to a new free boundary. To avoid the appearance of the new free boundary,
we use the method of domain decomposition. That is, we will decompose the annular
domain into a set of overlapped domains, and correspondingly introduce a set of
auxiliary boundary value problems on these domains. Like the Schwatz alternating
iteration, we establish a set of sequences of the solutions to these auxiliary problems
by solving the problems alternatively. In each step, the value of the solution of the
previous problem is taken as the data to determine the solution of the next problem.
Finally, by establishing the convergence of these sequences, we obtain the existence
and stability of the original problem consequently.
The whole paper will be arranged as follows. In Section 2 we give the

mathematical formulation of the singular multi-dimensional piston problem and
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describe the results of the paper precisely. In Section 3 we solve the problem in
symmetric case. Starting from Section 4 we treat the nonsymmetric case. In Section 4
we introduce the partial hodograph transformation and the method of domain
decomposition. Then based on them we establish auxiliary boundary value
problems. In Sections 5 and 6 we discuss the property of the solution to these
problems, and then establish a set of sequences of the solutions by using nonlinear
alternating iteration. Finally, we prove the convergence of these sequences and
complete the proof of the main theorem in Section 7.

2. Formulation and result

In the whole paper, we use the unsteady potential flow equation to describe the
motion of the compressible flow. As it is well known, when the strength of all
possible shock is weak, the equation can offer a good description of the motion of
the flow (see [14,18]). The unsteady potential flow equation in two space dimension
can be written as

@

@t
H þ @

@x
ðFxHÞ þ @

@y
ðFyHÞ ¼ 0; ð2:1Þ

where F is the potential satisfying rF ¼ ðu; vÞ; H is the inverse function of iðrÞ with
i; r being the enthalpy and the density, respectively. For polytropic gas iðrÞ ¼
g

g�1r
g�1; and HðsÞ can be taken as ðg�1g sÞ

1
g�1; where g is the adiabatic exponent

satisfying 1ogo3: From Bernoulli’s relation, we have

Ft þ 1
2
jrFj2 þ iðrÞ ¼ const:; ð2:2Þ

where the constant can be simply taken as zero. Therefore, in (2.1) the function H

reads

H ¼ H �Ft �
1

2
jrFj2

� �
¼ g� 1

g
�Ft �

1

2
jrFj2

� �� � 1
g�1

:

As in the one space-dimensional case the motion of the piston will produce a
shock, which moves faster than the piston. On the shock, the R-H condition and the
entropy condition should be satisfied. If S is the shock front, on which the
parameters of the flow has jump, then the R-H condition on S is

F is continuous;

nt½H	 þ nx½FxH	 þ ny½FyH	 ¼ 0; ð2:3Þ

where ðnt; nx; nyÞ is the vector normal to S; ½
	 stands for the jump of the function in

the bracket. Besides, the entropy condition means the density behind shock is greater
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than the density ahead of shock, or equivalently, the comparative normal velocity is
supersonic ahead of shock, and is subsonic behind shock.
Assume that the state of the gas at the initial time is characterized by r ¼

r0; ðu; vÞ ¼ ð0; 0Þ; and the piston is located at the origin. Starting from t ¼ 0; the
piston expanded with velocity depending on y ¼ arctan y=x: Assume that the
velocity is independent of time t; then the path of the piston can be described by

B: m
x

t

 y

t

� �
¼ 0 ð2:4Þ

which is a conical surface in ðt; x; yÞ space. Then the boundary value condition
on B is

�x

t
mx �

y

t
mZ þ mxFx þ mZFy ¼ 0;

which means the gas could not go into the piston, nor produce vacuum near the
piston.
Since the whole problem is invariant under the dilation t-at; x-ax; y-ay; we

can only consider the self-similar solution of (2.1). Take x ¼ x=t; Z ¼ y=t;
Fðt; x; yÞ ¼ tcðx=t; y=tÞ; we have

Fx ¼ cx; Fy ¼ cZ;

�Ft � 1
2
jrFj2 ¼ �cþ xcx þ ZcZ � 1

2
ðc2

x þ c2
ZÞ:

Then (2.1) becomes

ða2 � ðcx � xÞ2Þcxx � 2ðcx � xÞðcZ � ZÞcxZ

þ ða2 � ðcZ � ZÞ2ÞcZZ ¼ 0; ð2:5Þ

where a ¼ ðH=H 0Þ
1
2 is the sonic speed.

The boundary condition on S is

c is continuous;

sx½ðcx � xÞH	 þ sZ½ðcZ � ZÞH	 ¼ 0; ð2:6Þ

where sðx; ZÞ ¼ 0 is the equation of the surface of S: Since the gas is static ahead of
the shock front, then c is constant there. By using Bernoulli’s relation we have

c ¼ c0 ¼ � g
g� 1

rg�10 ¼ � a20
g� 1

� �
: ð2:7Þ

Therefore, the condition on continuity of c on S can be replaced by (2.7).
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Noticing y ¼ arctan y=x ¼ arctan Z=x; the boundary condition on B is

cxðcx � xÞ þ mZðcZ � ZÞ ¼ 0: ð2:8Þ

It is convenient to work in polar coordinate system ðr; yÞ instead of ðx; ZÞ: By using
the transformation r ¼ ðx2 þ Z2Þ

1
2; y ¼ arctan Z=x; the equation becomes

ða2 � ðcr � rÞ2Þcrr � 2ðcr � rÞcy

r2
cry þ a2 � c2

y

r2

� �
1

r2
cyy

þ cr

r
a2 þ c2

y

r2

� �
� 2

r2
c2
y ¼ 0: ð2:9Þ

Correspondingly, if S and B are denoted by r ¼ sðyÞ and r ¼ bðyÞ; the boundary
conditions are

ðcr � rÞ � 1

r2
cy by ¼ 0 on r ¼ bðyÞ; ð2:10Þ

c ¼ c0; cr½ðcr � rÞH	 þ cy

r2
½cyH	 ¼ 0 on r ¼ sðyÞ; ð2:11Þ

where the argument of H is

�Ft � 1
2
jrFj2 ¼ �c0 þ rcr � 1

2
c2

r þ
1

r2
c2
y

� �
: ð2:12Þ

The main result in this paper is the existence of solution with a shock front
outside the piston, provided bðyÞ is a small perturbation of a constant b0: More
precisely, we have

Theorem 2.1. Assume that the path bðyÞ of the piston satisfies

jjbðyÞ � b0jjC2þape0; ð2:13Þ

where b0 ¼ minbðyÞ; and e0 is sufficiently small. Then we can find a function sðyÞ
defined in 0pyp2p; a function cðr; yÞ defined in bðyÞprpsðyÞ; 0pyp2p; such that

(2.9)–(2.11) is satisfied. Moreover, if we denote by sðyÞ; cBðrÞ the location of the shock

and the solution of the problem with bðyÞ ¼ b0; then

jjsðyÞ � s0jjC2þapCe0; ð2:14Þ

jjcðr; yÞ � cBðrÞjjC2þapCe0: ð2:15Þ
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3. Symmetric case

In symmetric case, bðyÞ ¼ b0; then the potential cðr; yÞ and the function sðyÞ
describing the location of shock front will also be independent of y: Therefore, (2.9)
becomes an ordinary differential equation

ða2 � ðcr � rÞ2Þcrr þ
a2

r
cr ¼ 0; rAðb0; s0Þ; ð3:1Þ

while the boundary conditions are

cr ¼ b0 on r ¼ b0; ð3:2Þ

c ¼ c0; ½ðcr � rÞH	 ¼ 0 on r ¼ s0; ð3:3Þ

where s0 is unknown, and will be determined together with c: Besides, according to
the entropy condition, we have

cr > 0; a > r � cr > 0: ð3:4Þ

Eqs. (3.1)–(3.4) is a free boundary value problem of ordinary differential equation.
To solve it we first analyze condition (3.3) under restriction (3.4). Using the
expression of H we obtain

g� 1

g
�c0 þ rcr �

1

2
c2

r

� �
¼ r0r

r � cr

� �g�1
:

Denoting r � cr by w and using (2.7), we have

cr r � 1

2
cr

� �
ðr � crÞ

g�1 þ c0ðrg�1 � ðr � crÞ
g�1Þ ¼ 0: ð3:5Þ

According to (3.4) we only need to consider (3.5) in 0ocror: Eq. (3.5) can also be
written as

ðr � 1
2
crÞðr � crÞ

g�1 þ c0c
�1
r ðrg�1 � ðr � crÞ

g�1Þ ¼ 0:

Let cr-0; it leads to

rg þ c0ðg� 1Þrg�2 ¼ 0:

Namely, r ¼ ð�ðg� 1Þc0Þ
1
2 ¼ a0: Therefore, we only need to consider (3.5) in rXr0:

Notice that (3.5) indicates the condition satisfied by cr (the velocity in the radial
direction) downward to the shock, so the graph of (3.5) on ðr;crÞ plane is called
shock polar. In the sequel we always denote it by G (see Fig. 1).
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Lemma 3.1. For all possible state c; which can be connected with the state c ¼ c0 by a

shock front moving outward, the corresponding ðr;crÞ must fall onto the shock polar G:
The shock polar locates below the diagonal r ¼ cr: It is increasing, and takes diagonal

as its asymptote.

Proof. We only need to verify the property of the shock polar. Denoting w ¼ r � cr

and differentiating (3.5) with respect to r yields

ð2r � 2wwrÞwg�1 � ðr2 � w2Þðg� 1Þwg�2wr � 2a20ðrg�2 � wg�2wrÞ ¼ 0;

wrððg� 3Þwg � 2a20w
g�2 � ðg� 1Þr2wg�2Þ ¼ 2a20r

g�2 � 2rwg�1:

It is easy to see that the coefficient of wr in the above equality is negative due to
1ogp3; and the right-hand side is positive, then we have wro0; namely, r � cr is
decreasing, and then cr is increasing on G:
Write (3.5) as

wg�1 ¼ 2c0

rg�1 � wg�1

r2 � w2
;

we see that the right-hand side tends to zero when r-þN; due to g� 1o2: Hence
the shock polar G takes the diagonal r ¼ cr as its asymptote.
For any point Ps on G; we denote s0 ¼ rðPsÞ; w0 ¼ crðPsÞ > 0: Taking the initial

data as

cjr¼s0
¼ c0; crjr¼s0

¼ w0;

and integrating (3.1) in ros0; we obtain a solution of (3.1). &

Fig. 1. Shock polar.
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Lemma 3.2. There exists an integral curve of (3.1) with initial data c ¼ c0 and cr

determined by the location of the starting point on the shock polar G: The curve

intersect with the diagonal r ¼ cr:

Proof. By continuity

r > cr > 0; r � croa ð3:6Þ

is valid near r ¼ s0: Now we prove that if (3.6) is valid in s0 > r > r0 and is violated
at r ¼ r0; then we must have r ¼ cr at r ¼ r0: In fact, the validity of (3.6) in r0oros0
implies

crr ¼ � a2

rða2 � w2Þ cro0: ð3:7Þ

Hence along the backward integral curve starting from any point on G; r is
decreasing, and cr is increasing. Therefore, cr > 0; r � croa are also valid at r ¼
r0: It means that the only possibility, which let (3.6) be violated at r ¼ r0 is r ¼ cr:
Namely, the integral curve of (3.1) on ðr;crÞ plane can be extended up to its
intersection with the diagonal r ¼ cr: The lemma is thus proved. &

Based on these two lemmas, we establish the existence of problem (3.1)–(3.3).

Theorem 3.1. For any point b0 > 0 there is a unique solution cðrÞ of (3.1)–(3.3).
Corresponding to each solution, the curve ðr;crðrÞÞ is decreasing in ðb0; s0Þ; it intersects

with the diagonal r ¼ cr at r ¼ b0 and with G at r ¼ s0:

Proof. The left end point of G is ða0; 0Þ: Through the end point the solution of (3.1)
satisfying cða0Þ ¼ c0 is c � c0; which is the interval ð0; a0Þ on the r-axis. As shown
in Fig. 1 starting from any point Ps on G; we have a solution of (3.1) satisfying
cðrPs

Þ ¼ c0: The integral curve c intersects with the diagonal r ¼ cr at Pb: By the

property of ordinary differential equation the coordinates of Pb is a continuous
function of Ps: When Ps runs to the point ða0; 0Þ; the corresponding integral curve
sweeps the domain bounded by G; r-axis, the diagonal and the integral curve c:
Besides, we confirm that for each point in between O and Pb on the diagonal there is
one and only one integral curve passing through the point. In fact, two integrals c1
and c2 of (3.1) intersect at Pb: Since on the diagonal, Eq. (3.1) becomes

a2crr þ
1

r
a2cr ¼ 0; ð3:8Þ

crr on c1 and c2 takes the same value.
On the other hand, by differentiating (3.1) we can obtain a second-order

differential equation for crðrÞ (or denoted by wðrÞ):

ða2 � ðw� rÞ2Þwrr � 2ðw� rÞw2r þ
a2

r
wr þ wr þ

w
r

� �
a2wwr ¼ 0: ð3:9Þ
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By uniqueness of solution to (3.9) with the initial data

wðrPb
Þ ¼ wPb

; wrðrPb
Þ ¼ � 1

rPb

wPb
;

c1 and c2 must coincide. This also means the one-to-one correspondence of Pb and
Ps: Since Ps can be any point on G and the slope of all integrals of (3.1) on ðr;crÞ
plane is bounded, for any positive number b0 we can find s0 and a solution of (3.1),
satisfying the boundary conditions (3.2) and (3.3). Hence the theorem is proved. &

4. Partial hodograph transformation and domain decomposition

From now on we consider problem (2.9)–(2.11) in nonsymmetric case. Assume
that b0 ¼ min bðyÞ; and jjbðyÞ � b0jjC2þaoe0 with e0 being sufficiently small, we

expect that the solution of (2.9)–(2.11) is also a perturbation of problem (3.1)–(3.3).
In the sequel we call the solution of (3.1)–(3.3) as background solution, and denote it
by cB:

Problem (2.9)–(2.11) is a free boundary value problem. When ðr � crÞ
2 þ

1
r2
c2
yoa2; Eq. (2.9) is elliptic. Since cB satisfies (3.4), then (2.9) is elliptic for cB;

and is also elliptic for the small perturbation of cB: To avoid the difficulty caused by
the moving boundary r ¼ sðyÞ , we introduce a partial hodograph transformation to
fix it. The transformation is

T :
s ¼ y;

p ¼ �cðr; yÞ;

(
ð4:1Þ

which changes the position of the unknown function c and the variable r: Since c
equals a constant c0 on the shock front, T transforms the shock front to a fixed
boundary p ¼ �c0: The inverse of T is

T�1 :
y ¼ s;

r ¼ uðp; sÞ:

(
ð4:2Þ

Here we always have p > 0; because of cr > 0 and pjr¼sðyÞ ¼ �c0 > 0: By chain rule

cr ¼ � 1

up

; cy ¼
us

up

;

crr ¼
1

u3p
upp; cry ¼ �us

u3p
upp þ

1

u2p
ups;

cyy ¼
1

up

uss �
2us

u2p
ups þ

u2s
u3p

upp:
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Then we have

a2 � 1

up

þ u

� �2
 !

1

u3p
upp

 !
� 2

1

up

þ u

� �
us

up

� �
us

u3p
upp �

1

u2p
ups

 !
1

u2

þ 1

u2
a2 � 1

u2
u2s
u2p

 !
uss

up

� 2us

u2p
ups þ

u2s
u3p

upp

 !

� 1

uup

a2 þ u2s
u2u2p

 !
� 2

u2
u2s
u2p

¼ 0

or

E11upp þ 2E12ups þ E22uss þ Qðu; up; usÞ ¼ 0; ð4:3Þ

where

E11 ¼ a2 � 1

up

þ u

� �2
 !

� 2
1

up

þ u

� �
u2s

u2 up

� �
þ a2 � 1

u2
u2s
u2p

 !
u2s
u2
;

E12 ¼ � 1

up

þ u

� �
us

u2
� a2 � 1

u2
u2s
u2p

 !
usup

u2
;

E22 ¼ a2 � 1

u2
u2s
u2p

 !
u2p

u2
;

Qðu; up; usÞ ¼ �1
u

a2u2p þ
u2s
u2

� �
� 2

u2
u2su:

The boundary conditions will also have new forms in the new coordinates.
However, in the new coordinates system the path of the piston becomes unknown.
Denote it by p ¼ gðsÞ; the boundary condition on it is

u ¼ bðsÞ; up ¼ �1
u
� usbs

u3
: ð4:4Þ

On the shock front p ¼ c0; the condition is

1

up

þ u

� �
H � ur0 þ

u2s
u2ur

H ¼ 0: ð4:5Þ
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In what follows, problem (2.9)–(2.11) is called ðNLÞ; and problem (4.3)–(4.5) is called

ðNLÞn: In fact, ðNLÞ is equivalent to ðNLÞn: If one of them is solved, then the
solution of another one is also obtained.

Since the boundary p ¼ gðsÞ is unknown, the problem ðNLÞn is also a free
boundary value problem. To avoid the appearance of any new free boundary, we try
to only consider (2.9) near r ¼ bðyÞ; and only consider (4.3) near p ¼ �c0: To this
end we decompose the annular domain bðyÞorosðyÞ to a set of overlapped
annuluses. In the inner annulus, which is adjacent to the path of the piston and is
denoted by Oa; we keep the original coordinates ðr; yÞ and consider (2.9). While in

other annuluses, which are denoted by *Ob1 ;y; *Obk
; the partial hodograph

transformation (4.1) is applied. More precisely, we introduce constants r1; r2 and
monotonically decreasing sequences facg; fbcg with 1pcpk satisfying (see Fig. 2)

b0pbðyÞor2or1ob0 þ d;

a1 ¼ �cBðr2Þ;

ac > bc�1 > acþ1 > bc; 1ocok;

bk ¼ �c0: ð4:6Þ

The annulus bðyÞoror1; 0pyp2p on ðr; yÞ plane is denoted by Oa; and the annulus
bcopoac; 0psp2p is denoted by Obc : The image of Obc under the transformation

T�1 is *Obc : All Oa and *Obcð1pcpkÞ form an overlapped covering to the domain

bðyÞorosðyÞ: Besides, we assume that bc � acpd; jac � bc�1jXd
4
for all c; and d is

small, so that the corresponding boundary value problems of Eq. (2.9) in Oa or

Eq. (4.3) in *Obc as well as their linearization are well posed. In the next section we

will explain it once more.

α1

α2

β1

βk

b0 r1 r (u )r2 S0

.

.

.

ψ
(p)

Fig. 2. Domain decomposition.
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Corresponding to the k þ 1 annuluses, we introduce a set of auxiliary boundary
value problem as follows:

ðNLÞðaÞ :
Eq: ð2:9Þ in Oa;

boundary condition ð2:10Þ on r ¼ bðyÞ;
c ¼ dðyÞ on r ¼ r1;

8><
>: ð4:7Þ

ðNLÞðbcÞ :
Eq: ð4:3Þ in Obc ;

u ¼ qc1ðsÞ on p ¼ ac;

u ¼ qc2ðsÞ on p ¼ bc;

8><
>: ð4:8Þ

where 1pcpk � 1;

ðNLÞðbkÞ :

Eq: ð4:3Þ in Obk
;

u ¼ qk1ðsÞ on p ¼ ak;

boundary condition ð4:5Þ on p ¼ �c0:

8><
>: ð4:9Þ

All these problems are defined in a domain with fixed boundary. The solvability of

the problems ðNLÞðaÞ; ðNLÞðbcÞ and the corresponding estimates of their solutions
will be given in the next section. To emphasize the dependence on the corresponding

data, the above three problems will also be denoted by ðNLÞðaÞfbðyÞ; dðyÞg;
ðNLÞðbcÞfqc1ðsÞ; qc2ðsÞg; and ðNLÞðbkÞfqk1ðsÞg; respectively. As we will see in the
following sections, the solvability and the corresponding estimates will lead us to

obtain the solution of the problem ðNLÞ (and ðNLÞn).

5. Problem ðNLÞðaÞ

First let us prove the existence of solution to ðNLÞðaÞ and indicate some of its
properties. Under the transformation

t :

*y ¼ y;

r̃ � b0

r1 � b0
¼ r � bðyÞ

r1 � bðyÞ;

8><
>: ð5:1Þ

the boundary r ¼ bðyÞ is mapped onto r̃ ¼ b0; and the boundary r ¼ r1 is unchanged,

where r1 is given in the last section. Consider the linearization of the problem ðNLÞðaÞ
at c ¼ cBðrÞ; bðyÞ ¼ b0; dðyÞ ¼ c10: Since at the background solution, r̃r ¼ 1; r̃y ¼
0; and ðcBÞy ¼ ðcBÞry ¼ ðcBÞyy ¼ 0; we obtain an equation for the perturbation ’c:

LðaÞ ’c � A11
’crr þ A22

’cyy þ B1
’cr þ C ’c ¼ f ; ð5:2Þ
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where

A11 ¼ a2 � ðcr � rÞ2; A22 ¼
a2

r2
;

B1 ¼
a2

r
þ 2ðr � crÞcrr þ crr þ

cr

r

� �
ðg� 1Þðr � crÞ;

C ¼ �ðg� 1Þ crr þ
cr

r

� �
:

Correspondingly, the linearized boundary conditions are

’cr �
by

r2
’cy ¼ g on r ¼ b; ð5:3Þ

’c ¼ h on r ¼ r1: ð5:4Þ

The linearized problem (5.2)–(5.4) is denoted by LðaÞ; which is a linear elliptic
boundary problem because A11 > 0 and A22 > 0:

Lemma 5.1. There is d > 0; such that the solution of LðaÞ uniquely exists, and

jj ’cjjC2þa½b0;r1;0;2p	pC1ðjjf jjCa½b0;r1;0;2p	 þ jjgjjC1það0;2pÞ þ jjhjjC2það0;2pÞÞ; ð5:5Þ

jj ’cjj
C2þa½b0;r1� d

10
;0;2p	

pC2ðjjf jjCa½b0;r1;0;2p	 þ jjgjjC1það0;2pÞ þ jjhjjC0ð0;2pÞÞ ð5:6Þ

provided jr1 � b0jod:

Proof. First, let us show that the solution ’c of the linearized problem (5.2)–(5.4)
monotonically depends on its boundary value on r ¼ r1; provided f and g

vanish. In fact, making a transformation of unknown function v ¼ eKðr�b0Þ2 ’c for

the problem LðaÞ;

LðaÞ ’c ¼ LðaÞðe�Kðr�b0Þ2vÞ ¼ e�Kðr�b0Þ2L
ðaÞ
K v;

where

L
ðaÞ
K v ¼LðaÞv � 4Kðr � b0ÞA11vr þ ðð4K2ðr � b0Þ2 � 2KÞA11

� 2Kðr � b0ÞB1Þv: ð5:7Þ

Obviously, v satisfies the elliptic equation

L
ðaÞ
K v ¼ 0;
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provided ’c satisfies LðaÞ ’c ¼ 0: When d is sufficiently small and K ¼ d�1; the

coefficient of v in L
ðaÞ
K v satisfies

ð4K2ðr � b0Þ2 � 2KÞA11 � 2Kðr � b0ÞB1oð4� 2d�1ÞA11 þ 2jB1jo0:

Hence, v cannot take its positive maximum or negative minimum in the domain Oa;
nor on the boundary of Oa: This fact implies that v depends on its boundary value on

r ¼ r1 monotonically. Hence it is also true for the solution ’c of the problem LðaÞ:
The above argument indicates that 0 is not an eigenvalue of the elliptic operator

LðaÞ under homogeneous boundary conditions corresponding to (5.3) and (5.4),
provided d is sufficiently small. Namely, problem (5.2)–(5.4) is uniquely solvable.
Finally, (5.5) and (5.6) are just the generalized global and interior Schauder
estimates. &

Remark 5.1. In this paper we will often use two kinds of small constants with
different scale. The small constant d (or di) is used to restrict the domain, where a
boundary value problem under consideration is given. Usually, we choose d small
enough to ensure the well posedness of the corresponding boundary value problem,
while the constant e (or ei) is used to describe the perturbation of the data. The
constant e is small, and is also small enough with respect to d: Usually, e is chosen
when d has been fixed.

Lemma 5.2. Assume that d; e are sufficiently small in the sense of Remark 5.1. jr1 �
b0jod; jjbðyÞ � b0jjC2það0;2pÞoe; jjdðyÞ � c10jjC2það0;2pÞoe with c10 ¼ cBðr1Þ; then the

problem ðNLÞðaÞfbðyÞ; dðyÞg has unique solution cðr; yÞ: Moreover,

jjcðr; yÞ � cBðrÞjjC2þaðOaÞ-0 when e-0: ð5:8Þ

Proof. When bðyÞ ¼ b0; the function cBðrÞ is the solution of the nonlinear problem

ðNLÞðaÞfb0; c10g: For jr1 � b0jod; the linearization LðaÞ of nonlinear problem

ðNLÞðaÞ at bðyÞ ¼ b0; c ¼ c10 has estimate (5.5), where the constant C1 is uniform
with respect to bðyÞ: Then the implicit function theorem implies that the problem

ðNLÞðiÞfbðyÞ; dðyÞg has an unique solution, which is a small perturbation of c ¼
cBðrÞ; provided jjbðyÞ � b0jjC2þaoe; jjdðyÞ � c10jjC2þaoe for sufficiently small e:
Finally, (5.8) follows from the conclusion of the implicit function theorem. &

The following lemma is called comparison principle.

Lemma 5.3. Assume that d; e are sufficiently small in the sense of Remark 5.1, jr1 �
b0jod; jjbðyÞ � b0jjC2það0;2pÞoe; jjdjðyÞ � c10jjC2það0;2pÞoe ðj ¼ 1; 2Þ; and cjðr; yÞ is the

solution of the problem ðNLÞðaÞfbðyÞ; djðyÞg; then the comparison principle is valid, i.e.

d2Xd1 implies c2Xc1:
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Proof. Assume f ¼ g ¼ 0 in problem (5.2)–(5.4), the boundary r ¼ b0 is replaced by
r ¼ bðyÞ; and all the coefficients have small perturbation, then by using the same
argument as in Lemma 5.1, we confirm that a nonnegative datum on the boundary
r ¼ r1 corresponds to a nonnegative solution of the perturbed problem.

For the nonlinear problem ðNLÞðaÞ; we denote the solution with boundary

condition cjr¼r1
¼ djðyÞ by cjðr; yÞ: Also denote ’c ¼ c2 � c1; then ’c satisfies

A11ðc1Þ ’crr þ D0
’cry þ A22ðc1Þ ’cyy þ ðB1ðc1Þ þ D1Þ ’cr

þ D2
’cy þ ðCðc1Þ þ D3Þ ’c ¼ 0; ð5:9Þ

where A11ðc1Þ; A22ðc1Þ; B1ðc1Þ; Cðc1Þ are the coefficients in (5.2) with c replaced

by c1; Djðj ¼ 0; 1; 2; 3Þ are small quantities with factors ’crr; ’cr; ’c or ciyy;ciry;ciy .

Correspondingly, the boundary conditions for ’c are

’cr �
by

r2
’cy ¼ 0 on r ¼ bðyÞ; ð5:10Þ

’c ¼ d2 � d1 on r ¼ r1: ð5:11Þ

In view of estimate (5.5), the coefficients of Eq. (5.9) are small perturbations of the
corresponding coefficients of (5.2), provided that jjdjðyÞ � c10jjC2þa and jjbðyÞ �
b0jjC2þa are sufficiently small. Therefore, 0 is not an eigenvalue of the operator in the

left-hand side of (5.9), and the comparison principle is available. Namely, d2 � d1X0

on r ¼ r1 implies ’cX0 in Oa:

Let b̃0 ¼ maxbðyÞ , then from Theorem 3.1 we know that the solution *cBðrÞ of
(3.1)–(3.3) with b0 replaced by b̃0 is defined on ðb̃0; s̃0Þ; where s̃0 > s0: Moreover,

w̃ðrÞowðrÞ; *cBrðrÞ > cBrðrÞ on b̃0prps0

and

*cBðrÞ ¼c0 �
Z s̃0

r

*cBrðrÞ dr

¼c0 �
Z s̃0

s0

*cBrðrÞ dr �
Z s0

r

*cBrðrÞ dr

oc0 �
Z s0

r

cBrðrÞ dr ¼ cBðrÞ:

On the other hand, extending *cBðrÞ to ðb0; b̃0Þ by using (3.1) and the data at

r ¼ b̃0; we know *cBðrÞocBðrÞ also holds in ðb0; b̃0Þ: In the sequel the functions cBðrÞ
and *cBðrÞ will be applied to bound the solution of ðNLÞ from above and below. &
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Lemma 5.4. Assume that b0 ¼ minbðyÞ; b̃0 ¼ maxbðyÞ; jjbðyÞ � b0jjC2það0;2pÞoe;

cðr; yÞ ¼ ðNLÞðaÞfbðyÞ; dðyÞg; *cBðrÞ is the solution of (3.1)–(3.3) with b0 replaced by

b̃0; *cBðr1ÞpdðyÞpcBðr1Þ; then

*cBðrÞpcðr; yÞpcBðrÞ in Oa:

Besides

jjcðr; yÞ � cBðrÞjjC2þaðO�
a ÞpCðjjdðyÞ � c10jjCð0;2pÞ þ eÞ; ð5:12Þ

where O�
a ¼ fðr; yÞ: bðyÞprpr1 � 1

10
d; 0pyp2pg:

Proof. Set D1c ¼ c� cB: It satisfies

A11ðcBÞðD1cÞrr þ A22ðcBÞðD1cÞyy þ D̃0ðD1cÞry þ ðB1ðcBÞ þ D̃1ÞðD1cÞr

þ D̃2ðD1cÞy þ ðCðcBÞ þ D̃3ÞD1c ¼ 0; ð5:13Þ

where D̃j are small quantities as Dj in (5.9). In view of wB ¼ r � cBr being positive

for r > r0; cBrpr on r ¼ bðyÞ: Hence

ðD1cÞrX0 on r ¼ bðyÞ: ð5:14Þ

Besides,

D1c ¼ dðyÞ � c10 on r ¼ r1: ð5:15Þ

Again noticing that the coefficients of (5.13) are small perturbation of corresponding
coefficients of (5.2), and using the argument similar to the proof of Lemma 5.3, we
know that D1c cannot attain its positive maximum inside the domain and on the
boundary. Namely, we have cðr; yÞpcBðrÞ:
Similarly, we can prove cðr; yÞX *cBðrÞ:
To prove (5.12), we use the transformation (5.1). Let cn

Bðr; yÞ ¼ t�1ðcBðr̃ÞÞ; then
cn

B is defined in whole Oa: Since cB satisfies Eq. (3.1), we have

e2ða2 � ðeðcn

BÞr � rÞ2Þðcn

BÞrr þ
a2

r̃
eðcn

BÞr ¼ 0; ð5:16Þ

where e ¼ @r
@r̃
¼ r1�bðyÞ

r1�b0
¼ 1þ b0�bðyÞ

r1�b0
¼ 1þ OðeÞ: Denote Dcn ¼ cðr; yÞ � cn

B; it satis-

fies

A11ðcBÞðDcnÞrr þ A22ðcBÞðDcnÞyy þ Dn

0ðDc
nÞry þ ðB1ðcBÞ þ Dn

1ÞðDc
nÞr

þ Dn

2ðDc
nÞy þ ðCðcBÞ þ Dn

3ÞDc
n ¼ f ; ð5:17Þ
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and corresponding boundary conditions

ðDcnÞr ¼ g on r ¼ bðyÞ; ð5:18Þ

Dcn ¼ dðyÞ � c10 on r ¼ r1; ð5:19Þ

where jjf jjC2þa ; jjgjjC2þa are quantities OðeÞ: Therefore, we have

jjDcnjjC2þaðO�
a ÞpCðjjdðyÞ � c10jjC0ð0;2pÞ þ eÞ;

which leads to (5.12) directly. &

6. Problem ðNLÞðbcÞ

Now let us consider the nonlinear problem ðNLÞðbcÞ ð1pcpkÞ in the annulus Obc

with fixed boundary p ¼ ac and bc as defined in (4.8) and (4.9). The inverse function

of cBðrÞ is also called background solution of ðNLÞn; and is denoted by uBðpÞ:
Linearizing (4.3) at the background solution u ¼ uBðpÞ and using uBs ¼ 0; a2 ¼
ðg� 1Þð�p � u

up
� 1

2
1
u2p
Þ; we obtain

a2 � 1

up

þ u

� �2
 !

’upp þ
a2u2p

u2
’uss þ F1 ’up þ F0 ’u ¼ f ; ð6:1Þ

where

F1 ¼ 2
1

up

þ u

� �
upp

u2p
� 2a2

u
up þ ðg� 1Þ upp �

u2p

u

 !
u

u2p
þ 1

u3p

 !
� 2a2

up

u
;

F0 ¼ �2 1

up

þ u

� �
upp þ

a2u2p

u2
� ðg� 1Þ upp �

u2p

u

 !
1

up

þ
u2p

u2
a2:

The linearization of the boundary conditions on p ¼ acð1rcpkÞ and p ¼
bcð1rcpk � 1Þ is simple, while the linearization of the boundary condition on
p ¼ �c0ð¼ bkÞ is

� ’up

u2p
þ ’u

 !
H � ’ur0 þ

1

up

þ u

� �
H 0 u ’up

u2p
þ ’up

u3p
� ’u

up

 !
¼ 0:

In view of H ¼ r; H 0 ¼ r=a2; the condition can be written as

g1 ’up þ g0 ’u ¼ g; ð6:2Þ
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where

g1 ¼ � 1

u2p
þ a�2 1

up

þ u

� �
u

u2p
þ 1

u3p

 !
;

g0 ¼ 1� r0
r

� �
þ 1

up

þ u

� �
a�2 � 1

up

� �
:

Since 1
up
þ u ¼ r � cr is the relative velocity, which is less than the sound speed

behind the shock front, we have

g1 ¼
c2

r

a2
ððr � crÞ

2 � a2Þo0;

g0 ¼ 1� r0
r
þ ðr � crÞa�2ðcrÞ > 0:

Noticing the direction @
@p
points inward of the domain bkpppak; 0pyp2p; the sign

of the coefficients in condition (6.2) satisfies the requirement of maximum principle

for elliptic boundary value problems. Therefore, assume d
2
pjbc � acjpd for

1pcpk; and d is small enough, all linearized problems

LðbcÞ :

Eq: ð6:1Þ in Obc ;

’uc ¼ qc1 on p ¼ ac;

’uc ¼ qc2 on p ¼ bc

8><
>: ð6:3Þ

for 1pcpk � 1; and

LðbkÞ :

Eq: ð6:1Þ in Obk
;

’uk ¼ qk1 on p ¼ ak;

condition ð6:2Þ on p ¼ bkð¼ �c0Þ

8><
>: ð6:4Þ

are well posed. Meanwhile, the following properties for the solution uc of the

nonlinear problem NLðbcÞ and the solution ’uc of the linear problem LðbcÞ the

following properties can be verified by the similar method as we did for c and ’c in
Section 5.

Lemma 6.1. There is a d > 0; such that the solution ’uc of LðbcÞ uniquely exists, and

satisfies

jj ’ucjjC2þaðObc
ÞpC1ðjjf jjCaðObc

Þ þ jjqc1jjC2það0;2pÞ þ jjqc2jjC2það0;2pÞÞ; ð6:5Þ

jj ’ucjjC2þaðO�
bc
ÞpC2ðjjf jjCaðObc

Þ þ jjqc1jjC0ð0;2pÞ þ jjqc2jjC0ð0;2pÞÞ ð6:6Þ
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for 1pcpk � 1; and

jj ’ukjjC2þaðObk
ÞpC1ðjjf jjCaðObk

Þ þ jjgjjC1það0;2pÞ þ jjqk1jjC2það0;2pÞÞ; ð6:7Þ

jj ’ukjjC2þaðO�
bk
ÞpC2ðjjf jjCaðObk

Þ þ jjgjjC1það0;2pÞ þ jjqk1jjC0ð0;2pÞÞ; ð6:8Þ

where O�
bc
¼ ½bc þ 1

10
d; ac � 1

10
d; 0; 2p	 for 1pcpk � 1 and O�

bk
¼ ½bk; ak � 1

10
d; 0; 2p	:

Lemma 6.2. (a) Assume that jjqc1ðsÞ � uBða1ÞjjC2það0;2pÞoe; jjqc2ðsÞ �
uBðb1ÞjjC2það0;2pÞoe hold for 1pcpk � 1; then ðNLÞðbcÞfqc1ðsÞ; qc2ðsÞg has a unique

solution. Moreover,

jjuðp; sÞ � uBðpÞjjC2þaðObc
Þ-0 when e-0: ð6:9Þ

(b) Assume that jjqk1ðsÞ � uBða2ÞjjC2það0;2pÞoe; then ðNLÞðbkÞfqk1ðsÞg has a unique

solution. Moreover,

jjuðp; sÞ � uBðpÞjjC2þaðObk
Þ-0 when e-0: ð6:10Þ

Proof. The proof for cases (a) and (b) are similar, so we only prove the case (b). The

three equations in the problem ðNLÞðbkÞ can be regarded as a map from C2þaðObk
Þ to

CaðObk
Þ � C1það0; 2pÞ � C2það0; 2pÞ: For ð0; 0; uBða2ÞÞACa � C1þa � C2þa; it has

been known that the problem has a solution uBðpÞ; which is just the inverse of cBðrÞ:
Besides, the linearized problem has estimate (6.7). According to the implicit function

theorem, there is an e > 0; such that ðNLÞðekÞ has a unique solution, provided
jjqk1ðsÞ � uBða2ÞjjC2þaoe: Finally, (6.10) obviously follows from the implicit function

theorem. &

Lemma 6.3. Assume that d; e are sufficiently small in the sense of Remark 5.1, then

(a) If u
ðjÞ
c ðp; sÞ ¼ ðNLÞðbcÞfq

ðjÞ
c1ðsÞ; q

ðjÞ
c2ðsÞg; jjqðjÞ

c1ðsÞ � uBðacÞjjC2þaoe; jjqðjÞ
c2ðsÞ �

uBðbcÞjjC2þaoe; for j ¼ 1; 2; 1pcpk � 1; then

q
ð2Þ
c1 ðsÞXq

ð1Þ
c1 ðsÞ; q

ð2Þ
c2 ðsÞXq

ð1Þ
c2 ðsÞ ) u

ð2Þ
c ðp; sÞXu

ð1Þ
c ðp; sÞ: ð6:11Þ

Besides,

jjuðjÞ
c ðp;sÞ � uBðpÞjjC2þaðO�

bc
Þ

pCðjjqðjÞ
c1ðsÞ � uBðacÞjjC0ð0;2pÞ þ jjqðjÞ

c2ðsÞ � uBðbcÞjjC0ð0;2pÞ þ eÞ: ð6:12Þ
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(b) If jjqðjÞ
k1ðsÞ � uBðakÞjjC2þaoe; u

ðjÞ
k ðp; sÞ ¼ NLðekÞfq

ðjÞ
k1g; then

q
ð2Þ
k1 ðsÞXq

ð1Þ
k1 ðsÞ ) u

ð2Þ
k ðp; sÞXu

ð1Þ
k ðp; sÞ: ð6:13Þ

Besides,

jjuðjÞ
k ðp; sÞ � uBðpÞjjC2þaðO�

bk
ÞpCðjjqðjÞ

k1ðsÞ � uBðakÞjjC0ð0;2pÞ þ eÞ: ð6:14Þ

Proof. Take ’uc ¼ u
ð1Þ
c � u

ð2Þ
c ð1pcpkÞ; then ’uc satisfies

a2 � 1

up

þ u

� �2
 !

’upp þ
a2u2p

u2
’uss þ D0 ’ups

þ ðF1 þ D1Þ ’up þ D2 ’us þ ðF0 þ D3Þ ’u ¼ 0; ð6:15Þ

where ’u stands for ’uc for notational simplification. On the boundaries, ’uc is
nonnegative on p ¼ ac; bc; ’uk is nonnegative on p ¼ ak: Moreover, ’uk satisfies

ðg1 þ m1Þ ’up þ m2 ’us þ ðg0 þ m0Þ ’u ¼ 0 ð6:16Þ

on p ¼ bk: Here all Dj; mj in the above equalities are small quantities OðeÞ:
Therefore, the coefficients in (6.15), (6.16) are small perturbation of the
corresponding coefficients in (6.1), (6.2). It turns out that the comparison
principle holds for small d; then the estimate (6.12), (6.14) can be derived from
Lemma 6.1. &

7. Solution to nonlinear problem ðNLÞ and ðNLÞn

Based on the discussion of ðNLÞðaÞ and ðNLÞðbcÞ; we are able to construct the

solution of ðNLÞ and ðNLÞn: The main idea in this step is by alternatively solving

ðNLÞðaÞ and ðNLÞðbcÞ ðc ¼ 1;y; kÞ to establish sequences of approximate solutions

fcðnÞg for ðNLÞðaÞ and approximate solutions fu
ðnÞ
c g to ðNLÞðbcÞ; so that these

sequences are convergent and the limit of them solves the nonlinear problem ðNLÞ
and ðNLÞn:
First, let us describe the method of determining r1; ac; bcð0pcpkÞ again. By using

Lemmas 5.2–5.4 we take r1 > b̃0 ¼ max bðyÞ; so that jr1 � bðyÞjod and the solution

c of the problem ðNLÞðaÞ uniquely exists in the domain Oa : bðyÞprpr1: According

to these lemmas we have the solution c of ðNLÞðaÞðbðyÞ;c10Þ satisfies cpcB and the
value of c in Oa depends monotonically on its boundary value on r ¼ r1: Then by
using Lemma 6.2, we choose k and facg; fbcg for 1pcpk; so that (4.6) is satisfied,

and the solution to problem ðNLÞðbcÞ uniquely exists in the domain Obc and satisfies
the comparison principle with respect to the data on the boundary.
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Let us assume k ¼ 2 for notations simplification in the remaining part of this
paper. In fact, the case k > 2 can be treated in the same way. Besides, we also use the

following notations: r as a function of p; y will be denoted by c�1ð�p; yÞ; provided
p ¼ �cðr; yÞ; while p as a function of r; s will be denoted by u�1ðr; sÞ; provided
r ¼ uðp; sÞ:
The sequences of approximate solutions will be established as follows. Denote

cð0Þ ¼ cB; u
ð0Þ
1 ¼ u

ð0Þ
10 ¼ u

ð0Þ
2 ¼ uB; then we define cð1Þðr; yÞ as the solution of the

problem ðNLÞðaÞfbðyÞ;cBðr1Þg: For nX1; we define

u
ðnÞ
1 ðp; sÞ ¼ ðNLÞðb1ÞfðcðnÞÞ�1ð�a1; sÞ; ðuðn�1Þ

2 ðb1; sÞg;

u
ðnÞ
2 ðp; sÞ ¼ NLðb2Þfu

ðnÞ
1 ða2; sÞg;

u
ðnÞ
10 ðp; sÞ ¼ NLðb1Þfu

ðnÞ
1 ða1; sÞ; u

ðnÞ
2 ðb1; sÞg;

cðnþ1Þðr; yÞ ¼ NLðaÞfbðyÞ;�ðuðnÞ
10 Þ

�1ðr1; yÞg

inductively.

Lemma 7.1. If jjbðyÞ � b0jjC2þaoe with e being sufficiently small, b̃0 ¼ maxbðyÞ;
cBðrÞ; *cBðrÞ; uBðpÞ; ũBðpÞ are the corresponding background solutions for ðNLÞ and

ðNLÞn in symmetric case. Then the sequences fcðnÞg; fu
ðnÞ
1 g; fu

ðnÞ
2 g; fu

ðnÞ
10 g established

above are well defined, which satisfy

*cBðrÞpcðnÞðr; yÞpcBðrÞ in O�
a ;

jjcðnÞðr; yÞ � cBðrÞjjC2þaðO�
a ÞpCe ð7:1Þ

and

ũBðpÞXu
ðnÞ
1 ðp; sÞ; u

ðnÞ
10 ðp; sÞXuBðpÞ in O�

b1
;

ũBðpÞXu
ðnÞ
2 ðp; sÞXuBðpÞ in O�

b2
;

jjuðnÞ
1 ðp; sÞ � uBðpÞjjC2þaðO�

b1
ÞpCe;

jjuðnÞ
10 ðp; sÞ � uBðpÞjjC2þaðO�

b1
ÞpCe;

jjuðnÞ
2 ðp; sÞ � uBðpÞjjC2þaðO�

b2
ÞpCe: ð7:2Þ

Moreover, fcðnÞg is monotone decreasing with respect to n; and other three sequences

are monotone increasing with respect to n:
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Proof. Without loss of generality we assume

jj *cB � cBjjC0oe; jjũB � uBjjC0oe:

Lemma 5.4 indicates that the solution cð1Þðr; yÞ of the nonlinear problem

ðNLÞðaÞfbðyÞ;cBðr1Þg exists and satisfies *cBpcð1ÞpcB: Under the assumptions of
the lemma we have

jjcð1Þ � cBjjC0ðOaÞpe; ð7:3Þ

jjcð1Þ � cBjjC2þaðO�
a ÞpC2e: ð7:4Þ

Because cð1Þ is a small perturbation of cB; ðcð1ÞÞ�1 is well defined and

ðcð1ÞÞ�1ð�p; sÞXðcBÞ
�1ð�pÞ ¼ uBðpÞ: Moreover, from (7.3) and cð1Þ

r > k > 0; we
have

jjðcð1ÞÞ�1ð�a1; sÞ � uBða1ÞjjC0ð0;2pÞo
e
k
: ð7:5Þ

Taking ðcð1ÞÞ�1ð�a1; sÞ and uBðb1Þ as the data on the boundary p ¼ a1 and b1;

respectively, for the nonlinear problem ðNLÞðb1Þ; we obtain the solution u
ð1Þ
1 ðp; sÞ of

ðNLÞðb1Þ by Lemma 6.2, while Lemmas 6.1 and 6.3 imply the following estimates:

jjuð1Þ
1 � uBjjC2þaðO�

b1
ÞpC2jjðcð1ÞÞ�1ð�a1; sÞ � uBða1ÞjjC0ð0;2pÞpC2

e
k
; ð7:6Þ

ũBða1ÞXu
ð1Þ
1 ða1; sÞXuBða1Þ: ð7:7Þ

Hence by using comparison principle established in the above sections we have

ũBðpÞXu
ð1Þ
1 ðp; sÞXuBðpÞ ð7:8Þ

in Ob1 ; as well as on p ¼ a2:

Next, we solve the problem ðNLÞðb2Þfu
ð1Þ
1 ða2; sÞg: Lemmas 6.2 and 6.3 imply the

existence of the problem, and

ũBðpÞXu
ð1Þ
1 ðp; sÞXuBðpÞ in O�

b2
;

jjuð1Þ
2 � uBjjC2þaðO�

b2
ÞpC2e: ð7:9Þ
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Returning to domain Ob1 ; we solve another Dirichlet problem ðNLÞðb1Þ with data

u
ð1Þ
1 ða1; sÞ; u

ð1Þ
2 ðb1; sÞ on p ¼ a1 and p1; respectively. That is

u
ð1Þ
10 ðp;sÞ ¼ NLðb1Þfu

ð1Þ
1 ða1; sÞ; u

ð1Þ
2 ðb1; sÞg

which also satisfies (7.6) and (7.7) with u
ð1Þ
1 being replaced by u

ð1Þ
10 :

In view of ðuð1Þ
10 Þp > 0; we know ðuð1Þ

10 Þ
�1
X� cB on r ¼ r1; meanwhile,

jj � ðuð1Þ
10 Þ

�1ðr1; yÞ � cBðr1ÞjjC0ð0;2pÞoe: ð7:10Þ

In addition, we can solve the problem NLðaÞfbðyÞ;�ðuð1Þ
10 Þ

�1ðr1; yÞg in Oa by Lemma

5.2. Its solution cð2Þðr; yÞ satisfies cð2Þpcð1Þ according to Lemma 5.3 and satisfies

cð2Þ
X *cB according to Lemma 5.4. Therefore, we have

jjcð2Þðr2; yÞ � cBðr2ÞjjC0ð0;2pÞoe; ð7:11Þ

jjcð2Þðr; yÞ � cBðrÞjjC2þaðO�
a ÞpC2jj � ðuð1Þ

10 Þ
�1ðr1; yÞ � cBðr1ÞjjC0ð0;2pÞ

pC2e: ð7:12Þ

Notice that (7.11) and (7.12) are the same as (7.3) and (7.4) with index replaced by

2. Therefore, the sequence fcðnÞg; fu
ðnÞ
1 g; fu

ðnÞ
2 g; fu

ðnÞ
10 g can be established.

By the same procedure, we obtain u
ð2Þ
1 ðp; sÞ; u

ð2Þ
2 ðp; sÞ; u

ð2Þ
10 ðp; sÞ; c

ð3Þðr; yÞ and so

on. Then (7.1) and (7.2) can be proved by induction.

To prove the monotonicity of the sequences fcðnÞg and fuðnÞg; we also verify
inequalities

cðnþ1Þðr; yÞpcðnÞðr; yÞ;

u
ðnþ1Þ
1 ðp; sÞXu

ðnÞ
1 ðp; sÞ;

u
ðnþ1Þ
2 ðp; sÞXu

ðnÞ
2 ðp; sÞ;

u
ðnþ1Þ
10 ðp; sÞXu

ðnÞ
10 ðp; sÞ ð7:13Þ

by induction. According to the process of establishing these sequences, we have

cð1Þðr; yÞpcBðrÞ from Lemma 5.4. Furthermore, the inequalities u
ð1Þ
1 ðp; sÞXuBðpÞ;

u
ð1Þ
10 ðp; sÞXuBðpÞ; u

ð2Þ
1 ðp; sÞXuBðpÞ follow from Lemma 6.3. It means that (7.13) is

true for n ¼ 0:
Now assuming (7.13) be valid with n replaced by n � 1; we prove that

it is also valid when the index is n: First, because of upo0; the last inequality of

(7.13) with index n replaced by n � 1 means ðuðnÞ
10 Þ

�1ðr1; yÞXðuðn�1Þ
10 Þ�1ðr1; yÞ; which
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implies

cðnþ1Þðr; yÞpcðnÞðr; yÞ in Oa ð7:14Þ

according to Lemma 5.3. Hence ðcðnþ1ÞÞ�1ð�a1; sÞXðcðnÞÞ�1ð�a1; sÞ: Combining it

with the hypothesis of induction u
ðnÞ
2 ðb1; sÞXu

ðn�1Þ
2 ðb1; sÞ we have

u
ðnþ1Þ
1 ðp; sÞXu

ðnÞ
1 ðp; sÞ in Ob1 ð7:15Þ

according to part (a) of Lemma 6.3. Next, by using (7.15) on the line p ¼ a2 and the
boundary condition on p ¼ b2; the inequality

u
ðnþ1Þ
2 ðp; sÞXu

ðnÞ
2 ðp; sÞ in Ob2 ð7:16Þ

is also valid according to the part (b) of Lemma 6.3. Furthermore, the facts (7.16) on
the line p ¼ b1 and (7.15) on the line p ¼ a1 indicate

u
ðnþ1Þ
10 ðp; sÞXu

ðnÞ
10 ðp; sÞ in Ob1 : ð7:17Þ

Therefore, since all equalities in (7.13) with index n hold, the monotonicity of the
sequences in the lemma is proved by induction.

Proof of Theorem 2.1. As we proved in Lemma 7.1, the sequences fu
ðnÞ
1 ðp; sÞg;

fu
ðnÞ
2 ðp; sÞg; fu

ðnÞ
10 ðp; sÞg and fcðnÞðr; yÞg are bounded and monotone with respect to

n; then these sequences are convergent. Denote their limits by u1ðp; sÞ; u2ðp; sÞ;
u10 ðp; sÞ; cðr; yÞ; respectively. Since the C2þa norm of cðnÞ on r ¼ uBða1Þ is dominated
by its C0 norm on r ¼ r1; the C2þa norm of u

ðnÞ
1 ; u

ðnÞ
10 in O�

b1
is dominated by their C0

norm on p ¼ a1; p ¼ b1; the C2þa norm of u
ðnÞ
2 in O�

b2
is dominated by its C0

norm on p ¼ a2; so the C2þa norm of cðnÞ; u
ðnÞ
1 ; u

ðnÞ
10 ; u

ðnÞ
2 are uniformly

bounded in corresponding domains. The fact also implies c; u1;u10 ; u2 are C2þa

function there.

On the other hand, c satisfies (2.9), (2.10) and cðr1; yÞ ¼ �ðu1Þ�1ðr1; yÞ; u1; u10

satisfies (4.3) and u1 ¼ u10 on the boundary p ¼ a1; p ¼ b1; u2 satisfies (4.3), (4.5)
and u1ða2; sÞ ¼ u2ða2; sÞ: Notice that (4.3) is the another form of Eq. (2.9) in the

coordinates ðp; sÞ; then both cðr; yÞ and �ðu1Þ�1ðr; yÞ satisfy Eq. (2.9) in the

overlapped domain Oa-T ð�1ÞðOb1Þ: Besides, these two functions coincide on the
boundaries r ¼ r1 and r ¼ uða1; yÞ: Since the domain Oa is chosen so small that the

linearized problem LðaÞ does not have nonnegative eigenvalue in Oa; there is no

nonnegative eigenvalue in its subdomain Oa-T ð�1ÞðOb1Þ either. By the uniqueness of
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Dirichlet problem for the nonlinear elliptic equation (2.9), the functions cðr; yÞ and
u�1
1 ðr; yÞ coincide on the whole domain Oa-T ð�1ÞðOb1Þ: Moreover,

u1ðp; sÞ; u10 ðp; sÞ; u2ðp; sÞ coincide on the corresponding overlapped domain. There-

fore, viewing functions u�1
1 ðr; yÞ; u�1

2 ðr; yÞ as extensions of cðr; yÞ; we obtain the

solution of ðNLÞ in the whole domain bðyÞoroc�1ð�c0; yÞ:
As for the stability, (2.15) can be obtained by taking limit in (7.1), (7.2).

Besides, in view of sðyÞ ¼ c�1ð�c0; yÞ; (2.14) can also be obtained in the
mean time.
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multidimensionnels, Comm. Partial Differential Equations 14 (1989) 173–230.

[2] S. Canic, B. Keyfitz, Riemann problems for the two-dimensional unsteady transonic small

disturbance equation, SIAM J. Appl. Math. 58 (1998) 636–665.

[3] S. Canic, B. Keyfitz, G. Lieberman, A proof of existence of perturbed steady transonic shocks via a

free boundary problem, Comm. Pure Appl. Math. 53 (2000) 484–511.

[4] S. Canic, B. Keyfitz, E.H. Kim, Free boundary problems for the unsteady transonic small disturbance

equation: transonic regular reflection, Method Appl. Anal. 7 (2000) 313–335.

[5] G.Q. Chen, Remarks on spherically symmetric solutions of the compressible Euler equations, Proc.

Roy. Soc. Edinburgh 127A (1997) 243–259.

[6] S. Chen, Non-symmetric conical supersonic flow, International Series of Numerical Mathematics,

Vol. 129, Birkhauser Verlag, Basel, Switzerland, 1999, pp. 140–158.

[7] S. Chen, Existence of stationary supersonic flow past a pointed body, Arch. Rational Mech. Anal. 156

(2001) 141–181.

[8] R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers Inc., New

York, 1948.

[9] C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, Heidelberg,

New York, 2000.

[10] T.T. Li, Global Classical Solutions for Quasilinear Hyperbolic Systems, Wiley, Masson, New York,

Paris, 1994.

[11] W.C. Lien, T.P. Liu, Nonlinear stability of a self-similar 3-d gas flow, Comm. Math. Phys. 304 (1999)

524–549.

[12] A. Majda, The stability of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 273

(1983).

[13] A. Majda, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc. 281

(1983).

[14] A. Majda, One perspective on open problems in multi-dimensional conservation laws, IMA Vol.

Math. Appl. 29 (1991) 217–237.

S. Chen / J. Differential Equations 189 (2003) 292–317316



[15] A. Majda, E. Thomann, Multi-dimensional shock fronts for second order wave equations, Comm.

Partial Differential Equations 12 (1987) 777–828.

[16] G. Metivier, Ondes Soniques, J. Math. Pure Appl. 70 (1991) 197–268.

[17] M. Mnif, Probléme de Riemann pour une loi de conservation scalaire hyperbolique d’order deux,

Comm. Partial Differential Equations 22 (1997) 1589–1627.

[18] C.S. Morawetz, Potential theory for regular and Mach reflection of a shock at a wedge, Comm. Pure

Appl. Math. 47 (1994) 593–624.

[19] D.G. Schaeffer, Supersonic flow past a nearly straight wedge, Duke Math. J. 43 (1976) 637–670.

[20] J. Smoller, Shock Waves and Reaction-diffusion Equations, Springer, Berlin, New York, 1983.

[21] G.B. Whitham, Linear and Nonlinear Waves, Wiley, New York, London, Sydney, Toronto, 1974.

S. Chen / J. Differential Equations 189 (2003) 292–317 317


	A singular multi-dimensional piston problem in compressible flow
	Introduction
	Formulation and result
	Symmetric case
	Partial hodograph transformation and domain decomposition
	Problem (NL)(a)
	Problem (NL)(bell)
	Solution to nonlinear problem (NL) and (NL)ast
	Acknowledgements
	References


