
Pergamon
Computers Math. App|ic. Vol. 30, No. 7, pp. 47-66, 1995

Copyright©1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898.1221(95)0012S-$ 0898-1221/95 $9.50 + 0.00

Space Saving Generalization of B-Trees
with 2/3 Utilization

K. V. SHVACHKO
Lesnoj 3, Apt. 21, Pereslavl-Zaleesky, 152140, Russia

shv@inf os. botik, yaros lavl , su

(Received December 1994; accepted January 1995)

Abstract--The paper studies balanced trees with variable length records. It generalizes the
concept of B-tree with unfixed key length introduced in [I] and S(1)-tree of [2]. The main property
of the new trees, called S(b)-trees, is their local incompressibility. That is, any sequence consisting
of b + 1 neighboring nodes of the tree cannot be compressed into a b well formed node. The case
of S(2)-trees is studied in detail. For these trees, 2/3 - e utilization lower bound is proven, where
is inversely proportional to the tree branching. Logarithmic running time algorithms for search,

insertion, and deletion are presented.

Keywords--Data structures, Maintaining dictionaries, Balanced trees, B-trees, Variable-length
records.

1. I N T R O D U C T I O N

The problem of maintaining dynamic dictionaries is a classical problem of the theory of data
structures. As usual, "dynamic dictionary" means a data structure for storing the dictionary
elements, called keys, together with algorithms of access to, insertion, and deletion of a key.

Several tree data structures have been developed that provide for efficient solutions to the
problem. It is well known that access in a tree-like structure requires logarithmically many
comparisons of keys [3]. In order to achieve this lower bound, the balanced trees should be
used. However, fully balanced trees occur rarely. Therefore, so called weak balance conditions
were considered that lead to approximately equal access time for different tree keys rather than
exactly equal, as in case of the fully balanced trees.

Probably, the first data structure for the problem was studied by G. M. Adelson-Velskii and
E. M. Landis [4,5]. The approach is based on binary trees that satisfy the following balance
condition. For any tree node, the difference between the heights of its two child subtrees is at
most 1. These trees, called AVL-trees, allow of logarithmic time algorithms of search, insertion
and deletion, and are appropriate for maintaining dictionaries in the internal memory.

Another variant of weak balance condition is used in 2-3-trees, which for the first t ime were
examined by J. Hopcroft in 1970 (unpublished, see [6]). In contrast to AVL-trees, all leaf nodes
of a 2-3-tree are located at the same level of the tree. Balancing here is achieved by varying the
out-degrees of the internal nodes, which can be either 2 or 3 [7,8]. It is interesting to note that
any 2-3-tree can be transformed into an AVL-tree.

B-trees, proposed by R. Bayer [9,10], generalize 2-3-trees. They have the same regular struc-
ture, but the out-degree of the tree internal nodes may range between q + 1 and 2q + 1, for

I am grateful to A. Semenov for permanent attention to my work and helpful remarks, to A. Stolboushkin, and
to H. Reiser for reading and commenting on a draft of the paper.

Typeset by AA~-TEX

47

48 K.V. SHVACHKO

a fixed parameter q, called the tree order. From a practical viewpoint B-trees are suitable for
maintaining dictionaries in external memory. While a number of variants of B-trees have been
examined [3,11-13], all of them are based on the same idea of counting the number of keys in
(equivalently, the number of children of) a node.

What is important for us is that with at least q and at most 2q keys in each node, any n-vertex
B-tree is going to hold no less than qn, and no more than 2qn keys. In other words, we say that
the tree utilization is lower-bounded by 1/2, where utilization is the ratio of the total number of
keys, contained in the tree, to the maximal number 2qn of keys that can contain a B-tree with
n nodes.

The disadvantages of B-trees have been widely discussed (see, e.g., [1,11,14]) in the context of
this space lower bound. The bottom line is that B-trees utilize memory well only when the keys
are of (almost) identical length, while when the keys can differ greatly from each other, they lead
to an exhaustive waste of memory.

It is quite clear that in order to store variable length keys efficiently in a balanced tree, the
nodes of the tree should restrict the total sum of lengths of keys in a node rather than the number
of keys per node, and that the balance conditions should be formulated in adequate terms.

Probably for the first time, this idea was mentioned in [11] (with a reference to an unpublished
result of T. H. Martin). Martin's idea leads to a modification of B-trees with the balance condition
very similar to that of B-trees, which allows to keep the algorithms almost unchanged. The idea
was precisely formulated, developed, and analyzed in [1].

In [1], it is also suggested a new tree data structure, called B-trees, with unfixed key length,
which differs from the modification above in that the balance condition is formulated not locally
for each tree node, but in terms of pairs of neighboring nodes. It provides high density of a tree
in a whole even if some of the nodes are almost empty. Such nodes in the tree are "balanced"
with their neighbors, which must be almost full in this case.

It was proven that utilization of any B-tree with unfixed key length exceeds 1/4. Utilization
for the new trees is different from the utilization of usual B-trees. In our case, utilization is the
ratio of the total length of keys, contained in the tree, to the maximal length np of keys that can
contain such a tree with n nodes.

Utilization computed for B-trees in that way cannot be bounded by any constant greater
than 0.

The next step towards exploration of balanced trees with variable length keys was done in [2],
where the notion of B-trees with unfixed key length was generalized by introducing S(1)-trees.
A S(1)-tree in addition to the balance condition of the unfixed key length trees requires that the
number of keys in the tree node is lower bounded by some constant q, called the tree order. This
requirement is resolved in high branching of the tree internal nodes, and raises the utilization
of the tree. We proved the 1/2 - ~ utilization lower bound for these trees, where ~ is inversely
proportional to the tree order. Logarithmic running time bounds remain unchanged compared
to the case of B-trees with unfixed key length.

S(1)-trees appeared to be more efficient than traditional B-trees for many applications. His-
torically for the first time S(1)-trees were implemented in the Starset programming language for
representing set data aggregates [15].

This paper presents one more (and, probably, the last) generalizing idea. We introduce here
the notion of S(b)-tree (read as sweep-be-tree) where b is a parameter, called local parameter.
The main property of S(b)-trees is their incompressibility. Informally, incompressibility means
that any nonroot node of a S(b)-tree being composed with any b of its nearest neighbors cannot
be compressed into b proper nodes.

We give the general definition of S(b)-trees, and study the case of b = 2 in detail. This case
is of great importance, as S(2)-trees qualitatively differ from S(1)-trees. They give rather com-
plete characterization of the general case of S(b)-trees, being simple enough at the same time. We

Space Saving Generalization 49

prove the 2/3 - e utilization lower bound for S(2)-trees, and present logarithmic running t ime
algorithms of search, insertion, and deletion for them.

The author 's ongoing research is to s tudy the general case of S(b)-trees for arbi t rary parame-

ter b.

2 . B A S I C D E F I N I T I O N S

2.1. T r e e s

DEFINITION 2.1. Let K be a finite set of elements called keys. Define tree inductively:

(1) Object A, called empty tree, is a tree;

(2) I f k l , . . . , km E g and To, T z , . . . , Tm are trees, then tuple <To, kl, T1 , . . . , kin, Tm} is also
a tree.

By subtree of nonempty tree

T = (To, k l ,T1 , . . . , k in ,T in}

we mean T itself and any subtree of any tree Ti (0 < i < m).

If S and R are subtrees of T, and R is a subtree of S, then R is called a descendant of S
in T, and S is called an ancestor of R in T. I f S and R are subtrees o f T , such tha t S --

(So, 11, S 1 , . . . , l m , Sin) and Si = R for some i, then R is called the ith direct descendant of S,
and S is called the direct ancestor of R in T.

The usual graph representation is very natural for these kinds of trees. For each tree T a

(labeled) graph G(T) = iV(T) , E (T)) tha t represents it consists of the vertex set V(T) , tha t is
the set of all nonempty subtrees of T, and the set of edges E(T) , which is defined in the following
way. If S and R are nonempty subtrees of T, such tha t R is the i th direct descendant of S, then

the pair (S, R) is an edge labeled by number i. Each vertex S = (So, lz, $ 1 , . . . , lm, Sin) in the
tree is labeled by the sequence of keys (l l , . . . , lm) . The number m of keys in the sequence is
called an order of the vertex.

The out-degree of a vertex is the number of its n o n e m p t y direct descendants. Vertex S is

called a leaf if its out-degree is 0. Vertex S = <So,ll, $1 , . . . ,lm, Sin) is an internal vertex if its
out-degree equals m + 1. Vertex T is called the root of tree T.

A sequence of natural numbers (i z , . . . ,in) is called a path of length n in a tree T, iff there
exists a sequence of nonempty subtrees So, $1 , . . . , Sn of T, such tha t So = T and each Sj is
t h e ij th direct descendant of Sj-1 (j = 1 , . . . , n). We say in this case tha t the pa th leads to the

vertex Sn, and length n is called the level of Sn in T. When n is small, then the level is called
low, and when n is large, then the level is called high.

Height of a tree is its maximal path length.

We say tha t a vertex F is a common ancestor of vertices S and R, iff F is an ancestor for
both S and R. F is said to be a nearest common ancestor of vertices S and R, if it is their
highest common ancestor.

For each tree T = (To, kh T z , . . . , kin, Tin}, let k(T) denote the set of keys contained in the root
vertex of T:

k(A) = 0, k(T) = { k l , . . . , k m } .

And let K (T) denote the total set of keys contained in tree T:

K(A) -- O, K (T) = k(T) U K(To) U . . . U K (Tin).

Thus, for each vertex S of a tree, K (S) denotes the set of keys contained in the subtree S, and
k(S) is the set of keys from K (S) tha t does not belong to any proper subtree of S.

30-7-E

50 K.V. SHVACHKO

2 .2 . S t r u c t u r e d T r e e s , B - T r e e s

An ordered set of keys is a pair (K, <<), where K is a finite set of keys, and << is a linear order
on K.

We will deal further only with trees of the following special form.

DEFINITION 2.2. Let (K, <<) be an ordered key set. A tree T is called structured iff

(1) Each vertex of T is either an internal vertex or a leaf,
(2) A11 paths in T from the root to leaves have equal length,
(3) For each vertex S = (So,Ix, S1,...,Ira, Sin) of tree T

ll << "'" << lm, and

V i (l < i < m = ~ (V k • g (s ~ _ l)) (V U • K (S i)) (k < < l i < < k ')) .

The order of a tree T is a natural number q, such that for each nonroot vertex of the tree its
order is at least q. Note, that if the order of a structured tree is q, then the out-degree of each
of its internal nodes is greater than q. By Definition 2.1, an order of any tree is at least 1.

DEFINITION 2.3. Let (K, <<) be an ordered key set. Let q > 0 be a natural number. A structured
tree T of order q is called B-tree of order q if[for each of its vertices S its order

Ik(S)[< 2q.

The utilization of an n-vertex B-tree T of order q is given by the ratio

A (T) - IK(T)I
2qn

B-trees are usually used as a data structure for the problem of maintaining dynamic dictionaries
with respect to the three basic operations of search, insertion, and deletion of a key. It is well
known for B-trees that the following proposition holds.

PROPOSITION 2.1. If T is an n-vertex B-tree of order q, then

(1) A(T) > 1/2 - 1/(2n),
(2) search for, insertion, and deletion of a key in T can be performed in time O(log n).

The first property is a consequence of Definition 2.3. The classical algorithms for the basic
operations are well known and can be found in [6,11-13].

2.3. DS(b)-Trees

A weighted ordered set of keys is a triplet of (K, <<, It), where (K, <<) is an ordered key set, and
is a weight function that maps each key k E K to its weight #(k), which is a positive natural
number.

Let us denote I tmax(K) = max{it(K) I k E K}.
Let E C_ K. The weight of set E is given by

It(E) = E It(k).
kEK

If S is a vertex of a tree T, then its weight is #(S) = #(k(S)). The complete weight of tree T
is M(T) = #(K(T)).

The rank of a tree is a natural number p, such that for each vertex S of the tree its weight is

It(S) _< p.

Space Saving Generalization 51

Consider a structured tree T. And let us introduce a neighboring relation for the vertices of

the tree in the following way. Let L and R be vertices of the same level of tree T. Consider a
set of keys I = K(L) U K(R). Then vertex L is said to be a left neighbor of vertex R, and R is
said to be a right neighbor of L, iff there exists a u n i q u e key k in K(T) \ I, tha t satisfies the

following property:

(V I • K (L)) (V r • K (R)) (l<<k<<r).

Key k is called the delimiting key for neighboring nodes L and R. We say also tha t k separates
the neighbors.

Note tha t the delimiting key for any pair of neighboring nodes belongs to the nearest common

ancestor of the neighbors.

A sequence So, kl, S1, . . . , kin, Sm of vertices and keys of a tree T is called a sweep iff each pair
Si - l ,S i of nodes (i = 1 , . . . ,m) of the sweep is a pair of neighbors in the tree, and ki is their

delimiting key. The number m of delimiting keys in the sequence is called the length of the sweep.
A sweep So, kl, $1, . . . , kin, Sm of length m of a rank p structured tree T is said to be dense iff

the following inequality holds:

(So) + # (kl) + # (S1) + " " + # (kin) + it (Sin) > mp.

A structured tree T of rank p is said to be b-locally dense iff each of its sweeps of length b is
dense. The number b in this case is called the locality parameter.

DEFINITION 2.4. Let (K, <<, #) be a weighted ordered set of keys. A structured b-locally dense
tree T of order q and rank p is called DS(b)-tree of order q and rank p if[its paramete rs b, q

and p are related by the following inequalities:

b > 0, q _> b, p >_ 2q#max(K).

Let DS(b,q,p) denote the class of DS(b)-trees of order q and rank p. Note tha t if ql _> q2,

then DS(b, ql,P) C DS(b, q2,p). The class DS(b,b,p) will be denoted by DS(b,p), and trees of
this class will be called DS(b)-trees of rank p.

2.4. S (b) -Trees

Let a collection So, $1,. • •, Sm of trees and a collection kl, • • •, km of keys be given. According to

Definition 2.1, we can construct from these two collections a new tree S = <So, kl, $1, • • •, kin, Sml,
which is graphically represented by the root node, marked with the sequence k l , . . . , kin, with
m + 1 outgoing edges, connecting it with the root nodes of So, $ 1 , . . . , Sin.

We need one more tree constructor, which given two collections So, $1 , Sm of trees and
k l , . . . , km of keys builds a new tree denoted by S = [So, kl, $1, . . . , kin, Sm]. The new tree is
obtained by putt ing together all of the root nodes Si separated by the keys ki in one new root
node. Formally, if Si = <Sio, lil,S~l,...I for i = 0 ,m, then

[So, kl, S1, . . . , kin, Sin] = <S00,101, S01, • • •, kl, S10, ln, $11 , kin, Smo, lml, Sml, . . .).

Particularly, for two vertices [(L0,11, L1), k, (R0, r l , R1)] = (L0, ll, L1, k, R0, r l , R1).
A sequence So, kl, S 1 , . . . , kin, Sm is called an (m + 1)-partition of a vertex S iff

S--[So, k l ,S1 , . . . , km, Sm].

Every (m + 1)-partition of a vertex S is determined by the sequence, consisting of its m keys,
which uniquely specifies the respective sequence of m + 1 nodes.

52 K.V. S~VhCNKO

An (m + 1)-partition of a vertex S is called proper with respect to parameters p and q, or
(p, q)-proper, iff for all i = 0, 1 , . . . , m the following holds:

#(Si)_<p and [k(Si) [>q .

When parameters p and q are clear from the context, we will call such a partition simply proper.
A sweep So, kl, S1, . . . , kin, Sm of length m of a structured tree T of order q and rank p is said

to be incompressible (with respect to the parameters p and q), iff there does not exist any proper
m-partit ion of the vertex S = [So, kl, $1, . . . , kin, Sm], that is, if it is not possible to partit ion this
vertex into m "proper" nodes.

Finally, a structured tree T of order q and rank p is called b-locally incompressible, iff each of
its sweeps of length b is incompressible.

DEFINITION 2.5. Let (K, <<, #) be a weighted ordered set of keys. A structured b-locally incom-
pressible tree T of order q and rank p is called S(b)-tree of order q and rank p iff its parameters b,
q and p are related by the following inequalities:

b > 0, q > b, p >_ 2q#ma×(K).

Similarly to the DS(b)-trees, we introduce also the respective tree classes, denoted by S(b, q, p)
and S(b,p).

3. C O M P A R I N G T H E D A T A M O D E L S

In [2], an analysis of the S(1)-tree data model was given. In this paper, the tree data structures
with the locality parameter b = 2 are analyzed.

Particularly, in [2] it was shown that S(1)-trees generalize the notion of B-trees in the following

sense.

EXAMPLE 3.1. Consider the weight function #0 that identically equals 1 on K. Then any B-tree
of order q will be a DS(1)-tree of rank 2q with the weight function #0. Indeed,

(1) #0(S) = [k(S)[<: 2q, and
(2) for any pair of neighboring nodes L and R with a delimiting key k

#0(L) +#o(k) +#0(R) = [k(L)l + 1 ÷ Ik(R)l > q ÷ 1 + q > 2q.

The reverse is not true. Consider a pair of neighbors L and R of a DS(1)-tree whose weights
are q - 1 and q ÷ 1, respectively. The sum #0(L) + #0(k) + #(R) > 2q for any key k then, but
Ik(L)l < q. Thus, the S(1)-tree is not a B-tree.

It is easy to see that DS(1)-trees are equivalent to S(1)-trees.

PROPOSITION 3.1. S(1, q,p) = DS(1, q,p).

PROOF. A structured tree T of order q and rank p is l-locally dense if and only if it is l-locally
incompressible. |

The difference between density and incompressibility manifests itself when the locality para-
meter b is at least 2.

LEMMA 3.2. Let S be a vertex such that Ik(S)l > 2q, and none of its 2-partitions is (p, q)-proper.
Then #(S) > 2p.

PROOF. Let us assume that #(S) <_ 2p. It will be shown then that there exists a (p, q)-proper
2-partition of vertex S.

As we mentioned above, each key d E k(S) determines a 2-partition of S, which is denoted by
S-(d),d,S+(d). That is, [S-(d),d,S+(d)] = S.

Space Saving Generalization 53

Consider a pair of sets

D = { d Ek (S) l lk(S-(d)) [>_ qand Ik(S+(d))l >_ q},

E = {d k(S) l (S-(d)) <_ p and (S+(a)) <_ p }

The sets axe not empty, since [k(S)[> 2q + 1 by hypothesis of the lemma, and #(S) < 2p by
our assumption. We need to prove that the intersection of the sets is also not empty.

Suppose that D N E = O. Let S = (So, kl ,S1, . . . ,km, S,~l, where m > 2q. Then, by definition,
the set D -- {kq+l , kin-q}, and the set E forms a single contiguous subinterval of the linearized

key set k(S), tha t is

Vx, y , z (x < y < z a n d k x E E a n d k z E E ~ k y E E) .

Therefore, if D N E = 0, then either E C_ {kl , . . . , kq} or E C_ {kin-q+1,..., kin}.
Consider the first case. Here, for the key kq+l by Definition 2.5, we have

(S- (kq+l)) <_ q#r,a×(K) <_ p.

Since by the definition of the set E for any key k E E we have #(S+(k)) <_ p, then

~t (S + (kq~_l)) ~ ~ (S+(k)) ~ p.

This means that kq+l E E contrary to the assumption that the sets D and E do not intersect.
Similarly in the case when E c_ {km-q+l , . - . , kin}, it turns out that key km-q C E is at the

same time an element of the set D. This contradicts the assumption again.
Thus we can conclude that D N E ¢ 0, and therefore a (p, q)-proper 2-partition exists. This

contradicts the hypothesis of the lemma. That is, the initial assumption of the proof that #(S)

2p was wrong. |

COROLLARY 3.3. S(2, q,p) C DS(2, q,p).

PROOF. Let L, l, Q, r, R be a sweep of length 2 of a S(2)-tree T having order q and rank p, and
consider the vertex S -- [L, l, Q, r, R]. According to Definition 2.5, the sweep is incompressible;

tha t is, none of S's 2-partitions are proper.
As the order of T is q, the number of keys in each of the three nodes L, Q and R is at least q.

Consequently, Ik(S)l > 2q. Using Lemma 3.2, we have

it(S) = #(L) + #(1) + #(Q) + it(r) + tt(R) ;> 2p.

This means that any incompressible sweep is dense, which implies that the tree T is a DS(2)-tree

of order q and rank p. |

The following example shows that density of a length 2 sweep is not a sufficient condition for

its incompressibility.

EXAMPLE 3.2. Let L, l, Q, r, R be a sweep of length 2 of a S(2)-tree T of order q and rank p.
Let p be an even natural number divisible by 2q + 1, and

tt(L) = #(R) = P,

#(1) = #(r) = 1,

Q = (Qo, kl, Q1 kq+l, . . •, Q2q, k2q+l, Q2q+l),

P i = 1 , . . . , 2 q + 1.
~(k~) = (2q + 1)'

Then
#(L) + p(1) + #(Q) + tt(r) + #(R) = 2p + 2 > 2p.

54 K.V. SHvACHKO

That is, the sweep L, l, Q, r, R is dense. Consider the following partition of the vertex [L, l, Q, r, R]:

L' -- [L, l, (Q0, kl, Q1 kq, Qq>],

R' -- [(Qq+l, kq+2,..., k2q+l,Q2q+l>,r,R].

It is easy to see that the partition is proper.

[L', kq+l, R'] = [L, l, Q, r, n],
P qP _ P + I + P

(L') = # (R') = ~ + 1 + 2q +-----1 2 2

[k(L')[> [k(L)[_> q, [k(R')[> [k(R)[_> q.

P
2(2q + 1)

_< p,

Using Corollary 3.3 and Example 3, we can formulate the following proposition.

PROPOSITION 3.4. S(2, q,p) C DS(2, q,p).

4. SPACE LOWER B O U N D S FOR S(2)-TREES

In this section, we analyze the space efficiency of DS(2)-trees. According to Proposition 3.4,
this analysis is also valid for S(2)-trees.

Contrary to B-trees, we define utilization for DS(b)-trees as the ratio of the total weight M(T)
of a given tree T to the maximal possible weight np of an n-vertex DS(b)-tree of rank p

A (T) - M(T)
np

Note that the utilization for DS(b)-trees is a function of the weight of the tree, rather than of
the number of its keys as in the case of B-trees.

4.1. Simple B o u n d s

Let us begin from simple bounds.

PROPOSITION 4.1. Let T E DS(2, q,p) be an n-vertex tree. Then

A(T) > q - - ,

P

PROOF. Each vertex of the tree contains at least q keys. The weight of each key is at least one.
Therefore, for any vertex S, its weight #(S) > q. So the total weight of T is M(S) > qn, and its
utilization is A(T) = M(T) /np > q/p. |

PROPOSITION 4.2. Let T be an n-vertex DS(2)-tree of rank p. I f n >_ 4, then

4 2
A(T) > 9 n

PROOF. Let Li,li , Si, ri, Ri, i -- 1 , . . . , s be a sequence of sweeps, such that the vertex sets
{Li, Si, Ri} form a disjoint partitioning of the set of the leaves of T. Then

8

M(T) > ~ (# (L~) + # (li) + # (S~) + # (r~) + # (R~))
6=1

> 2ps.

Space Saving Generalization 55

The out-degree of any nonroot internal node of a DS(2)-tree is at least 3. And the out-degree
of the root is at least 2. It is a general fact for this kind of tree that the number of the tree

leaves x is

x_>

On the other hand, since the sets {L{, S{, R{} of
of these sets is

2n
y "

neighboring nodes are disjoint, then the number

=:[[J
From this, by definition of the integral part of a number, and using the structure of the trees, it
can be derived that s > 2n/9 - 1 and hence, M (T) > 4np/9 - 2p. That is,

A(T) M (T) 4 2 = ~ > - - - . |
np 9 n

This is also a simple lower bound. It is the best we can get in the general case, but as we will
see below, utilization as low as this bound is attainable only for a very special case of DS(2)-trees.
For most cases, we can get a better lower bound. To show that we will use another proof method.

4.2. H e i g h t 1 T r e e s

Let us analyze first the case of height 1 DS(2)-trees. We begin with important examples.

EXAMPLE 4.1. Let T = (To, kl, T1, k2, T2) be a DS(2)-tree consisting of n = 4 vertices. Then by
Definition 2.4, M(t) : ;~(T0) +# (k l) +]z(T1) +~u(k2) +;z(T2) > 2p, and hence, A(T) --- M (t) / 4 p >

1/2.
EXAMPLE 4.2. Let a tree

T : (To, k l ,T l , k2 ,T2 ,k3 ,T3)

have n : 5 vertices. Let their weights be ;~(kl) : #(k2) : #(k3) : 1; i.e., #(t) = 3, and let
;~(T0) : #(T3) = 2, and #(T1) = #(T2) : p - 1. This tree is a DS(2)-tree and we can see that

A(T) ' #(t) + # (T 0) + # (T 1) + # (T 2) + # (T 3)

2 1

5 p

5p

For large enough values of p (p > 10), the following inequality holds:

2 1
< A(T) < ~.

Example 4.2 is fully agreed with Proposition 4.2. It shows that the lower bound given by the
proposition is almost exact. But it does not mean that we can not get better lower bounds. Later
on we are going to show that high branching DS(2)-trees utilize space much better.

LEMMA 4.3. Let d > 3 be an out-degree of the root node of a rank p DS(2)- tree T of height 1.

1 2d 1 d - 1
(1) I f d = 0 mod 3, then A(T) > - - +

3 d + l p 2 (d + l) "
1 2 d - 2 1 d - 1

(2) I f d = 1 mod 3, then A(T) ~_ - - +
3 d + l p 2 (d + 1)"
1 2 d - 1 1 d - 1

(3) I f d = 2 mod 3, then A(T) _~ - - +
3 d + l p 2 (d + 1)"

56 K . V . SHVAC~KO

PROOF. Fix d > 3. Then T has exactly m -- d - 1 keys in its root node.
Consider a rank p tree S = (So, 11, $ 1 , . . . , lm, S in /of height 1 with the following weights of its

vertices:

• #(li) = 1/2 for all i = 1 , . . . , m; i.e., the weight of the root is #(S) = m/2,
• = 0 ,

• #($3j+1) =/~($3j+2) = p, where (j = 0 , . . . , Lm/3J).

Note tha t S is not a structured tree, since the descendants Si of the root indexed with i divisible
by 3 are empty trees, while the others are not. So the root S is neither a leaf, nor an internal
vertex. This contradicts Definition 2.2. Besides, we have to accept here unnatural key weights.

By simple counting we have

d2Pd3; m
-~- if d = 0 mod 3,

m i f d = 1 mod 3, M(S) = 2p +

m
2p + p + -~- i f d = 2 rood 3.

I t is clear that S is a b-locally dense tree, and its utilization A(S) = M(s) for different d's equals (a+l)p
the respective right parts of the equations from the hypothesis of the lemma.

We are going to prove that for any DS(2)-tree T = (To, kl, T1,..., k~, T~) of rank p and of

height 1, its weight M(t) is greater or equal to M(S).
Prom the set V = {To, Tx,..., Tin, Tin+x} of all the vertices of T, where Tm+l = T, we choose

the subset W consisting of those vertices Ti whose weights #(Ti) are less than the weights #(Si)
of the corresponding vertices of tree S:

W = {T~ ~ V I/~(T~) < ~(S~)}.

If W -- (0, then M(t) > M(S). Let W # 0, then the following two properties hold:

(1) T C W,
(2) if Ti E W, then either i = 1 mod 3 or i = 2 mod 3.

Let W ' = { T i l , . . . , Ti~} be a set of vertices such that for any j = 1 , r, the index 0 < ij < m
and i t = 1 mod 3, and either Tit E W or Tit+l c W.

Consider the sum M(t) and group addends in the following way:

M(t) = [# (Ti , - i) + # (ki,) + # (Ti,) + # (ki,+l) + # (Ti,+l)] + - ' -

+ [# (Ti.-1) + # (ki.) + # (Ti.) + # (ki.+l) + # (Ti~+l)] + E0(T).

Combine addends of the sum M(S) similarly

M(S) = [# (S~,-1) + # (l~,) + # (Si,) + # (/i,+1) + # (Si ,+l)] + ' "
+ _,) + + + + +

Let us compare the two sums. First, consider E0(T), which is the weight sum of the vertices
tha t do not belong to W, plus weights of a number of keys from the root of T. By the definition
of set W, and since keys from the root of T cannot have weights less than the corresponding keys
from the root of S, we obtain

E0(T) > Eo(S).

Second, for all j = 1 , . . . , r,

(T , t - ,) + # (kit) + # (Tit) + # (k, t+,) + # (T,t+l)
1 1

> 2 p + l = O + ~ + p + ~ + p

~- ~ (S i t - 1) -~- ~ (l i t) -~- , (S i t) -~- # (l i t + l) -~- # (S / t - I - I) •

Space Saving Generalization 57

It means that M(T) >_ M(S) , and hence A(T) >_ A(S). |

COROLLARY 4.4. Let d >_ 3 be an out-degree of the root node of a rank p DS(2)- tree T of
height 1. Then:

2 3
(1) I f d = 4, then A(T) > g + 10---p"

1 1
(2) I fd 7~ 4, then A(T) >_ 5 + ~p"

(3) For ail d, A(T) > (2 + ~-~) d - 1
- d + l "

4.3. T h e M a i n T h e o r e m

The following simple combinatorial inequality will be actively used below.

LEMMA 4.5. Let ~, ai, bi(i = 1 , m) be positive real numbers such that a i /b i> ~. Then

m

Y~i=la---------~i > e ' .

i mi b~ -

THEOREM 4.6. Let T E DS(2, q,p) be an n-vertex tree.

(1) In the genera/case, for n > , A(T) > g.

1
(2) / / 'none of the internal vertices o f T has out-degree 4, then for n > 2p, A(T) > 2"

(3) If q > 6 , then f o r n > 4 (q + l) p A(T) > 2 4
- 3 ' 3 3 (q + 2)

PROOF. Consider the following partition of the vertex set V of T. First choose subsets V~
(i = 1 , . . . , sl). Each V~ consists of all leaves of T outgoing from the common ancestor and of the
ancestor itself. Consider now a tree T ' obtained from the initial tree T by discarding the vertices
tha t belong to the union of the sets V~. Let us consider a set of leaves of T ' and their predecessors,
and let us construct new subsets V~l+i (i = 1 , . . . , s2) from them in the same manner as it was
done for tree T. Throw out the selected vertices from T ' and continue the process until either the
remaining tree is empty or it consists of the unique root vertex T. Let the subsets V i , . . . , Vs have
been built to that moment. In the former case, when the empty tree was obtained, let Vs+l = ~,
and in the latter case let V~+i = {T}. Therefore, we got a partition V = V1 U . . . LA Vs U V~+I
such that Vi n Vj = ~ for i # j . Note, that V~+I = 0 iff the height of the tree is odd.

Each vertex set V~ (i < s) together with the edges that connect them in T determines a
DS(2)-tree of height 1. For referring to these trees we will use the same symbols 1I/ as for their

X-~s+l X'~s+l M(V~) = M(T). vertex sets. Let ni = [Vd. Then ~ i=1 ni = n and also z_~i=l
Let us prove Estimate 3. Let a = (d - 1)/(d + 1), where d = q + 1 >_ 7 is a lower bound for the

out-degrees of the internal vertices of T. Using Estimate 3 from Corollary 4.4, we conclude that
the utilization of a height 1 DS(2)-tree is evaluated from above by application of a monotonically
increasing function of the out-degree of the tree root. Therefore, for all i < s and for e =
a(2/3 + 1/(2p)) we have

Consider the case when V8+1 # 0, that

M (Vi) > E.

nip

is, the height of T is even. Then

A(T) -- M(T) _ ~-~s=l M (Vi) + M(T)
np np

8
> ~-~i=l M (Vi) + 1

np

58 K . V . SHV^CHKO

_ ~is=1 M (V~) + (2pa/3 + 1) - 2pa/3
np

~_,i8=1 M (Vi) + (2pa/3 + 1) 2a

~~=1 nip + p 3n"

Since 2pa/3-~l > E and M(VI) > ~ (i <~ 8), using Lemma 4.5 we get Estimate 3 of the theorem.
p n ~ p - - - -

For n > 4p/3,
2a a 2a 2 2 q 2 4

A (T) > - - ~ q - 2 p 3n > ~ a - - 3 q ÷ 2 = 3 3(qq-2)"

Now consider the case when V8+1 = 0, that is, the height of T is odd.
If the out-degree of the root node of T is not less than d, then by Lemma 4.5 and Corollary 4.4,

we easily get
A(T) = M(T) _ E i L 1 M(Vi) 2

np ~"~i~1 nip >- ~ > -~a.

If the out-degree of the root node of T = (To, kl, T1 , . . . , kin, Tin) is less than d, that is, m < q,
then by Estimate 3 of Corollary 4.4,

M(V~) _> ¢

nip

for all (i < s), and by Lemma 4.1 we have

M(Vs) 1

nsp p

where n8 = m + 2.
Utilization in this case is

A(T) =
M(T) > ~-:~i~11 M (Vi) + M (Vs)

np np
s - - 1 Ei=I M (V/) + (2nspa/3 + M (Vs)) - 2nspa/3

np
8 - - 1 ~-':~=1 M (Vi) + (2nspa/3 + M (V~)) 2nsa

~ 8 - 1 n ' 3n i=1 iP + nsp

We see that
2nspa/3 + M (Vs) 2a M (V~) 2a 1

>3+p
since a/(2p) < 1/(2p) < liP.

Now using Lemma 4.5, and the fact that ns = m + 2 < d, for all n > 4dp/3 we obtain

2nsa 2a a 2da 2
A(T) >_ e - 3"-~ >- -3" + 2p 3n > -~a.

This completes the proof of Estimate 3.
Similarly, using Lemma 4.5 and Corollary 4.4, one can prove Estimates 1 and 2. |

Analyzing the above results, I would like to conclude that in the general case (Estimate 1),
when the out-degrees of internal nodes are not bounded, we have 2/5 lower bound, which is close
to the bound given by Proposition 4.2. And as it can be seen from Example 4.2, this bound is
almost exact. But the trees with that low utilization have very specific structure. Namely, almost
all of their internal nodes should have out-degree 4. Otherwise the lower bound rises up to 1/2
(Estimate 2). And, finally, Estimate 3 guarantees that the higher the branching of the tree is,
the higher lower bound of utilization it has. The limit of these lower bounds is 2/3, which is the
upper bound of the lower bounds for utilization of DS(2)-trees.

Space Saving Generalization 59

5. A L G O R I T H M S

In this section, an informal description of algorithms for search, insertion and deletion opera-
tions for the class S(2, q,p) is presented.

5.1. S e a r c h

The search operation for S(2)-trees is performed in the usual way for the tree data structure.
The search algorithm for a key k in a S(2)-tree T consists of at most logarithmically many steps
of local searches in the tree nodes.

We will refer to this algorithm as the procedure SEARCH(T,k). The result of the procedure is
a three-tuple (True Value, S, ki). TrueValue determines whether the key k is found in T. S is a
vertex that was examined last by the procedure, and k~ is the minimal key from S that is greater
than or equal to k. If all keys in S are less than k, then SEARCH returns a special value which
is denoted by kin+l, where m = Ik(S)l.

5.2. I n s e r t i o n

Informally, the insertion algorithm is as follows. First it verifies by using the procedure
SEARCH(T,k) whether the given key k is already contained in the S(2)-tree T. If it is the case,
then insertion is finished. If not, then procedure SEARCH returns a leaf S = (So, kl, $ 1 , . . . , kin,
Sm) and a key k~ in it, before which the key k must be inserted. Next, k is inserted to the given
place of the vertex S. And the insertion procedure proceeds to balancing the tree. Balancing is
performed by the procedure-function BALANCE, which is the main common part of both the
insertion and the deletion algorithms. BALANCE starts from the leaf S and balances all the
nodes that lay on the path from the root T to the enlarged leaf S.

5.3. D e l e t i o n

Similarly to the insertion, the deletion procedure begins with search. Given a key k and a
S(2)-tree T, the procedure SEARCH looks for k in T. If T does not contain k, then the deletion
is finished. Otherwise SEARCH returns a vertex S = (So, kl, $1 , . . . , kin, Sml and a key ki = k
in it, tha t must be deleted.

The case when S is not a leaf can easily be reduced to the case of deletion from a leaf. Indeed,
if S is not a leaf, then S~ ¢ A. Let's replace the key ki in S by the minimal (according to the
order << on K) key k ~ from the set K(Si) . It is clear that k ~ belongs to some leaf S ~, which is the
leftmost node of the subtree S. If the replacement of the key ki in S by k t breaks the balance
conditions for S, then they will be restored while balancing the tree.

Now let S be a leaf. The deletion procedure removes the given key from S and proceeds to
balance the tree. Balancing is again performed by procedure BALANCE started at leaf node S.

5.4. B a l a n c i n g

The main part of the insertion and deletion algorithms is the procedure-function BALANCE.
The balancing begins from the leaf node S, which is given as an input parameter for the procedure.
After working on the level of the current node S, the procedure takes for balancing the direct
ancestor of S. The process proceeds further up to the root node. The balanced tree is returned
as the result of procedure BALANCE.

For any current vertex S, the procedure decides to balance S if one of the following three
conditions holds.

(1) The weight of S is small, that is, one of the three sweeps of length 3, containing S, is not
incompressible.

(2) Ik(S)l < q.
(3) ~(s) > p.

60 K.V. SHVACMKO

If the cause of broken balance of the current node S is Condition 1, then procedure BAL-
ANCE_B is used for balancing S. If Condition 2 holds for S, then BALANCE_C is used. And
in the case of Condition 3, BALANCE_W is used. When the conditions don' t hold, BALANCE
skips the level.

Each of the three procedures restores the structure of S(2)-tree disturbed locally for one or
two vertices of the current tree level. While correcting the structure of the tree on the current
level, the algorithm should also change the ancestors of S. This can break in turn the balance
conditions for the lower level nodes. Such breakdowns are also local, since no more than two
lower level nodes can be changed. Each of these nodes is either the direct ancestor of S, or one
of its neighbors. Coming to the next level of the tree procedure, BALANCE merges the two
renewed nodes of the level, and balances them as a whole.

Computation is stopped after coming through the tree root. Thus, the algorithm examines
all the nodes that lay on the path from the tree root to the leaf, containing the new key, and
balances them if necessary. Only these nodes and their neighbors (up to the second from the left
and from the right) in the tree can be transformed by the algorithm.

The explicit algorithms are outlined in the Appendix. The time complexity of the algorithms
gives the following proposition.

PROPOSITION 5.1. Search, insertion and deletion of a key in an n-vertex S(2)-tree can be per-
formed in t/me O(log n).

A P P E N D I X

D E F I N I T I O N S

Let T be a structured tree and S be its vertex.

- S* denotes the direct ancestor of vertex S in T.
- Sweep (L2,12, L1,11, S, r l , R1, r2, R2) of tree T is called a 2-vicinity of vertex S. Node F

denotes the direct ancestor of S. Node FL~ (FRi) denotes an ancestor of S that contains
delimiting key li (ri). Li, li, Ri, r~, FL~, FR~ are (local) variables of the procedures.

- L N F and R N F are global variables of the procedures that are intended to indicate whether
the left (L N F ~ <)) or the right (R N F ~ <>) neighbors of vertex S* were changed while
balancing of the level of vertex S. Note that at any time of balancing only one of the two
variables can be nonempty.

- W W (S) ~ ~ (S) < p .

- w e (s) ~ Ik(S)l > q.
- W F (S) ~-- W W (S) and W C (S) .
- IC(A , a, B, b, C) means by definition that sweep A, a, B, b, C is incompressible.
- W B L (S) ~ I C (L2,12, L1, ll, S).
- W B C (S) ~ I C (L1, ll, S, rl, R1).
- W B R (S) ~ I C (S, r l , R1, r2, R2).
- W B (S) ~ W B L (S) and W B C (S) and W B R (S) .
- W 2 N (S) ~ W F (S) and W B (S) .

I N S T R U M E N T A L P R O C E D U R E S

The following procedures and functions are used for describing the algorithms.

- Procedure MakeCurrent(S) initializes local variables L~, li, R~, ri, FLi , FRi according
to S.

- Procedure Replace(S, P, Q) replaces a part of vertex S (of the tree), that coincides with P,
with Q.

- Functions LeftOf(S, k) and RightOf(S, k) define two parts of vertex S, that are on the left
and on the right, respectively, of key k.

Space Saving Generalization 61

- Three functions

Moveleft (A, a, B, b, C) ~ (P, d, Q)

MoveRight (A, a, B, b, C) ---* (P, d, Q)

Split (A, a, B, b, C) ---+ (P, d, Q)

are applied to the not incompressible sweep A, a, B, b, C, and result P, d, Q is a proper
2-partition of vertex [A, a, B, b, C]. Additional input and output conditions for the func-
tions are given by the following table.

Function Input Output

Moveleft WF(A) and WF(B) k(A) C_ k(P)
MoveRight WF(B) and WE(C) k(C) C_ k(Q)
Split WF(A) and WE(C) k(A) C k(P)

k(c) c k(Q)

- In BALANCE_W we use procedure ComputeSets(S), which computes seven subsets of
k(S). The subsets control the computational process of BALANCE_W and are defined by

MLeft = {d e k(S) I IC (L2,12,Ll,ll ,LeftOf(S,d)) } ,

MRight = {d • k(S) I IC (RightOf(S, d), rl, R, , r2, R2)},

MDelimn = {d • k(S) I W E (RightOf(S, d))},

MDelimR = {d • k(S) I W F (LeftO](S, d))},

MDelim = MDelimL N MDelimR,

ML@ = k(S) \ MLeft,

MRight -- k(S) \ MRight.

T H E M A I N P R O C E D U R E S

P r o c e d u r e INSERTION(T,k)
(TrueValue, S, k~) := SEARCH(T, k);
/*** S = <A, kl ,A, . . . ,k i_l ,A,k~,A ,kin,A) ***/
if ~ueValue = TRUE t hen stop; fi
Replace(S, (kd, (k, A, kd);
/*** S = (A, k l ,A, . . . ,k~_l ,A,k,A,k~,A kin,A) ***/
T := BALANCE(S);
stop;
End_of_Procedure

P r o c e d u r e DELETION(T,k)
(~ueValue, S, ki) := SEARCH(T, k);
/**$ S -~ <S0, k l , S l , . . . , S i _ i , k i , S i , . . . , k r n , Sm) *$$/
if TrueValue = FALSE t hen stop; fi
if So ¢ A then /* S is not a leaf */

(S', k') := Mingey(S~);
Replace(S, (k) , (k'));
S = S';
k = k';

fi
/*** S = <A, kl, A, . . . , ki-1, A, k, A, ki, A , . . . , kin, A) ***/
Replace(S, <A, k, A>, <A>);
T := BALANCE(S);
stop;
End_of_Procedure

62 K.V. SHVACHKO

Procedu re BALANCE(S)
L N F := R N F := (>;
while S ~ (> do

X : = S ;
A: if ~ W B (S)

else i f -~WC(S)
else i f -~WW(S)
else
f i f i f i

then P := BALANCE_B(S);
then P := BALANCE_C(S);
then P := BALANCE_W(S);

P : = S*;

B: if L N F ~ () t hen
P := MakeCurrent(P);
Q := [LI,l l ,P];
i fFL1 = F t hen

Replace(F, (L1,11, P) , (Q));
L N F := ();

else
Replace(F, (P) , (Q));
Replace(ELl, (11), (12));
Replace(EL2, (L2,12, Ll) , (L2));
L N F := FL2;

fi
S:=Q;

C: else i f R N F ~ () then
P := MakeCurrent(P);
Q := [P, rl ,RI];
i f F = F R 1 then

Replace(F, (F, rl, RI) , (Q));
R N F := (>;

else
Replace(F, <P> , <Q>);
Replace(Fnl , (rl), <r2>);
Replace(FR2, (R1, r2, R2), (R2));
R N F := FR2;

fi
S:=Q;

else S := P;
t i f f

od
re turn(X);
End_of_Procedure

P r o c e d u r e BALANCE_B(S)
S := MakeCurrent(S);
BA: if-~IC([L2,12, Ll , l l , S]) then

(Q2, l, Q1) := Moveleft(L2,12, L1, ll, S);
BAI: i f F L 2 = F L I = F then

Replace(F, (L2,12, L1, ll, S) , (Q2, l, Q1));
BA2: else i f F L I = F then / * F L 2 ¢ F * /

Replace(F, (L1, ll, S) , (Q1));
Replace(FL2, (12), (l));
Replace(L2, L2, Q2);

BA3: else /* FL2 ~ F & FL1 ¢ F */
Replace(F, (S) , (Q1));
Replace(FL1, (ll), (l));
Replace(FL2, (L2,12, L1), (Q2));

Space Saving Generalization 63

BB:

BBI:

BB2:

BB3:

L N F := FL2;
t i f f
S := MakeCurrent(Q1);

fi
if -~IC([S, rl, R1, r2, R2]) then

(P1, r, P2) := MoveRight(S, rl, R1, r2, R2);
if F - - F R 1 - - F R 2 t hen

Replace(F, {S, rl, R1, r2, R2}, (P1, r, P2));
else i f F = F R 1 then / * F # F R 2 * /

Replace(F, (S, rl, R1) , (PI));
Replace(FR2, (r2) , (r));
Replace(R2, R2, P2);

else /* F C FR1 & F ~ FR2 */
Replace(F, (S) , (P1));
Replace(F R1, (rl) , (r));
Replace(F R2, (R1, r2, R2) , (R2));
R N F := FR2;

t i f f
S := MakeCurrent(P1);

fi
BC:

BCI:

BC2:

if -~IC([L1, 11, S, rl, R1]) then
(Q, d, P) := Split(L1, ll, S, rl, R1);
i f F L I = F = F R 1 then

Replace(F, (nl, ll, S, rl, R1), <Q, d, P>);
else i f F L I # F & F = F R 1 then

Replace(F, (S, rl, R1), (P});
Replace(FL,, (ll} , (d));
Replace(L1, L1, Q);

else i f F L I = F & F C F R 1 then
Replace(F, (L1,11, S) , (Q});
Replace(FRi, (rl), (d));
Replace (R1, R1, P);

BC4: else /* FL1 ~ F & F ~ FRI & F : (S) */
if L N F : FL2 then

Replace(F, (S) , (Q));
Replace(f R1, (rl) , (d));
Replace(R1, R1, P);
Replace(FL1, (ll), (12));
Replace(FL2, (L2,12, L1), (L2>);

else /* L Y E = () */
Replace(F, <S> , <P));
Replace(EL1, (11), (d));
Replace(L1, L1, Q);
Replace(FR1, (rl), (r2));
Replace(FR2, (RI, r2, R2) , (R2);
R N F := FR2;

fi
f i f i f i

fi
re turn(F);
End_of_Procedure

BC3:

P rocedure BALANCE_C(S)
S := MakeCurrent(S);
if F = () t hen

64 K.V.S~vACHKO

i f S = { S 0) t h e n
Replace(S, S, {/);
return(S0);

fi
r e tu rn(F) ;

fi
CA: if Ik(F)l > 1 t h e n

if EL1 = F t h e n
Q := [L1, ll, S];
Replace(F, iLl, l a , S} , {Q});

else /* F = ERa */
Q := [S, ra,R1];
Replace(F, iS, r l , R1} , {Q});

fi
CAI: else /* Ik(F)l = l & 5 N F = R N F = {} */

i f F L I ~ F t h e n
Q :---- ILl,Ix,S];
ReplaceiF, {S) , {Q});
Replace(EL1, {11), (12));
Replace(EL2, {L2, la, La} , i52));
L N F := FLu;

else /* F ~ ERa */
Q := [S, ra, Ra];
Replace(F, {S) , {Q});
Replace(ERa, {rl) , (r2));
Replace(FR2, {Ri, r2, R2), {R2});
R N F := FR2;

fi
fi

CB: i f # (Q) > p t h e n
S := MakeCurrent(S);
F := BALANCE_W(S);

fi
r e tu rn (F) ;
End_of_Procedure

P r o c e d u r e BALANCE_W(S)
S:= MakeCu~ent(S);
ComputeSets(S);
WA: if MLeft N MRight ~ 0 t h e n

/** choose element from the intersection **/
d E MLeft N MRight;
(Q2, l, Q1) := Moveleft(L2,12, L1, ll, LeftOf (S, d));
(P1, r, P2) := MoveRight (RightOf (S, d), ra, Ra, r2, R2);
Replace(L2, L2, Q2);
Replace(EL2, (12}, {l));
Replace(R2, R2, P2);
Replace(FR2, {r2), {r));

WAI: if EL1 = F = F R 1 t h e n
Replace(F, {L1, la, S, rl, Ra}, {Qa, d, P1});

WA2: else i fFLa # F t h e n / * F = F R I * /
Replace(F, iS, rl, R1) , {PI));
Replace(EL1, {11 }, {d));
Replace(L1, L1, Qa);
LNF := FL2;

Space Saving Generalization 65

WA3:

WB:

WC:

fi

else /* FL1 = F & F # FR1 */
Replace(F, (Ll, ll, S) , (Q1));
Replaee(FRi , (rl) , (d));
Replace(R1, R1, P1);
R N F := FR2;

fi fi
r e t u r n (F) ;

fi
if MRight ~ 0 t h e n

if MDelimR A MRight ¢ 0
else
Q := LeftOf(S,d);

if MLeft ~ 0 t h e n
if MDelimL N MLeft ~ 0 t h e n d E MDelimL n MLeft;
else d :-- max (MLeft); fi
(Q2, l, Qz) :-- Moveleft(L2,12, L1, ll, LeftO](S, d));
P :-- RightOf(S,d);
Replace(F, (S), (P));
Replace(FLi, (11>, <d));
Replace(L1, L1, Q1);
Replace(EL2, (12), (l));
Replace(L2, L2, Q2);
i f F L I ~ F t h e n L N F : = F L 2 ; fi
if W W (P) t h e n r e t u r n (F) ; fi
S := MakeCurrent(P);
ComputeSe ts (S);

/* MLeft = k(S) */

t h e n d E MDelimR N MRight;
d := min (MRight); fi

(P1, r, P2) := MoveRight(RightOf (S, d), r l, R1, r2, R2);
Replace(F, (S) , (Q));
Replace(FR1, (rl), (d));
Replace(R1, Rz, P1);
Replace(FR2, <r2>, <r>);
Replace(R2, R2 , P2);
i f F ~ F R 1 t h e n R N F : = F R 2 ; fi
if WW(Q) t h e n r e t u r n (F) ; fi
S := MakeCurrent(Q);
ComputeSets(S);

fi /* MRight = k(S) */
WD: if MDelim ~ 0 t h e n

d c MDelim;
Q := LeftOf(S,d);
P := RightOf(S,d);
Replace(F, (S) , (Q, d, P));
r e t u r n (F) ;

fi
W E : / * MLeft = MRight = k(S) & MDelim = ~ */

d := max (MDelimR);
Q := LeflOf(S,d);
P := RightOf(S, d);
Replace(F, (S) , (Q, d, P));
F := BALANCE_W(P);

r e t u r n (F) ;
E n d _ o f _ P r o c e d u r e

CAI4~ $0-7-F

66 K .V . SHVACHKO

R E F E R E N C E S

1. A.P. Pinchuk and K.V. Shvachko, Maintaining dictionaries: Space-saving modifications of B-trees, In Lecture
Notes in Computer Science, Vol. 646, (1992).

2. K.V. Shvachko, Generalization of B-trees for variable-length records (to appear).
3. D. Wood, Data Structure, Algorithms, and Performance, Addison-Wesley, (1993).
4. G.M. Adel'son-Vel'skii and E.M. Landis, An algorithm for the organization of information, Soviet Math.

Doklady 3, 1259-1262 (1972).
5. C.C. Foster, A generalization of AVL-trees, Communications of the ACM 16, 513-517 (1973).
6. H.R. Lewis and L. Denenberg, Data Structures and Their Algorithms, Harper-Collins, New York, (1991).
7. L.J. Guibas and R.. Sedgewick, A dichromatic framework for balanced trees, In Proceedings, 19 th Annual

IEEE Symposium on Foundations of Computer Science, pp. 8-12, (1978).
8. A.C.-C. Yao, On random 2-3 trees, Aeta Inf. 9, 159-170 (1978).
9. R. Bayer, Symmetric binary B-tree: Data structure and maintenance algorithms, Acta Inf. 1 (4), 290-306

(1972).
10. R.. Bayer and E. McCreight, Organization and maintenance of large ordered indexes, Acta Inf. I (3), 173-189

(1972).
11. D.E. Knuth, The Art of Computer Programming, Vol. 3 (Sorting and Searching), Addison-Wesley, Reading,

MA, (1973).
12. N. Wirth, Algorithms and Data Structure, Prentice-Hall, Englewood Cliffs, N J, (1986).
13. T.J. Teorey and D.P. Fry, Design of Database Structures, Vol. 2, Prentice-Hall, Englewood Cliffs, N J, (1982).
14. K.V. Shvachko, Space-saving modifications of B-trees, In Proceedings of Symposium on Computer Systems

and Applied Mathematics, St. Petersburg, p. 214, (1993).
15. M.M. Gilula, The Set Model for Database and Information Systems, Addison-Wesley (in association with

ACM Press), Wokingham, (1994).
16. D. Comer, The ubiquitous B-tree, Comp. Surv. 11 (2), 121-137 (1979).
17. G.K. Gupta and B. Srinivasan, Approximate storage utilization of B-tree, Inf. Proc. Left. 22, 243-246

(1986).
18. S.-H.S. Huang, Height-balanced trees of order (fl,'r,~), ACM Trans. Database Syst. 10 (2), 261-284 (1985).
19. T. Johnson and D. Shasha, Utilization of B-tree with inserts, deletes, and modifies, In Proceedings of the

ACM Principles of Database Systems Symposium, pp. 235-244, (1989).
20. C.H.C. Leung, Approximate storage utilization of B-tree: A simple derivation and generalizations, Inf. Proc.

Lett. 19, 199-201 (1984).
21. E.M. McCreight, Pagination of B*-trees with variable-length records, Commun. ACM 20 (9), 670-674

(1977).
22. A.L. Rosenberg and L. Snyder, Time- and space-optimality in B-tree, ACM Trans. Database Syst. 6 (1),

174-193 (1981).
23. W.E. Wright, Some average performance measure for the B-tree, Acta Inf. 21, 541-557 (1985).

