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Abstract

This paper concerns the multi-dimensional piston problem, which is a special initial
boundary value problem of multi-dimensional unsteady potential flow equation. The problem
is defined in a domain bounded by two conical surfaces, one of them is shock, whose location
is also to be determined. By introducing self-similar coordinates, the problem can be reduced
to a free boundary value problem of an elliptic equation. The existence of the problem is
proved by using partial hodograph transformation and nonlinear alternating iteration. The
result also shows the stability of the structure of shock front in symmetric case under small
perturbation.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In the study of mathematical theory of compressible fluid dynamics, the piston
problem is a basic prototype problem. As described in [8-10,20,21], giving a long
tube closed by a piston at one end and open at the other end, and assuming that the
gas in the tube is static with uniform pressure po and density p,, then any motion of
the piston will cause a corresponding motion of the air. Generally, if the piston is
pulled back, then a rarefaction wave will be formed, and otherwise, if the piston is
pushed forward, then the push will cause a compressed wave moving into the air.
Particularly, if the initial velocity of the piston is positive, then ahead of the piston
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there will be a shock front, moving into the air faster than the piston. Such
phenomena are verified by physical experiments, and also elaborately studied in its
mathematical aspects. It is natural to study the multi-dimensional version of such
piston problems.

Suppose there is uniform static gas filling up the whole space outside a given body
with moving boundary. The body is called piston in the sequel. Starting from the
initial time, the piston gradually expands and its boundary moves into the air as in
the one-dimensional case. Then, away from the piston there is a shock front moving
into the air. Ahead of the shock front the state of the air is kept unchanged, while the
location of the moving shock and the flow field in between the shock and the path of
the piston are to be determined. Such a problem is called multi-dimensional piston
problem, which is an initial boundary value problem for compressible flow equation.
For such problems, the most interesting case is that when the location of the piston
at the initial time degenerates into a single point, because such a case offers a good
model problem of multi-dimensional hyperbolic conservation laws and is related to
the study of explosive wave in physics. In the meantime, this is also the most difficult
case due to the appearance of singularity. In the sequel we are going to study such a
singular case. The main result in this paper is the existence of the solution and the
stability of the moving shock when the motion of the piston is not symmetric. We
noticed that some related problems were studied in [1-7,11-13,16,19].

Our main assumption for the motion of the piston is that the velocity of the piston
in each direction is independent of time ¢. Due to this fact we can use self-similar
coordinates to study such a problem. Moreover, since the normal component of the
relative velocity behind the shock front is subsonic, the reduced equation in the self-
similar coordinates (&, 1) is elliptic, rather than hyperbolic in the original time-space
coordinates. Besides, since the location of the shock front is unknown, the whole
mathematical problem is a free boundary value problem for the elliptic equation.

To get rid of the difficulty caused by the free boundary, we use the partial
hodograph transformation, which played the crucial role in proving the existence of
solution to the initial value problem of multi-dimensional quasilinear potential flow
equation with discontinuous data ( cf. [15,17]). Its main idea is to change the position
of the unknown function of the problem and one coordinate variable, which is the
radius r in our problem. Such a transformation will let the free boundary become a
fixed one. However, the above transformation will also change the given path of the
piston to a new free boundary. To avoid the appearance of the new free boundary,
we use the method of domain decomposition. That is, we will decompose the annular
domain into a set of overlapped domains, and correspondingly introduce a set of
auxiliary boundary value problems on these domains. Like the Schwatz alternating
iteration, we establish a set of sequences of the solutions to these auxiliary problems
by solving the problems alternatively. In each step, the value of the solution of the
previous problem is taken as the data to determine the solution of the next problem.
Finally, by establishing the convergence of these sequences, we obtain the existence
and stability of the original problem consequently.

The whole paper will be arranged as follows. In Section 2 we give the
mathematical formulation of the singular multi-dimensional piston problem and
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describe the results of the paper precisely. In Section 3 we solve the problem in
symmetric case. Starting from Section 4 we treat the nonsymmetric case. In Section 4
we introduce the partial hodograph transformation and the method of domain
decomposition. Then based on them we establish auxiliary boundary value
problems. In Sections 5 and 6 we discuss the property of the solution to these
problems, and then establish a set of sequences of the solutions by using nonlinear
alternating iteration. Finally, we prove the convergence of these sequences and
complete the proof of the main theorem in Section 7.

2. Formulation and result

In the whole paper, we use the unsteady potential flow equation to describe the
motion of the compressible flow. As it is well known, when the strength of all
possible shock is weak, the equation can offer a good description of the motion of
the flow (see [14,18]). The unsteady potential flow equation in two space dimension
can be written as

0 0 0
oi T+ g (O 50 (@) =0, (2.1)

where @ is the potential satisfying V@ = (u,v), H is the inverse function of i(p) with
i,p being the enthalpy and the density, respectively. For polytropic gas i(p) =

1
—Lp7~!, and H(s) can be taken as (%5)7—1, where y is the adiabatic exponent
satisfying 1 <y<3. From Bernoulli’s relation, we have

@, + 1|V +i(p) = const., (2.2)

where the constant can be simply taken as zero. Therefore, in (2.1) the function H
reads

1

1 ~1 1 o
HH((D, 2|V<1§2) - (Vy(cp, 2|V<1>2)>’ .

As in the one space-dimensional case the motion of the piston will produce a
shock, which moves faster than the piston. On the shock, the R-H condition and the
entropy condition should be satisfied. If 2 is the shock front, on which the
parameters of the flow has jump, then the R-H condition on 2 is

@ is continuous,
n[H] + ny[@H| + n,[®,H| = 0, (2.3)

where (n;, ny, n,) is the vector normal to X, [-] stands for the jump of the function in
the bracket. Besides, the entropy condition means the density behind shock is greater
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than the density ahead of shock, or equivalently, the comparative normal velocity is
supersonic ahead of shock, and is subsonic behind shock.

Assume that the state of the gas at the initial time is characterized by p =
0o, (u,v) =(0,0), and the piston is located at the origin. Starting from 7 =0, the
piston expanded with velocity depending on 6 = arctan y/x. Assume that the
velocity is independent of time ¢, then the path of the piston can be described by

B: ﬂ(§-9> =0 (2.4)

t

which is a conical surface in (#,x,y) space. Then the boundary value condition
on Bis

X Y
_?:uf - ?:uq + ﬂg‘px + /Jqd)y = 0)

which means the gas could not go into the piston, nor produce vacuum near the
piston.

Since the whole problem is invariant under the dilation t—af, x—>ax, y— oy, we
can only consider the self-similar solution of (2.1). Take &= x/t, n=y/t,
&(t,x,y) = ty(x/t,y/t), we have

(px = lp@ (I)y = l//m

—@ SV = g + e+, — S W+ ).
Then (2.1) becomes
(@ — (e — f)z)‘ﬁfg =20y = (W, — e,

+ (a2 - (Wﬂ - ’7)2)%7 = 07 (25)

1
where a = (H/H')2 is the sonic speed.
The boundary condition on X is

Y is continuous,
‘76[(‘/15 —&H]+ Gn[(‘h —n)H] =0, (2.6)

where (&, 1) = 0 is the equation of the surface of X. Since the gas is static ahead of
the shock front, then i is constant there. By using Bernoulli’s relation we have

A 2
b=to(= L =), 27)

Therefore, the condition on continuity of  on X can be replaced by (2.7).
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Noticing 6 = arctan y/x = arctan 5/£, the boundary condition on B is

It is convenient to work in polar coordinate system (r, 0) instead of (&, 7). By using

|
the transformation r = (&% + )2, 0 = arctan /¢, the equation becomes
4 lﬁ
(612 - (llbl - r)z)‘/jrr - 2('70} ) z lpr@ + 2 H lpf)@

N l/: ( ‘//0> r2_2¢5 _o (2.9)

72

Correspondingly, if ¥ and B are denoted by r = s(6) and r = b(0), the boundary
conditions are

Y, —r) — %21//0 by=0 on r=>b(0), (2.10)

Vo

V=, ¥l —nH]+FWeH] =0 onr=s(0), (2.11)

where the argument of H is
1
—5IVOP = v+ — 5 (wf + r—zwz). (2.12)

The main result in this paper is the existence of solution with a shock front
outside the piston, provided 5(0) is a small perturbation of a constant by. More
precisely, we have

Theorem 2.1. Assume that the path b(0) of the piston satisfies

16(0) — bol| 2= <0, (2.13)
where by = minb(0), and &y is sufficiently small. Then we can find a function s(0)
defined in 0<0<2n, a function y(r,0) defined in b(0)<r<s(0), 0<0<2n, such that

(2.9)~2.11) is satisfied. Moreover, if we denote by s(0), W g(r) the location of the shock
and the solution of the problem with b(0) = by, then

[15(0) = sol| c2+x < Ceo, (2.14)

[ (r, 0) — W (r)]

2 < Ctg. (2.15)
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3. Symmetric case

In symmetric case, b(0) = by, then the potential ¥ (r,6) and the function s(0)
describing the location of shock front will also be independent of 0. Therefore, (2.9)
becomes an ordinary differential equation

2
a
(Cl2 - (lpr_r)z)lprr—’_Tlpr :Oa re(b0750)a (31)
while the boundary conditions are

lﬁr = b() onr= b(), (32)

Y =vo, [y, —r)H] =0 onr=s, (3-3)

where s¢ is unknown, and will be determined together with . Besides, according to
the entropy condition, we have

v, >0, a>r—y.>0. (3.4)

Egs. (3.1)-(3.4) is a free boundary value problem of ordinary differential equation.
To solve it we first analyze condition (3.3) under restriction (3.4). Using the
expression of H we obtain

y—1 1 o\ [ por !
S (e a0) = (27)

Denoting r — y, by w and using (2.7), we have
| Y Y .
z < B zwr) (r =) (7 = (r =) ) =0, (35)

According to (3.4) we only need to consider (3.5) in 0<y, <r. Eq. (3.5) can also be
written as

(r =30 =)+ od, (P = (r =y, ) =0,
Let y,—0, it leads to

7+ Yoy — D2 = 0.

Namely, r = (—(y — l)lpo)% = ay. Therefore, we only need to consider (3.5) in r=ry.
Notice that (3.5) indicates the condition satisfied by y, (the velocity in the radial
direction) downward to the shock, so the graph of (3.5) on (r,,) plane is called
shock polar. In the sequel we always denote it by I' (see Fig. 1).
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Ve

P Shock polar
Ps

ap r

Fig. 1. Shock polar.

Lemma 3.1. For all possible state \y, which can be connected with the state \y =, by a
shock front moving outward, the corresponding (r,y,) must fall onto the shock polar I.
The shock polar locates below the diagonal v = p,.. It is increasing, and takes diagonal
as its asymptote.

Proof. We only need to verify the property of the shock polar. Denoting w = r — ¥,
and differentiating (3.5) with respect to r yields

(2r = 2ww )W — (PP = wA) (y — D)W 2w, = 2a3 (% — w'w,) = 0,

we((y = 3w = 2a2w' 2 — (y — Dr*w’™2) = 242772 — 2rw’ 1.

It is easy to see that the coefficient of w, in the above equality is negative due to
1 <y<3, and the right-hand side is positive, then we have w, <0, namely, r — V. is
decreasing, and then y, is increasing on I

Write (3.5) as

—1 _ -1

vl 2 w

v — 2
w lrbO }"2 _ Wz b
we see that the right-hand side tends to zero when r— + oo, due to y — 1 <2. Hence
the shock polar I' takes the diagonal r =y, as its asymptote.

For any point Py on I', we denote sy = r(Py), 79 = ¥.(Ps) > 0. Taking the initial
data as

l//|l':S(] = lp()? lpr'r:s() = Xo»

and integrating (3.1) in r<sy, we obtain a solution of (3.1). [
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Lemma 3.2. There exists an integral curve of (3.1) with initial data \y =, and ,
determined by the location of the starting point on the shock polar I'. The curve
intersect with the diagonal r =,.

Proof. By continuity
r>y,>0, r—y.<a (3.6)

is valid near r = 55. Now we prove that if (3.6) is valid in sy > r > ry and is violated
at r = ro, then we must have r =\, at r = ry. In fact, the validity of (3.6) in ro <r<s
implies

612

v, = HE =) ¥, <0. (3.7)

Hence along the backward integral curve starting from any point on I, r is
decreasing, and , is increasing. Therefore, ¥, > 0, r — . <a are also valid at r =
ro. It means that the only possibility, which let (3.6) be violated at r = ry is ¥ = V,.
Namely, the integral curve of (3.1) on (r,y,) plane can be extended up to its
intersection with the diagonal r = y,. The lemma is thus proved. [

Based on these two lemmas, we establish the existence of problem (3.1)—(3.3).

Theorem 3.1. For any point by > 0 there is a unique solution y(r) of (3.1)—(3.3).
Corresponding to each solution, the curve (r,\,(r)) is decreasing in (b, 59), it intersects
with the diagonal r =\, at r = by and with I' at r = sy.

Proof. The left end point of I' is (ap,0). Through the end point the solution of (3.1)
satisfying y(ag) = ¥, is ¥ =y, which is the interval (0,ay) on the r-axis. As shown
in Fig. 1 starting from any point P; on I', we have a solution of (3.1) satisfying
W(rp,) = ,. The integral curve / intersects with the diagonal r =, at Pj. By the
property of ordinary differential equation the coordinates of P, is a continuous
function of P;. When P; runs to the point (ao,0), the corresponding integral curve
sweeps the domain bounded by I, r-axis, the diagonal and the integral curve /.
Besides, we confirm that for each point in between O and Py, on the diagonal there is
one and only one integral curve passing through the point. In fact, two integrals ¢,
and /, of (3.1) intersect at P,. Since on the diagonal, Eq. (3.1) becomes

1
ay,, + ;azzp, =0, (3.8)

V,, on /| and /, takes the same value.
On the other hand, by differentiating (3.1) we can obtain a second-order
differential equation for ,(r) (or denoted by y(r)):

612 b
(@ = (=t = 20— 1)+ 5+ (1 +2) a2, = 0. (3.9)
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By uniqueness of solution to (3.9) with the initial data

1
X(er) = XPy X}‘(VP};) = _EXPM
/1 and /, must coincide. This also means the one-to-one correspondence of Pj, and
P;. Since P, can be any point on I' and the slope of all integrals of (3.1) on (r,V,)
plane is bounded, for any positive number by we can find sy and a solution of (3.1),
satisfying the boundary conditions (3.2) and (3.3). Hence the theorem is proved. [

4. Partial hodograph transformation and domain decomposition

From now on we consider problem (2.9)—(2.11) in nonsymmetric case. Assume
that by = min b(0), and ||b(0) — bo|| 2 <&o With & being sufficiently small, we
expect that the solution of (2.9)—(2.11) is also a perturbation of problem (3.1)—(3.3).
In the sequel we call the solution of (3.1)—(3.3) as background solution, and denote it
by ¥ 5.

Problem (2.9)-(2.11) is a free boundary value problem. When (r—y,)* +
r%w(2)<a2, Eq. (2.9) is elliptic. Since V), satisfies (3.4), then (2.9) is elliptic for
and is also elliptic for the small perturbation of 5. To avoid the difficulty caused by
the moving boundary r = s(0) , we introduce a partial hodograph transformation to
fix it. The transformation is

IH{G_a (4.1)

p=—Y(r,0),

which changes the position of the unknown function y and the variable r. Since
equals a constant ¥/, on the shock front, T transforms the shock front to a fixed
boundary p = —,. The inverse of 7 is

0= (4.2)
| r=up, o). '
Here we always have p > 0, because of ¥, > 0 and p|,,:s(9) = —, > 0. By chain rule
1 Uy
l//r = lpf) =
U U,
1 Uy
Ve = S Upps Ypg = ——3Upp + 5 Upas
U U »
1 2u, u

Vog = . Uoo == 5 Upo + 3 o
P » »
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Then we have

or

where

The boundary conditions will also have new forms in the new coordinates.
However, in the new coordinates system the path of the piston becomes unknown.
Denote it by p = g(0), the boundary condition on it is

On the shock front p =, the condition is

1 u?
—+u|H —upy+—5>—H =0. (4.5)
up u up
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In what follows, problem (2.9)—(2.11) is called (NL), and problem (4.3)—(4.5) is called
(NL)*. In fact, (NL) is equivalent to (NL)*. If one of them is solved, then the
solution of another one is also obtained.

Since the boundary p = g(s) is unknown, the problem (NL)* is also a free
boundary value problem. To avoid the appearance of any new free boundary, we try
to only consider (2.9) near r = b(#), and only consider (4.3) near p = —),. To this
end we decompose the annular domain b(0)<r<s(0) to a set of overlapped
annuluses. In the inner annulus, which is adjacent to the path of the piston and is
denoted by Q,, we keep the original coordinates (r,0) and consider (2.9). While in
other annuluses, which are denoted by @, ..., Qbk , the partial hodograph
transformation (4.1) is applied. More precisely, we introduce constants r,r, and
monotonically decreasing sequences {o,}, {ff,} with 1</ <k satisfying (see Fig. 2)

b0<b<9)<72<r1<b0 +(3,

o = _WB(}Q),
a > Py >0 > Py, 1<O<k,
Br = V. (4.6)

The annulus b(0) <r<r;, 0<0<2z on (r,0) plane is denoted by Q,, and the annulus
p,<p<oy, 0<o<2mis denoted by Q;,. The image of €, under the transformation
T-'is Q. All Q, and @, (1</<k) form an overlapped covering to the domain
b(0) <r<s(0). Besides, we assume that f, — o, <9, |y — B, 1| =4 for all /, and 6 is
small, so that the corresponding boundary value problems of Eq.(2.9) in @, or

Eq. (4.3) in f)b, as well as their linearization are well posed. In the next section we
will explain it once more.

(p)

aq

az

B,

Bx

by 2 n So ()

Fig. 2. Domain decomposition.
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Corresponding to the k + 1 annuluses, we introduce a set of auxiliary boundary
value problem as follows:

Eq. (2.9) in Q,,
(NL)“ : { boundary condition (2.10) on r = b(0), (4.7)
Y =d0) onr=r,

Eq. (4.3) in @,
(NLYP) - w=gq,(6) onp=ay, (4.8)
u:q/z(a) on p=f,,

where 1</ <k — 1,

Eq. (4.3) in Q,
(NL)") - =gy (6) on p=a, (4.9)
boundary condition (4.5) on p = —,.

All these problems are defined in a domain with fixed boundary. The solvability of

the problems (NL)(”>, (NL)(b’) and the corresponding estimates of their solutions
will be given in the next section. To emphasize the dependence on the corresponding

data, the above three problems will also be denoted by (NL)(“){I)(H),d(H)}7

(NL)*{g,1(0),qs2(0)}, and (NL)®{qi1 ()}, respectively. As we will see in the
following sections, the solvability and the corresponding estimates will lead us to
obtain the solution of the problem (NL) (and (NL)*).

5. Problem (NL)“

First let us prove the existence of solution to (NL)(”> and indicate some of its
properties. Under the transformation

0=20,
Tiy F—by  r—b(0) (5.1)
ry — b() B ry — b(@)’

the boundary r = b(0) is mapped onto 7 = by, and the boundary r = r| is unchanged,

where r; is given in the last section. Consider the linearization of the problem (NL)<”>
aty = Yg(r), b(0) = by, d(0) =y ,. Since at the background solution, 7, = 1, 7y =
0, and (V5)y = (Wp),9 = (Wp)es = 0, we obtain an equation for the perturbation y:

LN = Ay + Antoo + B + Cff = f, (5.2)
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where

2
2 a
A11:a2_(¢r_r) P A22:r_27

r

2
Bl = a7+ 2(7 - lpr)lprr + (lprr + lﬁr) (V - 1)(7’ - l/j")’

C= _(V - 1)(‘## +%>
Correspondingly, the linearized boundary conditions are
. by -
v, — r—glp(; =g onr=hbh, (5.3)
y=h onr=r. (5.4)

The linearized problem (5.2)~(5.4) is denoted by L, which is a linear elliptic
boundary problem because 4;; > 0 and A5, > 0.

Lemma 5.1. There is 6 > 0, such that the solution of L) uniquely exists, and

| 21y ry0.0m < CL I/

ctpori0.27) T 19l crvxo.2m) + 1l c2ex(0,2m)) (5.5)

HW.”CZH[[,OJI 1%;0_’271] < Cz(“f”C’[bq,r];O,Zn] + ||g| ‘C‘“(O,Zn) + ||h| |C0(0,27r)) (56)

provided |ry — by| < 9.

Proof. First, let us show that the solution y of the linearized problem (5.2)—(5.4)
monotonically depends on its boundary value on r=r), provided f and g¢

vanish. In fact, making a transformation of unknown function v = eK(”bO)zl/} for
the problem L@,

PN — P (Ko ) — o K—bo) pla),
where
POy = POy — 4K (r — bo) A11v, + (4K2(r — by)? — 2K) A1y
— 2K(r — bo)By)v. (5.7)

Obviously, v satisfies the elliptic equation
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provided  satisfies # @y =0. When 6 is sufficiently small and K =6~', the

)

coefficient of v in 35? v satisfies

(4K>(r — bo)* — 2K) Ay — 2K (r — bo)By < (4 — 26" 1) A4y, + 2|B)| <0.

Hence, v cannot take its positive maximum or negative minimum in the domain Q,,
nor on the boundary of ©,. This fact implies that v depends on its boundary value on
r = r; monotonically. Hence it is also true for the solution  of the problem L@,

The above argument indicates that 0 is not an eigenvalue of the elliptic operator
#@ under homogeneous boundary conditions corresponding to (5.3) and (5.4),
provided ¢ is sufficiently small. Namely, problem (5.2)~(5.4) is uniquely solvable.
Finally, (5.5) and (5.6) are just the generalized global and interior Schauder
estimates. [

Remark 5.1. In this paper we will often use two kinds of small constants with
different scale. The small constant é (or J;) is used to restrict the domain, where a
boundary value problem under consideration is given. Usually, we choose ¢ small
enough to ensure the well posedness of the corresponding boundary value problem,
while the constant ¢ (or ¢;) is used to describe the perturbation of the data. The
constant ¢ is small, and is also small enough with respect to 6. Usually, ¢ is chosen
when ¢ has been fixed.

Lemma 5.2. Assume that d, ¢ are sufficiently small in the sense of Remark 5.1. |r; —
bo| <9, [[b(0) = bollcarsoomy <& [|d(0) = Yigllcara(oom <& With g = (1), then the
problem (NL)\“{b(0),d(0)} has unique solution (r,0). Moreover,

[ (r,0) — Y(r)|lcaraiq, =0 when 0. (5.8)

Proof. When b(0) = by, the function z(r) is the solution of the nonlinear problem
(NL)“{bo, yo}. For |rj —bo|<35, the linearization L@ of nonlinear problem
(NL)' at b(0) = by, ¢ = Vo has estimate (5.5), where the constant C; is uniform
with respect to b(6). Then the implicit function theorem implies that the problem
(NL)(i){b(G),d(H)} has an unique solution, which is a small perturbation of y =
W(r), provided |[|b(0) — bo||cor <&, ||d(0) — Y1l cerx <& for sufficiently small e.
Finally, (5.8) follows from the conclusion of the implicit function theorem. [

The following lemma is called comparison principle.

Lemma 5.3. Assume that 0, ¢ are sufficiently small in the sense of Remark 5.1, |r| —
bo| <0, [[b(0) = boll c24x(0.2n) <> 1di(0) = Yol c22(02m) <& G = 1,2), and p;(r, 0) is the
solution of the problem (NL)<”){b(9), d;(0)}, then the comparison principle is valid, i.e.
dr=d, implies =, .
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Proof. Assume /' = g = 0 in problem (5.2)—(5.4), the boundary r = by is replaced by
r = b(6), and all the coefficients have small perturbation, then by using the same
argument as in Lemma 5.1, we confirm that a nonnegative datum on the boundary
r = r; corresponds to a nonnegative solution of the perturbed problem.

For the nonlinear problem (NL)(“), we denote the solution with boundary
condition ¥|,_, = d;(0) by y;(r,0). Also denote Y =, — 1, then y satisfies

Ay (W) Wi + Doirg + Aoz (0 )Wroo + (Bi (1) + Dy )y
+ Dyyg + (C(¥) + D3)yp =0, (5.9)

where 41, (¥,), An (), Bi(¥;), C(y,) are the coefficients in (5.2) with  replaced
by ¥, D;(j =0,1,2,3) are small quantities with factors U s W O Wiggs Wives Wip -
Correspondingly, the boundary conditions for y are

¥, — %l/)g =0 on r=h(0), (5.10)

y=d—dy onr=r. (5.11)

In view of estimate (5.5), the coefficients of Eq. (5.9) are small perturbations of the
corresponding coefficients of (5.2), provided that ||d;j(0) — ¥ o||c2» and ||b(0) —
bo|| 2+« are sufficiently small. Therefore, 0 is not an eigenvalue of the operator in the
left-hand side of (5.9), and the comparison principle is available. Namely, d» — d; =0
on r = ry implies >0 in Q,.

Let by = maxh(0) , then from Theorem 3.1 we know that the solution Vz(r) of
(3.1)~(3.3) with by replaced by by is defined on (50,50), where §y > so. Moreover,

Ww(r)y<w(r), Yp(r) > g (r) on bo<r<so

and

On the other hand, extending Yz(r) to (by,by) by using (3.1) and the data at
r = by, we know Y 3(r) <t 5(r) also holds in (bg, by). In the sequel the functions i z(r)
and y z(r) will be applied to bound the solution of (NL) from above and below. [
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Lemma 5.4. Assume that by = minb(0), by = maxh(6), ||b(6) — bol| caea(0,2my <8
W(r,0) = (NL){b(0),d(0)}, y5(r) is the solution of (3.1)~(3.3) with by replaced by
bo, Yp(r1) <d(0) <y (r1), then

V()< (r,0)<Yp(r) in Qu.
Besides
W (r,0) = ¥ p(r)l| c2eagoy < CUIA(O) = Wioll cio2m) + 2)5 (5.12)
where Q; = {(r,0): b(0)<r<r — 0, 0<0<2n}.
Proof. Set A1y = — 5. It satisfies

An(Wp)(An),, + An () (A1%) gy + Do(A1¥), + (Bi(¥5) + D) (41y),
+ Do)y + (C(Yp) + D3) gy =0, (5.13)

where ﬁj are small quantities as D; in (5.9). In view of wp = r — Y, being positive
for r > ry, Y. <r on r = b(0). Hence

(414), =0 on r=b(0). (5.14)
Besides,
Allp:d(e)—lplo onr—=ri. (515)

Again noticing that the coefficients of (5.13) are small perturbation of corresponding
coefficients of (5.2), and using the argument similar to the proof of Lemma 5.3, we
know that Ay cannot attain its positive maximum inside the domain and on the
boundary. Namely, we have y/(r, 0) <y p(r).

Similarly, we can prove y(r, 0) =y 5(r).

To prove (5.12), we use the transformation (5.1). Let ¥/5(r,0) = v~ (Y4(7)), then
Yy is defined in whole Q,. Since  satisfies Eq. (3.1), we have

2
(@ = (eWh), =NV Wh), + 5 eh), =0, (5.16)

where e =% = r,r;b[gg) =1+ b;f%b,gf) =1+ O(¢). Denote AY™ = y(r,0) — /y, it satis-
fies

An () (AYY),, + An (W 5) (AY*) gy + DG (AY™), + (Bi (Y 5) + DT)(AY™),

+ D3(AY®)y + (C(Wp) + D)AY* =, (5.17)
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and corresponding boundary conditions

(AY*), =g on r=0b(0), (5.18)

where ||f||c2ex, ||g]|c2ex are quantities O(e). Therefore, we have
HA'//*HCM(Q;) < C([[d(0) = ¥iollco0.2n) T 8,

which leads to (5.12) directly. O

6. Problem (NL)"

Now let us consider the nonlinear problem (NL)(b’) (1</<k) in the annulus Q,
with fixed boundary p = a, and f, as defined in (4.8) and (4.9). The inverse function

of Yy(r) is also called background solution of (NL)*, and is denoted by ug(p).
Linearizing (4.3) at the background solution u = ug(p) and using ug, =0, a*> =

(y—=D(-p _i_iu_g)v we obtain
2 1 . 02”;2) . . .
a——+u ul,p+7u,m+Flup+F0u:f, (6.1)

where

1 a*u? 1? 1 12 )
) e S ) Py

The linearization of the boundary conditions on p=oa,(1</<k) and p=
p,(1</<k—1) is simple, while the linearization of the boundary condition on

p=—Yo(=B) is

i 1 wi, i, i
—L + i H—L’tp0+<—+u>H’ —F+L2—— )=
u, u, U, U, U

In view of H = p, H' = p/a?, the condition can be written as

Y1ty + Yot = ¢, (6.2)
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1 /1 u 1
))1:——2+a —+u —2+7 5
u Uy u, U,
1 1
= (10 ) ()
p U U,
1

Since .- +u =r—1, is the relative velocity, which is less than the sound speed
P
behind the shock front, we have

where

2
=Y v - <0

n=1=C0 = g)a W) > 0.

Noticing the direction 0% points inward of the domain f;, <p <oy, 0<0<2r, the sign
of the coefficients in condition (6.2) satisfies the requirement of maximum principle
for elliptic boundary value problems. Therefore, assume 3 <|B, —oa/|<d for
1</<k, and 0 is small enough, all linearized problems

Eq. (6.1) in Qp,,
L<b/) . l'l/ =qds1 Onp=auy, (63)

iy =¢qpn onp=p

for 1</<k—1, and
Eq. (6.1) in Q,,,
L0 g = g1 on p = oy, (6.4)
condition (6.2) on p = B, (= —,)

are well posed. Meanwhile, the following properties for the solution u, of the
nonlinear problem NL®) and the solution i, of the linear problem L) the
following properties can be verified by the similar method as we did for ¥ and y in
Section 5.

Lemma 6.1. There is a 6 > 0, such that the solution i, of L'*) uniquely exists, and
satisfies

||W||c2+«(9,,/) < Cl(“f”Cf(Qh/) + ||‘Ifl‘|c2+«(0‘2n) + ||‘]/2||c2+1(0,2n))7 (6~5)

il 2@, y < Calllf @,y + llaallcoo2m) + 192l co02m) (6.6)
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for 1</<k —1, and

ikl 210, ) < CLlllf Nl eoay, ) + 191 crx(0.2n) + 11901l c205(0.22))» (6.7)

||”k| (@ ) < C2(|V||C“(Q;,k) + ||g||C1+"(0,2n) + ||‘]k1||c0(o_2n))> (6~8)

where Q= [B, 4150, 0/ — 156; 0,27 for 1 </ <k — 1 and Q, = [By, o — 159; 0, 27].

Lemma  6.2. (a) Assume  that  ||qs1(0) — up(on)|[coenioany <& [lgr2(0) —

up(B)ll c2ox(02n) <€ hold for 1</ <k — 1, then (NLY*{q,1(0),q2(0)} has a unique
solution. Moreover,

llu(p, o) — uB(p)HC““(Q,,/) -0 when ¢—0. (6.9)

(b) Assume that ||qi(0) — up(%2)] c2vx(9 2) <8, then (NL)"{q1 (o)} has a unique
solution. Moreover,

[lu(p,o) — uB(p)||CM(Qhk> —0 when ¢—0. (6.10)

Proof. The proof for cases (a) and (b) are similar, so we only prove the case (b). The

three equations in the problem (NL)(bk ) can be regarded as a map from C?t%(Qy,) to
C*(Qp,) x C'%(0,27) x C>*#(0,27). For (0,0,up(x))eC* x C'** x C*** it has
been known that the problem has a solution ug(p), which is just the inverse of ¥ z(r).
Besides, the linearized problem has estimate (6.7). According to the implicit function

theorem, there is an ¢ > 0, such that (NL)(e") has a unique solution, provided
l1gk1 (o) — up(a2)|| c2+« <e. Finally, (6.10) obviously follows from the implicit function
theorem. [

Lemma 6.3. Assume that 9, ¢ are sufficiently small in the sense of Remark 5.1, then

@ If W (p,a) = (NL)* g% (0),q0(0)}, 114l (o) — up(ew)l|cas <t |laia(0) —
up(Bo)| coen <&, for j = 1,2, 1</ <k — 1, then

2 1 2 1 2 1
47 (0)241)(0),45 (0) 24} (0) = 1l (p,0) = u" (p, 0). (6.11)

Besides,
16/ (p,0) = u(p)ll ey

<C(l1g%](0) = us(@)|cojo.am) + 1145 (@) — us(B) | co02m +2)- (6.12)
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) If [1¢V) (0) — up(ow) || coee <8, 4 (p, 0) = NL@{g}, then

4 ()24} (0) = 4 (p.0) > (p. ). (6.13)
Besides,
4 (p,0) = us(p)l| o0y ) < €14 (0) = up()l| v my +8)- - (6.14)

Proof. Take i1, = u({l) - u&z)(l </ <k), then iy satisfies

1 2 a2u2
2 . . .
(a — <M_p + Ll) )upp + Fpuaa + DO”po'
+ (Fi1 + D)ty + Doty + (Fo + D3)ut =0, (6.15)

where & stands for #, for notational simplification. On the boundaries, u, is
nonnegative on p = oy, f§,, i 1S nonnegative on p = oi. Moreover, i, satisfies

(71 + )ity + patts + (o + po)it =0 (6.16)

on p=f. Here all Dju; in the above equalities are small quantities O(e).
Therefore, the coefficients in (6.15), (6.16) are small perturbation of the
corresponding coefficients in (6.1), (6.2). It turns out that the comparison
principle holds for small J, then the estimate (6.12), (6.14) can be derived from
Lemma 6.1. [

7. Solution to nonlinear problem (NL) and (NL)*

Based on the discussion of (NL)(“> and (NL)(b’)7 we are able to construct the
solution of (NL) and (NL)*. The main idea in this step is by alternatively solving
(NL)'“ and (NL)(M (¢ =1,...,k) to establish sequences of approximate solutions
{y™} for (NL)“ and approximate solutions {u(/m} to (NL)*), so that these
sequences are convergent and the limit of them solves the nonlinear problem (NL)
and (NL)*.

First, let us describe the method of determining ry, o/, §,(0</ <k) again. By using
Lemmas 5.2-5.4 we take r; > by = max b(0), so that |r; — b(0)| < and the solution
¥ of the problem (NL)<”> uniquely exists in the domain @, : b(0) <r<r;. According
to these lemmas we have the solution  of (NL)\“ (b(6),y,,) satisfies y <t and the

value of Y in Q, depends monotonically on its boundary value on r = r;. Then by
using Lemma 6.2, we choose k and {o/}, {f,} for 1 </ <k, so that (4.6) is satisfied,

and the solution to problem (NL)U”) uniquely exists in the domain €5, and satisfies
the comparison principle with respect to the data on the boundary.
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Let us assume k = 2 for notations simplification in the remaining part of this
paper. In fact, the case k > 2 can be treated in the same way. Besides, we also use the

following notations: r as a function of p, 0 will be denoted by ! (—p,0), provided
p = —y(r,0); while p as a function of r,¢ will be denoted by u~'(r,s), provided
r=u(p,o).

The sequences of approximate solutions will be established as follows. Denote
O =y, ug()) = ug(,)) = ugo) = up, then we define "(r,0) as the solution of the
problem (NL)“{b(0),5(r1)}. For n>1, we define

" (p,0) = (VL) " { (") ™ (=0, 0), (@™ (B, o)}
" (p,a) = NL" (" (22, 0)},
! (p, o) = NLOHu" (21, 0), " (1, 0)},

W (r,0) = NLO{b(0), =)~ (r1,0)}

inductively.

Lemma 7.1. If ||b(0) — bo||c2n <& with & being sufficiently small, by = maxb(0),
W (), Wa(r), ug(p),iizg(p) are the corresponding background solutions for (NL) and
(NL)* in symmetric case. Then the sequences {iy"}, {Lt(ln>}7 {ugn)}, {ug'f) } established
above are well defined, which satisfy

U(r) <y (r,0)<y5(r) in Q,
19 (r,0) = ¥5(r)l| 2o,y < Co (7.1)

and
i5(p) =u” (p, o), (p, o) > us(p) in Q,
ip(p) =15 (p,0) Zup(p) in 2,
1" (. 0) = up ()l covs0y ) < e
It (2, 0) = up ()l covsay ) < e

165”(p. @) — us ()| c21+(a, ) < C. (7.2)

Moreover, {y"} is monotone decreasing with respect to n, and other three sequences
are monotone increasing with respect to n.
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Proof. Without loss of generality we assume
18— Wsllco<e, |lip — ullco <e.
Lemma 5.4 indicates that the solution "(r,0) of the nonlinear problem

(NL)“{b(0),5(r1)} exists and satisfies 5 <iy)) <. Under the assumptions of
the lemma we have

W = sl v, <, (7:3)

[yt — Vgl o) < Cat. (7.4)

Because ) is a small perturbation of g, (Y"V)' is well defined and
W (=p, )= Wp) " (=p) = ug(p). Moreover, from (7.3) and YV >k >0, we
have

1) (~1,0) = p(@1)|eogoze) <o (7.5)

Taking (V)™ (—oy,0) and ug(B,) as the data on the boundary p = o; and f,,

respectively, for the nonlinear problem (NL)?", we obtain the solution u(ll)(p7 o) of

(NL)(b'> by Lemma 6.2, while Lemmas 6.1 and 6.3 imply the following estimates:

1 — &
11 = sl ooy < CollP D) (=21,0) = us()ll o2y < Carsy (7.6)

ag(on) =l (a1, 0) > up(o). (7.7)

Hence by using comparison principle established in the above sections we have

a5(p) =u" (p, o) > up(p) (7.8)

in Qp,, as well as on p = ay.

Next, we solve the problem (NL)(bz>{u(ll)(oc2, o)}. Lemmas 6.2 and 6.3 imply the
existence of the problem, and

az(p)=ul) (p,0)Zup(p) in Q,

1
HM(Z ) _ uBHCz+1(Q;’))<C28. (79)
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Returning to domain Qp,, we solve another Dirichlet problem (NL)(b‘) with data

u(ll)(ocl,a), ugl)(ﬁha) on p = oy and pp, respectively. That is

) (p,0) = NLO (il (2, 0),) (B, 0)}

which also satisfies (7.6) and (7.7) with u(ll) being replaced by u(ll)

In view of (u(l}))p > 0, we know (u(l}))f1 > — iz on r = r;, meanwhile,

= ()™ (r1,0) = Y1)l | o0 0m) < (7.10)

In addition, we can solve the problem NL {b( ), (ul, )" (r1,60)} in Q, by Lemma
5.2. Its solution 2 (r, 0) satisfies Y <yV according to Lemma 5.3 and satisfies
lﬁm > according to Lemma 5.4. Therefore, we have

1 (r2,0) — Y(r2)llco0,0m) <5 (7.11)

12 (r,0) = ()| 2100y < Call = W) (11, 0) — Ys(rollcoo.2m)
< Ca. (7.12)

Notice that (7.11) and (7.12) are the same as (7.3) and (7.4) with index replaced by
2. Therefore, the sequence {™}, {u\"}, {u{"}, {u{"'} can be established.

By the same procedure, we obtain ugz)(p, a), u?(p, a), ugg)(p, o), y3(r,0) and so
on. Then (7.1) and (7.2) can be proved by induction.

To prove the monotonicity of the sequences {™} and {u}, we also verify
inequalities

v, 0) <y (r,0),
" (p,0)=u" (p, 0),
W (p,0)=ul (p, o),
7 (poo)=ul (p, o) (7.13)

by induction. According to the process of establishing these sequences, we have
Yy (r,0) < »(r) from Lemma 5.4. Furthermore, the inequalities ugl)(p,o)ZuB(p),
ug, (p,o)=up(p), u (p,a)}ug(p) follow from Lemma 6.3. It means that (7.13) is
true for n = 0.

Now assuming (7.13) be valid with n replaced by n—1, we prove that
it is also valid when the index is n. First, because of u, <0, the last inequality of

. with index n replaced by n — 1 means (u;,’)” (r1,0)=(u;, ') (r1,0), whic
(7.13) with ind laced b 1 Uy, 0)= (i) (1, 0), which
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implies
YU 0) <y (r,0) in Q, (7.14)

according to Lemma 5.3. Hence (M”“))_l( a1,0)= W™ (a1, ). Combining it
with the hypothesis of induction u (,81, )>u2" ])(,31,0’) we have

"V p,o)=ul" (p,6) in Q (7.15)

according to part (a) of Lemma 6.3. Next, by using (7.15) on the line p = «, and the
boundary condition on p = f,, the inequality

" (p, o) =ul (p,) in Q (7.16)

is also valid according to the part (b) of Lemma 6.3. Furthermore, the facts (7.16) on
the line p = , and (7.15) on the line p = «; indicate

W (p 6y = (p,6) in Q. (7.17)

Therefore, since all equalities in (7.13) with index n hold, the monotonicity of the
sequences in the lemma is proved by induction.

Proof of Theorem 2.1. As we proved in Lemma 7.1, the sequences {u(ln)(p,o)}7
(" (p,0)}, (! (p,0)} and {y")(r,0)} are bounded and monotone with respect to
n, then these sequences are convergent. Denote their limits by u(p,0), uz(p,0),
ur(p, o), y(r, 0), respectively. Since the C2** norm of Y™ on r = up(a;) is dominated

by its C” norm on r = ry, the C>** norm of u{"”, u" in ©;, is dominated by their C°

norm on p =aj, p=p,, the C>** norm of u{" in Q,, is dominated by its C°

norm on p=ua, so the C*** norm of Y u&"), @,ug") are uniformly

bounded in corresponding domains. The fact also implies V¥, wuj,uy,u, are C>**
function there.

On the other hand, ¥ satisfies (2.9), (2.10) and ¥/(r1,0) = —(ul)fl(rl,ﬁ); uy, Uy
satisfies (4.3) and u; = u on the boundary p = ay, p = f,; u satisfies (4.3), (4.5)
and u; (a2, 0) = up(a,0). Notice that (4.3) is the another form of Eq. (2.9) in the
coordinates (p,c), then both (r,0) and —(u;) '(r,0) satisfy Eq.(2.9) in the
overlapped domain Q,n 71 (&;,). Besides, these two functions coincide on the
boundaries r = r; and r = u(o,0). Since the domain @, is chosen so small that the
linearized problem L@ does not have nonnegative eigenvalue in Q,, there is no
nonnegative eigenvalue in its subdomain Q,n T-1(Q, ) either. By the uniqueness of
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Dirichlet problem for the nonlinear elliptic equation (2.9), the functions y/(r, §) and
u;'(r,0) coincide on the whole domain Q,nTY(Q,). Moreover,
ui(p,0),ur(p,o),us(p, o) coincide on the corresponding overlapped domain. There-
fore, viewing functions u;!(r,0),u;'(r,0) as extensions of (r,0), we obtain the
solution of (NL) in the whole domain b(0) <r<y ™" (=, 0).

As for the stability, (2.15) can be obtained by taking limit in (7.1), (7.2).

Besides, in view of s(@):tpfl(—lpo,é)), (2.14) can also be obtained in the
mean time.
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