Determination of distances and sizes of visible objects using a plane transparent glass plate

Arvind Kumar Pandey ${ }^{\text {a,b }}$, Umesh Yadava ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Lauhar, Bharthaw, Ballia 221717, India
${ }^{\mathrm{b}}$ Department of Physics, DDU Gorakhpur University, Gorakhpur 273009, India

A R T I C L E I N F O

Article history:

Received 10 May 2014
Accepted 1 July 2014
Available online 8 July 2014

Keywords:

Distance determination
Height determination
Plane transparent glass plate

Abstract

A novel approach for the determination of distances and sizes of the different visible objects has been proposed. Accordingly, an experimental set up has been designed. This method is cheap, handy and easy to use. Observations are conducted with the help of a plane transparent glass plate and a travelling microscope. Distances and sizes calculated with this method are found to be in good agreement with those of the reported values.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Introduction

Determination of distances of nearby objects or distant objects and height of buildings, mountains etc. have been the subject of immense interest among scientists [1,2]. The most commonly used methods are parallax method, sextant method, radar method etc. $[3,4]$ which are very complex, time consuming and costly. Now a days, the use of inclinometer application on smartphones is very popular for the determination of height [5,6]. We know that the apparent size of an object on a glass plate depends on the distance of the object from the observer. The apparent size on the glass plate becomes shorter with the movement of the object farther from the observer. We have used this principle to find out new simple formulae to determine the distances of the objects from the observer and also sizes of the objects. Experiments have also been performed to verify these formulae, which is discussed in this communication.

Principles and methods

We have used a plane transparent glass plate to view the object. The apparent size of the object on the glass plate has been sketched, the dimensions of which are measured with the help of a travelling microscope. We have performed a number of experiments whose results are listed in Tables $1-11$. From tables, we have derived several relations among different quantities. The

[^0]apparent length, perimeter and the area on the glass plate are denoted by L_{g}, P_{g} and A_{g} respectively, whereas the actual length, perimeter and front area of the object are denoted by L_{o}, P_{o} and A_{o} respectively. The variable quantities are (i) distance of object from the observer (d), (ii) distance of glass plate from the observer (x), (iii) angle between the plane of object and the line joining the middle point of the object from observer (φ) and (iv) the angle between the normal of the front area of the surface of object and the line joining the middle point of object from the observer (θ) (Fig. 1).

Distance determination when size of the object is known

Based on the observations as shown in Tables 1-11, we have extracted the following rules:

Rule 1. Observations from Tables 1-4 demonstrate that
i. $L_{g} \propto L_{o}$
ii. $L_{g} \propto \mathrm{X}$
iii. $L_{g} \propto \operatorname{Sin} \varphi$
iv. $L_{g} \propto 1 / d$

Thus we can conclude that
$L_{g}=c \frac{L_{0} x \sin \varphi}{d}=\frac{L_{0} x \sin \varphi}{d}$
where c is the proportionality constant, found experimentally equal to 1 .

Table 1
Variation of L_{g} with L_{o} keeping other variants constant $\left(x=10.0 \mathrm{~cm}, d=100.0 \mathrm{~cm}\right.$ and $\left.\varphi=90.0^{\circ}\right)$.

$L_{o}(\mathrm{~cm})$	$L_{g}(\mathrm{~cm})$
10.0	1.040
12.0	1.209
14.0	1.405
16.0	1.606
18.0	1.807
20.0	2.008
22.0	2.209
24.0	2.399
26.0	2.613
28.0	2.825
30.0	3.008

Table 2
Variation of L_{g} with x keeping other variants constant ($L_{o}=20.0 \mathrm{~cm}, d=100.0 \mathrm{~cm}, \varphi=90.0^{\circ}$).

$x(\mathrm{~cm})$	$L_{g}(\mathrm{~cm})$
10.0	2.029
12.0	2.403
14.0	2.804
16.0	3.205
18.0	3.603
20.0	4.045
22.0	4.419
24.0	4.801
26.0	5.200
28.0	5.608
30.0	6.016

Table 3
Variation of L_{g} with $\sin \varphi$ keeping other variants constant ($L_{o}=20.0 \mathrm{~cm}, d=100.0 \mathrm{~cm}, x=10.0 \mathrm{~cm}$).

$\Phi\left({ }^{\circ}\right)$	$\operatorname{Sin} \varphi$	$L_{g}(\mathrm{~cm})$
0.0	0.000	0.011
15.0	0.259	0.520
30.0	0.500	1.004
45.0	0.707	1.420
60.0	0.866	1.733
75.0	0.966	1.909
90.0	1.000	2.007

Table 4
Variation of L_{g} with d keeping other variants constant ($L_{o}=20.0 \mathrm{~cm}, \varphi=90.0^{\circ}$, $x=10.0 \mathrm{~cm}$).

$d(\mathrm{~cm})$	$1 / d\left(\mathrm{~cm}^{-1}\right)$	$L_{\mathrm{g}}(\mathrm{cm})$
10.0	0.1000	20.002
20.0	0.0500	10.034
30.0	0.0330	6.661
40.0	0.0250	5.022
50.0	0.0200	4.007
60.0	0.0167	3.333
70.0	0.0143	2.852
80.0	0.0125	2.505
90.0	0.0111	2.223
100.0	0.0100	2.006

Table 5
Variation of P_{g} with P_{o} keeping other variants constant $\left(d=100.0 \mathrm{~cm}, \theta=0.0^{\circ}, \varphi=90.0^{\circ}, x=10.0 \mathrm{~cm}\right)$.

P_{o}	P_{g}
40.0	4.100
48.0	4.820
56.0	5.603
64.0	6.404
72.0	7.208
80.0	8.023
88.0	8.801
96.0	9.621
104.0	10.404
112.0	11.205
120.0	12.014

Table 6
Variation of P_{g} with x keeping other variants constant ($P_{o}=80.0 \mathrm{~cm}, d=100.0 \mathrm{~cm}, \theta=0.0^{\circ}, \varphi=90.0^{\circ}$).

$x(\mathrm{~cm})$	$P_{g}(\mathrm{~cm})$
10.0	8.004
12.0	9.601
14.0	11.202
16.0	12.834
18.0	14.404
20.0	16.005
22.0	17.611
24.0	19.202
26.0	20.803
28.0	22.416
30.0	24.022

Table 7
Variation of P_{g} with d keeping other variants constant ($P_{o}=80.0 \mathrm{~cm}, x=10.0 \mathrm{~cm}$, $\left.\theta=0.0^{\circ}, \varphi=90.0^{\circ}\right)$.

$d(\mathrm{~cm})$	$1 / d\left(\mathrm{~cm}^{-1}\right)$	$P_{g}(\mathrm{~cm})$
10.0	0.1000	80.020
20.0	0.0500	40.024
30.0	0.0330	26.663
40.0	0.0250	20.011
50.0	0.0200	16.021
60.0	0.0167	13.333
70.0	0.0143	11.424
80.0	0.0125	10.027
90.0	0.0111	8.881
100.0	0.0100	8.010

Table 8
Variation of A_{g} with A_{o} keeping other variants constant ($x=10.0 \mathrm{~cm}, d=100.0 \mathrm{~cm}, \theta=0.0^{\circ}$).

$A_{o}\left(\mathrm{~cm}^{2}\right)$	$A_{g}\left(\mathrm{~cm}^{2}\right)$
100.0	1.011
144.0	1.442
196.0	1.963
256.0	2.562
324.0	3.245
400.0	4.004
484.0	4.843
576.0	5.765
676.0	6.768
784.0	7.847
900.0	9.005

Table 9
Variation of A_{g} with x keeping other variants constant $\left(A_{o}=400.00 \mathrm{~cm}^{2}, d=100.0 \mathrm{~cm}\right.$, $\theta=0.0^{\circ}$.

$x(\mathrm{~cm})$	$X^{2}\left(\mathrm{~cm}^{2}\right)$	$A_{g}\left(\mathrm{~cm}^{2}\right)$
10.0	100.00	4.0281
12.0	144.00	5.7636
14.0	196.00	7.8449
16.0	256.00	10.2455
18.0	324.00	12.9646
20.0	400.00	16.0072
22.0	484.00	19.3683
24.0	576.00	23.0464
26.0	676.00	27.0436
28.0	784.00	31.361
30.0	900.00	36.002

Table 10
Variation of A_{g} with $\cos \theta$ keeping other variants constant ($A_{o}=400.00 \mathrm{~cm}^{2}, d=100.0 \mathrm{~cm}, x=10.0 \mathrm{~cm}$).

θ	$\cos \theta$	$A_{g}\left(\mathrm{~cm}^{2}\right)$
0.0	1.000	4.1140
15.0	0.966	3.8641
30.0	0.866	3.4624
45.0	0.707	2.8278
60.0	0.500	2.0231
75.0	0.259	1.0364
90.0	0.000	0.0149

Table 11
Variation of A_{g} with d keeping other variants constant ($A_{o}=400.00 \mathrm{~cm}^{2}, x=10.0 \mathrm{~cm}$, $\theta=0.0^{\circ}$).

$d(\mathrm{~cm})$	$d^{2}\left(\mathrm{~cm}^{2}\right)$	$1 / d^{2}\left(10^{-4} \mathrm{~cm}^{-2}\right)$	$A_{g}\left(\mathrm{~cm}^{2}\right)$
20.0	400.00	25.00	100.0255
40.0	1600.00	6.25	25.0048
60.0	3600.00	2.78	11.1229
80.0	6400.00	1.563	6.2524
100.0	10000.00	1.000	4.0245
120.0	14400.00	0.694	2.7766
140.0	19600.00	0.510	2.0407
160.0	25600.00	0.391	1.5643
180.0	32400.00	0.309	1.2362
200.0	40000.00	0.250	1.0098

Rule 2. From Tables 5-7 we observe that
i. $P_{g} \propto P_{o}$
ii. $P_{g} \propto X$
iii. $P_{g} \propto d^{-1}$

Thus, we have
$P_{g}=c \frac{P_{o} x}{d}=\frac{P_{o} x}{d}$
Here, c the proportionality constant is also determined equal to 1 .

Rule 3. From Tables $8-11$, we observe that
i. $A_{g} \propto A_{o}$
ii. $A_{g} \propto x^{2}$
iii. $A_{g} \propto \cos \theta$
iv. $A_{g} \propto d^{-2}$

Thus,
$A_{g}=c \frac{A_{0} x^{2} \cos \theta}{d^{2}}=\frac{A_{0} x^{2} \cos \theta}{d^{2}}$
Here, also $c=1$ from experiments.
Thus Eqs. (1)-(3) can be used to calculate the distance of the object from the observer when length of the object, perimeter of the object or area of the object is known.

If the length of the object $\left(L_{o}\right)$ is known then Eq. (1) is utilised. The glass plate is placed at a certain distance from the eye (say at $x=10.0 \mathrm{~cm}$) (For simplicity we have taken as $\varphi=90.0^{\circ}$). The apparent size of the object is sketched on the glass plate $\left(L_{g}\right)$ which is measured with the help of a travelling microscope. Thus knowing the quantities like L_{o}, L_{g}, x and $\sin \varphi$ one can calculate the distance of the object from the observer (d). When the perimeter of the object is known, Eq. (2) is used to determine the distance of the object from the observer, whereas Eq. (3) is utilised if the front area of the object is known.

Above formulae are also suited for the determination of larger distances as the distance of sun or moon from the earth. From this method, the apparent diameter of the sun on the glass plate has been observed equal to 0.232 cm (during sunset) when the glass plate is placed at a distance of 25.0 cm from the eye of the observer. Taking the diameter of the sun $1.39 \times 10^{6} \mathrm{~km}$ we found, using Eq. (1), the distance of the sun from the earth is equal to $1.500 \times 10^{8} \mathrm{~km}$ which is in quite agreement with the reported values $[7,8]$.

Fig. 1. Schematic diagram and variables of observation when size of object is known.

Fig. 2. Schematic diagram and variables of observation when size of object is unknown.

Distance determination when size of object is unknown

To determine the distance, when the size of the object is unknown, the schematic diagram is shown in Fig. 2. O is the middle point on the visible object. Suppose L_{o}, P_{o} and A_{o} represent the real length, perimeter and area of the object respectively. Observations are taken from two points A and B at distances d_{1} and d_{2} from the object, respectively. At first point A, $L_{g 1}, P_{g 1}$ and $A_{g 1}$ are the apparent length, perimeter and area on the glass plate respectively while at the second point of observation B, $L_{g 2}, P_{g 2}$ and $A_{g 2}$ are the apparent length, perimeter and area on the plane transparent glass plate respectively. Let y be the distance between the two points A and B, x the distance between eye and glass plate.

Determination of length and distance

Using Eq. (1), distances d_{1} and d_{2}, at positions A and B , from the object can be determined whose difference gives the value of y,
$y=d_{2}-d_{1}=L_{0} \cdot x \frac{\sin \varphi_{2} L_{g 1}-\sin \varphi_{1} L_{g 2}}{L_{g 2} L_{g 1}}$
If d_{1} and d_{2} are large distances in comparison to L_{o} then $\varphi_{1}=\varphi_{2}=90^{\circ}$. Therefore from (1), we have
$L_{o}=\frac{y L_{g 2} L_{g 1}}{x\left(L_{g 1}-L_{g 2}\right)}$
Using Eq. (4), the values of d_{1} and d_{2} can be found out from Eq. (1) which is given by
$d_{1}=\frac{y L_{g 2}}{L_{g 1}-L_{g 2}}$ and $d_{2}=\frac{y L_{g 1}}{L_{g 1}-L_{g 2}}$

Determination of perimeter and distance

In a similar way, the perimeter of the object and distances d_{1} and d_{2} can be determined by taking observations at points A and B respectively. These formulae can be given by
$P_{o}=\frac{y P_{g 2} P_{g 1}}{x\left(P_{g 1}-P_{g 2}\right)}$
$d_{1}=\frac{y P_{g 2}}{P_{g 1}-P_{g 2}}$ and $d_{2}=\frac{y P_{g 1}}{P_{g 1}-P_{g 2}}$

Determination of area and distance

Area and distance of the object can also be determined in a similar way by taking observations at positions A and B. Formulae can be given by
$A_{o}=\frac{y^{2} A_{g 2} A_{g 1}}{x^{2} \cos \theta\left(\sqrt{A_{g 1}}-\sqrt{A_{g 2}}\right)^{2}}$
$d_{1}=\frac{y \sqrt{A_{g 2}}}{\sqrt{A_{g 1}}-\sqrt{A_{g 2}}}$ and $d_{2}=\frac{y \sqrt{A_{g 1}}}{\sqrt{A_{g 1}}-\sqrt{A_{g} 2}}$

Corollaries

Determination of the perimeter of the object
Having $\theta=0^{\circ}$ and $\varphi=90^{\circ}$, we can find using Eq. (1) and (2)
$P_{o}=\frac{L_{0} P_{g}}{L_{g}}$
Here L_{o} can be taken as an arbitrary length at the middle point on the object and L_{g} being the corresponding length of image on the glass plate. Thus with the help of Eq. (10), by measuring L_{o}, L_{g} and P_{g}, the perimeter of the object could be determined easily.

Determination of the front area of the object - I

Using Eq. (1) and (3) we have
$A_{o}=\frac{L_{o}^{2} A_{g} \sin ^{2} \varphi}{L_{g}^{2} \cos \vartheta}$
Thus front area of the object could also be determined with the help of Eq. (11).

Determination of the front area of the object - II

Using Eq. (2) and (3) having $\theta=0.0^{\circ}$ we find,
$A_{o}=\frac{P_{o}^{2} A_{g}}{P_{g}^{2}}$
Thus with the help of Eq. (11), (12) the area of the object could be determined if the perimeter of the object is known.

Conclusion

A more convenient method for the determination of distances and sizes of visible objects has been developed and accordingly experiments have been designed. More accurate we measure the dimensions of the image on the glass plate, more accurate will be the result. Using these formulae, the height of Building, area of fields etc. could also be determined easily.

References

[1] Patterson RJ, Ianna PA. A Hyades distance modulus from trigonometric parallaxes from Northern and Southern Hemisphere observatories. AJ 1991;102:1091-102.
[2] Gatewood G, Castelaz M, de Jonge JK, Persinger T, Stein J, Stephenson B. Mapbased trigonometric parallaxes of open clusters. II - The Hyades: 51 Tauri. APJ 1992;392:710-4.
[3] Gatewood G, de Jonge JK, Han I. The pleiades map-based trigonometric parallaxes of open clusters V. AJ 2000;533:938-43.
[4] van Altena WF, Lee JT, Hoffleit ED. General catalogue of trigonometric stellar parallaxes. 4th ed. Yale Univ. Obs.; 1995.
[5] Perryman MAC, Brown AGA, Lebreton Y, Gómez A, Turon C, Cayrel de Strobel G, Mermilliod JC, Robichon N, Kovalevsky J, Crifo F. The Hyades: distance, structure, dynamics and age. A\&A 1998;331:81-120.
[6] Avery TE, Burkhart HE, Height Measurement Principles. Forest measurements, 5th ed., McGraw-Hill; 2002. p. 154.
[7] Friedman H. The Astronomer's Universe. New York, NY: WW Norton \& Company; 1998.
[8] Brumfiel G. The astronomical unit gets fixed; Earth-Sun distance changes from slippery equation to single number. Nature 2012. http://dx.doi.org/10.1038/ nature.2012.11416.

[^0]: * Corresponding author.

 E-mail address: u_yadava@yahoo.com (U. Yadava).

