
Theoretical Computer Science 58 (1988) 17-56

North-Holland

CLASSIFICATION OF ALL THE MINIMAL BILINEAR
ALGORITHMS FOR COMPUTING THE COEFFICIENTS OF
THE PRODUCT OF TWO POLYNOMIALS MODULO A
POLYNOMIAL, PART I: THE ALGEBRA G[u]/< Q(u)‘>, 1 > 1

Amir AVERBUCH

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A., and Tel-Aviv University,

Ramat Aviv, 69978 Tel-Aviv, Israel

Zvi GALIL

Columbia University, Morningside Heights, NY 10027, U.S.A., and Tel-Aviv University, Ramat

Aviv, 69978 Tel-Aviv, Israel

Shmuel WINOGRAD

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.

Abstract. In this paper we will classify all the minimal bilinear algorithms for computing the

coefficients of (Cyld x,u’)(~:‘~~ y,u’) mod Q(U)’ where deg Q(u) = j, jl = n and Q(U) is irreducible.

The case where I = 1 was studied in [11. For I > 1 the main results are that we have to distinguish

between two cases: j > 1 and j = 1. The first case is discussed here while the second is classified

in [4]. For j > 1 it is shown that up to equivalence every minimal (2n - 1 multiplications) bilinear

algorithm for computing the coefficients of (x:1; x,u’)(C:‘I,; y,u’) mod Q(u)’ is done by first

computing the coefficients of (Cyi,: x,u’)(Crl,; y,u’) and then reducing it modulo Q(u)’ (similar

to the case I = 1, [I]).

1. Introduction

In this paper we will classify all the minimal bilinear (noncommutative) algorithms

for computing the coefficients of the product of two polynomials modulo a third

one. First we need to establish a precise framework. Let G be a field, G[u] be the

polynomial ring in u over the field G, {x,, x,, . . . ,x,_,} and {y,, y,, . . . , y,,_,} two

sets of indeterminates, and let P(u) = u” +C:zi a,~’ be a manic polynomial, a, E G.

Denote by R(u) the polynomial R(u) =C?Ii xiui and by S(u) the polynomial

S(u) = 1::; y,u’ whose coefficients are indeterminates, and by Tp the set of the

coefficients of the polynomial C:Ii (cl+’ = R(u)S(u) mod P(u) where

{I+&, (CI, , . . . , +n_l} c G(x,, x, , . . , x,,_, , yo, . . . , y,_,). The multiplicative com-

plexity of the system of bilinear forms Tp was studied in [2,8]. It was shown that

the minimum number of nonscalar multiplications needed to compute Tp is 2n - 1.

In [l] Winograd classified all the minimal (2n - 1 multiplications) bilinear algorithms

for computing the coefficients Tp where P(u) is irreducible (over G), deg P(u) = n.

0304.3975/88/$3.50 @ 1988, Elsevier Science Publishers B.V. (North-Holland)

18 A. Averbuch, Z. Galil, S. Winograd

There it was proved that up to some equivalence every minimal bilinear algorithm

for computing Tp is done by first computing the coefficients of R(u)S(u) and then

reducing them modulo P(U). Furthermore, in [l] Winograd proved that every

minimal algorithm for computing Tp in an algebraic extension field of degree 2 is

necessarily bilinear. Recently, in [9, lo], Feig showed that all the minimal algorithms

for computing Tp, P(u) irreducible (over G), are bilinear and thus computed by

the above procedure. Hence, the case of computing Tp in an algebraic extension

field is classified completely.

In this paper we are interested in classification of all the minimal bilinear

algorithms for computing TpcuJ where P(u) = Q(u)’ = u~+C~:: aiui is a manic

polynomial, ai E G and Q(u) is irreducible (over G) deg Q(u) =j, (jl = n) and I> 1.

The motivation for studying this problem is threefold:

(1) To close a gap of Winograd’s paper [l]. There Winograd classifies all the

minimal bilinear algorithms for computing Tp only in algebraic extension fields,

the case I= 1.

(2) To continue the flow of the general results on problems in Algebraic Com-

plexity that were started in [11, 12,131 on classification of all the minimal algorithms

for computing 2 x 2 matrices and that were continued in [l, 2, 3, 8, 9, lo] on the

classification of all the minimal algorithms for computing Tp.

(3) The minimal algorithms for computing T,, where P(U) is irreducible (over

G) are the basis for an algorithm for computing cyclic convolution, the Discrete

Fourier Transform (DFT) and Digital Filters [3, 5, 61.

In order to understand how the minimal algorithms for computing the cyclic

convolution and the DFT, which are based on computing Tp where P(U) is irreduc-

ible (over G), is related to the problem of computing Tp where P(U) = Q(U)’ (l> l),

we will now bring some more background facts.

Fuct 1: The case of simultaneously computing the set Tp, u Tp2 u . . . u TpL was

solved in [2]. If P, = Q(u)“, i = 1,. . . , k, are distinct irreducible polynomials (over

G) and for i = 1, . . . , k the coefficients of the R,‘s and S,‘s are distinct indeterminates,

then the minimum number of multiplications needed to compute Tp, u Tp2 u . . . u TpI

is IF=, (2 deg(P,) - 1). Moreover, every algorithm which uses the minimum number

of multiplications necessarily computes each Tp, separately. Consequently, if P(u) =

nF=, P,(u) where deg P(u) = n, P, = Q(u)‘, and Q,(u), i = 1, . . . , k, are distinct

irreducible polynomials (over G), then the minimum number of multiplications

needed to compute Tp, u Tp2 u - . . u TpI is IF_, (2 deg(Pi) - 1) = 2n -k. Moreover,

as a consequence of the Chinese Remainder Theorem, every algorithm which uses

the minimum number of multiplications necessarily computes each Tpt (i = 1, . . . , k)

separately. Hence, classification of all the minimal algorithms which compute the

coefficients of Tp where P(u) = nF=, Pi(u), deg P(u) = n, can be reduced to

classification of all the minimal algorithms which compute the Tp where P(u) =

Q(u)‘=u”+C::; i . a,u IS a manic polynomial, ai E G and Q(u) is irreducible (over

G), deg Q(U) =j (jl = n).

Classijication of algorithms for computing polynomial products 19

liact 2: Denote by R,(u) the polynomial R,(u) =cf=, xiu’ and by S,(u) the

polynomial S,(U) =C~zOy,~l. It was shown in [8] that the minimum number of

multiplications needed to compute the coefficients of R,(u)S,(u) is I+ m + 1. In

[2] Winograd proved that, for i = 1, . . . , I + m + 1, each multiplication in a minimal

algorithm for computing the coefficients of R,(u)&,(u) has the form R,(ai)S,(a,)

and the (Y~ are distinct scalars from G. Therefore, the minimal algorithms for

computing the coefficients of R,(u)&(u) (which are the basis for the minimal

algorithms for computing Tp where P(U) is irreducible polynomial (over G))

necessitate large coefficients and hence they are impractical to implement. This

observation brings us back to the linkage between the problem of classifying all the

minimal algorithms for computing Toc,,,~ (1> 1) and the DFT. For instance, the

cyclic convolution is computed by (1::; x,u’)(C~~~ y,u’) mod(u” - 1) where U” - 1 =

n,,, P,(u) and P,() u are the cyclotomic polynomials. By Fact 1 we can look at this

problem as a direct sum computation of Tp,(,,) over algebraic extension fields and

by Fact 2 such algorithms necessitate large coefficients. Since the minimal algorithms

for computing TF where P(u) is irreducible (over G) is the basis for an algorithm

for computing the Discrete Fourier Transform [S, 61, it will be useful to derive new

algorithms which do not use large coefficients.

Therefore, we will look at nonminimal algorithms in the following way. Assume

that deg P(u) = 2n - 1 with distinct irreducible factors, but not necessarily only

linear factors. Therefore, the following identity exists: R(u)S(u) =

R(u)S(u) mod P(U) (by using distinct linear factors we get the algorithms that were

mentioned before). Hence, by computing the coefficients of R(u)S(u) by using the

coefficients of R(u)S(u) mod P(U), there is no guarantee that the algorithm will be

minimal, but because of the form of P(U) we can hope that we may reduce the

large constants that the minimal algorithm generates. For example, assume

R(u)= ; x,u’, S(u)= i: y;u’ and P(u)=~~(u~+l)~(u+l).
i=” i=o

The minimal algorithm for computing the coefficients of R(u)S(u) needs 11 multipli-

cations and R(u)S(u) mod P(u) needs 1 1 + 7 + 1 = 19 multiplications. The question

is whether computing the coefficients of R(u)S(u) mod P(u) as three separate

(minimal) algorithms will still require large coefficients? The purpose of this paper

is to classify all the minimal algorithms for computing TQcu,i and to see whether

we get new types of algorithms by computing Tocu,l. For further reading about

computing nonminimal algorithms for computing Tp consult [3].

In this paper and in the subsequent one [14] we will show that for minimal

bilinear algorithms all the algorithms that we derive are essentially (up to some

equivalence) either the same or almost the same as the minimal bilinear algorithms

when computation is performed in algebraic extension fields and therefore they still

require large coefficients.

For I> 1 the main results are that we have to distinguish between two cases: j > 1

and j = 1. The case I> 1 and j > 1 is classified in this paper while the classification

20 A. Averbuch, Z. Galil, S. Winograd

of the case I > 1 and j = 1 will be a subject of a separate paper [141. After deriving

these results (beginning of 1984) Fellman [15] obtained similar results.

The paper is organized as follows. In the next section we will give some definitions

and results from Algebraic Complexity Theory. In Section 3 we define the concept

of equivalence relation on the class of algorithms we are about to classify. The

technical lemmas of Section 4 will also be used extensively in this paper and in

[14]. In that section we present some general technical results about classification

of minimal bilinear algorithms for computing Toc,,,l, 1~ 1. In Section 5 we present

the classification of all the minimal bilinear algorithms for computing Toc,)l, I> 1.

This section is heavily based on Section 4. Finally, in Section 6 we will reexamine

the algorithm of Section 5. The results of Section 5 are constructive. We will prove

that these algorithms (from Section 5) can be given a different interpretation and

furthermore it will enable us to link them to previous results which are mentioned

in Section 2.

2. Some definitions and results from Algebraic Complexity Theory

Let G be a field, and let (x) = (x,, . . . , x,)’ and (y) = (Y, , . . . , Y,,,)~ be vectors of

distinct indeterminates over G. Let I/J~ = Ci,j gVkx,yj, k = 1, . . . , t, be a collection of

bilinear forms, where giik E G. We may write it as J/ = A(x)y where I/J = ($r, . . . , $t)T, R,, . . . R,,
A(x)= ; [4 R,, . . . Rm

and Rkj=C:=, g+xi, k=l,. .., t,j=l,. .., m. Then we call + = A(x)y a system of

bilinear forms.

Let H = G(x, , . . . , x,, Yr , . . . , ym) be the purely transcendental extension of G

of degree m+ n obtained by adjoining to it m-t n distinct indeterminates

Xl,...,X,,Yl,..., y, over G and let B = G u {x1, . . . , x,, y, , . . . , y,}.

We will use the usual definitions for our model of computation and the concept

of complexity (see [2-51). We will investigate all the algorithms for computing a

system of bilinear forms by counting only multiplications or divisions (m/d) where

the multiplicands do not belong to G.

If A is an algorithm over B, then denote by pB(A) the number of m/d-steps that

A contains.

In the following we will mention a hierarchy of classes of algorithms for computing

systems of bilinear forms.

If each m/d-step of A is a multiplication of the form

jJ U;Xi+ f $y, >(i UiXi + f t{Yj > u,,uj,t,,t:EG,l~i~n,l~j~rn,
i=l j=l i=l j=1

then A is called a quadratic algorithm.

Classification of algorithms for computing polynomial products 21

If each m/d-step of a quadratic algorithm A has the form h(k) =

(I:=, u~,x,)(~~=, t,&), ujk, tik E G, then A is called a bilinear (or noncommutative)

algorithm.

Theorem 2.1 (Winograd [3,4]). Let A be a bilinear algorithm computing A(x)y and

let h(l), . . _ , h(1) be the multiplications steps of A. Then there exists a matrix M,

m,, E G such that A(x)y = M(h(l), . . . , h(l))T where h(k) = (~~=, uj,$,)(~~=, t!Gi),

uik, tik E G, 1 s k 8 1.

For a bilinear algorithm A (over B) we define ptr(A) to be the number of m/d-steps

in A. If 1,5 = A(x)y, then the bilinear complexity of + is pB(I/J) = min, fiUR(A) where

A ranges over all bilinear algorithms over B for computing I/J.

We did not make a special definition for quadratic complexity analogous to our

definition of the bilinear complexity because in [4] Winograd proved that given an

algorithm A with p(A) m/d-steps for computing 1,9 = A(x)y, we can constructively

derive from it a quadratic algorithm A of at most p(A) m/d-steps which also

computes I/J = A(x)y. In particular, if A is minimal, then the quadratic algorithm A

must also be minimal and therefore with the same number of m/d-steps.

Corollary 2.2 (Winograd [4]). For every system + = A(x)y, p($0 4 t~(JI) s 2p(14).

From [4] we will need also the column-rank theorem.

Theorem 2.3. Let A(x)y be a system of bilinear forms. If A(x) has at least s columns

such that no nontrivial linear combination of them (with coeficients in G) yields the

column 0, then any algorithm for computing A(x)y requires at least s multiplications.

A minimal algorithm is determined uniquely by its m/d-steps since if A(x)y is a

set oft bilinear forms and M a t x s G-matrix such that A(x)y = Mm and p(A(x)y) =

s, then m ={m,, m2,. . . , m,} are linearly independent; hence, if Mm and M’m are

two distinct minimal algorithms for computing A(x)y, then M = M’.

From now on we will deal with a specific system of bilinear forms. Therefore,

we will specialize the field H and the elements {+, , . . . , CL,} E H that are to be

computed. Let F = G(x,, . . . , XI), H = F(yo, . . , ym) where xo, . . , xl, YO, . . . , Y,, u

are distinct indeterminates over G.

Let R,(u) =Cl=, X,U’ and &,(u) =CT=, y,u’ be two polynomials with indetermin-

ates as coefficients. R,(u)S,(U) form a system of bilinear forms which are denoted

by T(u) = Cjlf_; I&‘.

We aim, first, at classifying all the minimal algorithms for computing

{Go,. ., +,+,,,}E H where B= Gu{x,,. . , x,} u {yo, . . , y,}. For the construction

of the algorithms we will need the Chinese Remainder Theorem. For the sake of

completeness we now give the polynomial version of the Chinese Remainder

Theorem.

22 A. Averbuch, 2. Galil, S. Winograd

Chinese Remainder Theorem (CRT). Let R be commutative ring with identity, and let

G be afield, G E R (whose 0 and unit element are the same as those of R). Let P(u),

PI(U), P2(u), . . . 3 Pk(u) E G[u] be manic polynomials such that P(u) =nf=, P,(u)

and (Pi(u), P;(u)) = 1 for i #j. Then there is an isomorphism p such that

p : Null@‘(u))+ Null(P,(u))x. . . x NullU’/c(u))

where the isomorphism is given by the following:

o(r(u)) = (t+(r(u)), . . . , pk(r(u))) = (r(u) mod PI(u), . . . , r(u) mod h(u)).

For every (r,(u),...,rk(u))ER[u]/(P,(u))~...xR[u]/(Pk(u)) we have

p-‘(rl(uL.. . , rk(u)) = (i riiulQiCu,> mod p(u)
i=l

where Q,(u), . . . , &(u) E G[u] satisfy Q(u) = S,j mod P,(u).

If, for instance, P(u) = U” +I::; g,u’ is a manic polynomial, gi E G, 0 s i < n - 1,

andP(u)=P,(u)P,(u)suchthat(P,(u),P,(u))=l,thenbyusingtheCRTweobtain

R,(u)%(u) mod P(u)

= (Q2(u)Pz(u)(R,(u)S,(u) mod P,(u))

+ Ol(u)Pl(u)(R,(u)S,(u) mod PAu))) mod P(u),

where Q,(u) and Q2(u) are polynomials such that Q,(u)P,(u) + Q2(u)P2(u) =

1 mod P(u).

It was shown in [8] that at least I+ m + 1 multiplications are needed to compute

the coefficients of R,(u)&,(u). There are two ways for computing R,(u)&(u) using

1-C m + 1 multiplications. The first one uses the following identity:

RI(U)&,(U) = R,(u)S,(u) mod n (~-a~),
,=O

(1)

where q E G, i = 0, . . . , m + 1, are distinct. Therefore, choose m + 1-t 1 distinct ele-

ments ayi E G. By using the CRT R,(u)S,(u) mod nT==‘,’ (u - ai) can be obtained by

computing R,(u)S,,,(u)mod(u-ai)=R,(o,)S,(o,), i=O,...,m+l and then

(applying the CRT using only multiplications by elements of G) we obtain

R,(u)&,(u) mod ny=:,’ (U - ai). This is the algorithm which is described in [7].

The second way uses the identity

WI+/ m+/

&(ub%(u) = R,(u)S,(u) mod H (u -P,)+x~Y~ H (u-Pi),
,=I ,=,

(2)

where&EG,i=l,..., m + Z, are distinct. Therefore, R,(u)S,(u) mod nF=:“=:’ (U - pi)

is computed by using the CRT. We get I+ m multiplications Rr(p,)S,(P;), i=

l,..., m + 1, and the (I+ m + 1)st multiplication is x/y,,,.

Classijcation of algorithms for computing polynomial products 23

Theorem 2.4 (Winograd [2]). Every algorithm for computing the coeficients of

R,(u)S,(u) in I+ m + 1 multiplications uses either (1) or (2).

Assume that for R,(u) and S,(u) (which are defined above) we have that

I = m = n - 1 and P(U) = Q(u)’ = un +C:r,: UiUi is a manic polynomial in G[u],

a, E G, Q(u) irreducible (over G) and deg Q(u) =j, deg P(u) = n (jZ = n). Then

F = G(x,, . . .,x,-,) and H = F(y,, . . . ,y,_,), where x0,. . . , x+,, y,, . . . , yn_,, u

are distinct indeterminates over G, and R(u) =Clri xiu’, S(u) =C:ii y,u’. Then

R(u)S(u) mod P(U) forms a system of bilinear forms which are denoted by TP(U) =

1 yid I,!J,U i. Now we aim at classifying all the minimal bilinear algorithms for comput-

ing {&I,. . ., tbn-d~ H where H=Gu{xo,...,x,~,}u{~o,...,yn~,}.

(1, u, . . .) un-l) is a basis for the algebra G[u]/(Q(u)‘) and x is the multiplication

in this algebra. If for p,, : x + p x x we choose p = u, where u is taken from the basis

and x varies over the basis elements, then we have

pu(1) = u x 1 = U, &(U) = U x u = u*, . .) pu(u”-2) = u x Un-2 = Ll+‘,

pJu~~‘)=UXUn-‘=-u”-a,u+~~~-a,_,u”-’.

Denote by UP be the companion matrix of P(U) (UP is the matrix which is

derived from the above basis), and by A(U,) be the algebra generated by UP over

G. Then, for the regular matrix representation determined by the basis

(1, u, . . . , unp’), there is a unique isomorphism p : G[u]/(P(u))+ A(U,) such that

p(u)= UP and

up =

0 0 . . . 0 -a,

1 0 . . . 0 -a,

0 1 . . . 0 --a2

0 0 . . . 1 -a,_,

Since G[u]/(P(u)) is an algebra, [G[u]/(P(u)) : G] = n (as a vector space); hence,

there exists an isomorphism i : G[u]/(P(u)) + G” such that i(u.‘-‘) = ej, j = 1, . . . , n,

where ej, j = 1, . . . , n, is the standard basis of G”. Let i: G[u]/(P(u))+ G” be such

that i(d,d2) =p(d,)i(d2), d,, d2E G[u]/(P(u)), wherep(d,) is an n x n G-companion

matrix. Then i(d,d2) is the regular matrix representation. By substituting the above

into

(x,+x,u+. . .+xn_,nn-‘)(yO+y,u+. . .+y,_,u”-‘) mod Q(u)’

we have that

i((x,+x,u+. . .+xXn_,nnP’)(y,,+ylu+. * .+Y,_,u”~‘)) mod Q(u)’

=(X~(UO~~~~)~+X~(UO(~)~)‘+. . .+xn~,(UQ(.)l)n-‘)(yoe,+y,e2+. . .+y,-,e,).

Hence, the coefficients of (C:ii x,u’)(C~~~ y;u’) mod Q(U)’ (i.e., the regular matrix

representation determined by the basis (1, u, . . . , u”~‘}) are given by (x:1,’ xzUp)y =

(xl U& . . I U:-‘x)y, where x = (x0,. . . , x,_,)~ and y = (yO, . . . , Y,_,)~.

24 A. Averbuch, 2. Galil, S. Winograd

It is known that lJz = K-’ U,K and K can be chosen such that

a, a2 . . . a,-, a,-, 1

a2 a3 . . . a,_, 1 0
K= : ;

. .

. . . .

a,-, 1 0 00

-1 0 0 00

and K=KT.

Theorem 2.5 (Winograd [2]). ~B({$O,. . . , $,_,}) = fis({&,, . . . , (Clnml}) =2n - 1.

Our classification results (Sections 4, 5, 6) are based on the minimality of the

algorithms for computing the coefficients of R(u)S(u) mod Q(U)‘.

3. The equivalence classes of minimal algorithms

If an algorithm A’ is derived from an algorithm A by some transformation which

does not use any m/d-operations, then the algorithms are related and we will identify

them as belonging to the same equivalence class and thus we do not distinguish

between them since they differ merely by these transformations. We can divide these

transformations into two types:

Type 1: Transformations applicable to any systems of bilinear forms.

Type 2: Transformations applicable only to systems of bilinear forms that were

derived from (C:Ii xiui)(C~~~ y,U’) mod Q(u)‘.

Let A be a minimal algorithm for computing I/J = A(x)y; then I,% = A(x)(y) = Mm

where + = (th . . . , vLAT,

and R, =c:ii gijkxi, grjk E G; further, M is an n x 2n - 1 G-matrix, m,j E M (i =

1 ,..., n,j=l,..., 2n-1), m=(p,,.. . , p2n_,)T with p, = L,(x)M,(y). Here,

n-1 n-1

L,(x) = c u,,x, = XTU, and M,(y) = C QJJ, = yTti,
j=O j=O

with ui = (t+, . . . , u~,,-~) and ti = (ti,“, . .,ti+,) (i=l,..., 2n-I), and x=

(x0,. . . , xnpAT and Y = h, . . . , Y,-,)~.
For type 1 we have the following transformations: another algorithm A’, @ =

A(x)(y) = M’m’, is equivalent to A if one of the following conditions is satisfied:

(1) Let n be any (2n - 1) x (2n - 1) G-permutation matrix; then,

M’=MIl and m’=Iip’m.

Classi$cation of algorithms for computing polynomial products 25

In other words, we can renumber the multiplication column and then rearrange the

coefficients matrix to suite this permutation.

(2) Replace mi = L,(x)M,(y) by (a,L,(x))(b,M,(y)) (a,, bi E G, a,, b, # 0) and

multiply the ith column of M by (a,bi))‘. In other words, we can scale the

multiplications by scalars from the base field G.

For type 2 we have the following transformations:

(3) Choose two invertible elements a, p in the algebra G[u]/(Q(u)‘). It always

holds that

where x is the multiplication in G[u]/(Q(u)‘). E ac h CY is described by CY =CyIi (Y+I’

and its regular matrix representation is given by U, = C:Ii aiU’ where U is the

companion matrix of Q(u)‘. Similarly, let /3 =C:ii piui and U, =C:zd /3,U’. Then

A’is given by m’=(p:, . . .,P;,_,)~ wherep:=L+(U,~)M,(U~y), lais2n-1, and
M’ = UcaPJp M.

From Li(X) = ~Tx, M;(y) = t:y, L;(U,X) x LITU,X = (u~)‘x and M,(U,y) = t’U,y =
(tj)Ty, we obtain, for all i = 1, . . . ,2n - 1, that ui = Uzu, and t: = Usti.

These transformations will play a major role in our classifications theorems of

Sections 4, 5 and 6.

How is the computation performed in an algebraic extension field? For I = 1,

G[u]/(Q(u)‘) is a field. We list here some obvious methods to compute the

coefficients of R(u)S(u) mod P(u) in 2n - 1 multiplications where P(u) is irreduc-

ible (over G) and deg P(u) = n.

Method 1: Compute the coefficients of R(u)S(u) by using Theorem 2.4 and then

reduce them modulo P(u). The second half uses no nonscalar multiplications.

Method 2: Choose P,(u), P,(u), PI(u) E G[u]/(P(u)) with coefficients in G such

that P,(u)Pz(u)P3(u) = 1 mod P(u). Since P(u) is irreducible, the polynomial P3(u)
always exists and is unique. Compute the coefficients of R’(u) =

P,(u)R(u) mod P(u) and S’(u) = Pz(u)S(u) mod P(u). This computation uses no

nonscalar multiplication. Compute the coefficients of T’(u) = R’(u)S’(u) mod P(u)
using an algorithm of Method 1 which takes 2n - 1 multiplications. Finally, compute

the coefficients of Pi(u)T’(u) mod P(u). The last part does not use any nonscalar

multiplications. This method is exactly the method which was described in Transfor-

mation 3 and is performed in an algebraic extension field.

Notation: Denote by -aP the class of all the algorithms for computing the coefficients

of (1::; _qu’)(C:ii ylu’) mod P(u) in any algebra isomorphic to G[u]/(P(u)).

How do we relate the computation among various algebras in 9P?

Assume first tha* 1 Then P(u) = Q(u) is a manic irreducible (over G) poly-

nomial and deg f: .., * r,$:_.. ,;’ I- nit irreducible (over G) polynomial N(v),

deg N(u) = n such that the V,

u: G[ull(Q(u))+ G[~ll(N(~)),

26 A. Averbuch, Z. Galil, S. Winograd

is a field isomorphism. We can view (T as an invertible linear transformation

C7: L&x,, . . .) x,_,) -+ L&X&. . .) xA_,), where &(x0,. . . , x,-1) =
{Cyzi g,x,; gj E G}. Then, for every q(u) = C:ii XiU’ E G[u]/(Q(u)), it holds that

PJ(V)=~(q(U))=C~~~ ai(X)Zli, where n(v) E G[u]/(N(v)) and (T(x~, . . . , x,_~) =

(so(x), . . . , a,-,(x)).
Now assume 1> 1. If G is a field of characteristic 0 (which implies that Q(u)

does not have multiple roots), then we have that

G[ull(O(u)‘> = G[ull(O(u))OG[ull(u’).

Hence, G[u]/(Q(u)‘)= G[u]/(N(v)“) if and only if G[u]/(Q(u))= G[v]/(N(u))

and I = s. We choose a polynomial N(v)’ with deg N(v)’ = n such that N(v) is

irreducible (over G), and an isomorphism cr, such that V: G[u]/(Q(u)‘)+

G[u]/(N(v)‘}, which must be a field isomorphism ((T: G[u]/(Q(u)) -f G[v]/(N(u)})

as defined in the case l= 1. Therefore, in order to compute the coefficients of

R(u)S(u) mod Q(u)’ in either case I = 1 or I > 1, we compute R’(v) = a(R(u)) and

S’(v) = a(S(u)). This part uses no m/d-steps. Then, to compute the coefficients of

R(u)S(U) mod Q(U)‘, we compute the coefficients of T’(v) = R’(v)S’(U) mod N(U)’

and then compute (T-‘(T’(v)). The last part does not use any m/d-steps.

Theorem 3.1 (Winograd [l]). Every bilinear algorithm in 9p for computing the

coeficien ts of

P(u) irreducible (over G) in 2n - 1 multiplications is derivable by one of the two

methods which are described above,

Corollary 3.2. If 1 GI < 2n - 2, then every minimal algorithm in 9,, for computing the

coeficients of (C:ii x,ui)(C~~~ yiui) mod P(u), P(u) as in Theorem 3.1, uses more

than 2n - 1 multiplications.

As was mentioned in the introduction, based on [l, 9, lo], we know that all

minimal algorithms for computing the coefficients of (c;:; x;ui) x

(C:Lt yiui) mod P(u), P(u) as in Theorem 3.1, are bilinear and thus computed by

Theorem 2.4.

4. Technical lemmas

The lemmas we present here are technical in nature. They yield various identities

that will be used extensively in Sections 5, 6 and in [14]. Our main goal is to find,

fori=l,..., 2n-l,allpossible{u,},{ti}andmij~M(i=l ,..., n,j=l,..., 2n-1)

with A(x)y = Mm. If we can derive the concrete description for these items, then

Ckssijication of algorithms for computing polynomial products 27

we can construct all the minimal bilinear algorithms for computing Toc,,~. This

lengthy process is divided mainly into two parts. One which is more “crude” and

is described in this section. And the second one is a refined version of the first part

which is used in Sections 4, 5 and in [14]. In this section we will be deriving some

identities on the bilinear systems Tot,,, 1 which is suitable for every Ia 1. Our starting

point is the minimality and the bilinearity of the algorithm. We ignore the fact about

the degree of Q(u). By taking the degree of Q(U) into consideration we can refine

the results of this section to yield the classification theorems in Section 5 and [14].

Since this is an independent section, we summarize the notation that was presented

in the previous sections. xT, yT denote row vectors: xT= (x0,. . , x,,_,), yT=

(Yo,..., y,_,). Computing the coefficients of (C:ri x~u’)(C~~~~ yIni) mod Q(U)’ is the

same as computing the coordinate values of x x y where x stands for multiplication

in G[u]/(Q(u)‘), 12 1.

Let A be a minimal algorithm for computing the coefficients of x xy; then, from

Theorem 2.1 and Theorem 2.5,

n-l
r,%=xxy= 1 x,U’ y=A(x)y=Mm

(> I=0

where +=(& ,..., (CI,_,)T, M is nx2n-1 G-matrix with rn,,,~M (i=l,..., n,

j=l,..., 2n-1), m=(m ,,..., rn2n_,)T, and m(=L;(x)M,(y) (i=l,..., 2n-1);

further

n-1 n-1

L(x)= c qjx, = ufx, M;(Y) = C fJ,Yj = tTY'y,
,=O ,=o

with u:=(I*~,~, . . , u,,,-,) and tT=(t,,, . . .) ti,n-,), i = 1,. .) 2n-1 and U is the

companion matrix of P(u) = Q(~4)‘.

Lemma 4.1. Assume the algorithmfor computing A(x)y is given by A(x)y = Mm. Then

rank M = n and there exists a nonsingular n x n G-matrix W such that M =

(W-II WP’a).

Proof. We have x x y = A(x)y = (C:Ii x,U’)y = (xl Uxl . . . 1 U”-‘x)y = Mm. Let w E

G”, w # 0. Then wTA(x) # 0 because its first coefficient is Cyzt W,Xi. Hence, wMm f 0

and so wM # 0. Since w is arbitrary, we get that n rows of the matrix

(xl Ux] . ’ . 1 Unm’x) are linearly independent; therefore, rank M = n. We can assume

that the first n columns of M are linearly independent. If not, by applying Transfor-

mation 1 of Section 3 (permuting columns) we obtain an equivalent algorithm where

the first n columns of M are linearly independent. It follows that there exists a

nonsingular n x n G-matrix W and an n x n - 1 G-matrix LY such that M =

(w-11 W_‘a). q

Notation: Denote each row of W by

w:= (w,,o,. . . , w,,,-,I, i=l,...,n,

28 A. Averbuch, Z. Galil, S. Winograd

ti,T = w:K, = WK,

where w:, . . . , wz are the n rows of W. WA(x)y= (Ija)m (Lemma 4.1) and the

matrix (Y has the form

The following Lemma gives an important connection between the rows of w and

the multiplications L,(x)M,(y), i = 1,. . . ,2n - 1. This relationship will be frequently

used in this section.

Lemma 4.2. For all i = 1, . . . , n, U,,, the regular matrix representation of the ith row

of the matrix w, satisjies

n-1 n-1

bt = c W,,,Uk = Ku&;+ C aiiKuntjt;+,.
k=O j=l

Proof. From Lemma 4.1 we get

(1:: xiU’)Y = (w-‘l w-‘a)[,L~::~:~y~yyJ. (3)

Then,

n-1

w (> ;go XJJ’ y = W(xl Uxl * * * I un-‘x)y = (Ila)

(4)

where I is n x n unit matrix. Recall that Li(x) = u:x and M,(y) = t:y. Then,

L,(x)M,(y) = uTxt:y = xTuitfly, i = 1,. . . ,2n - 1. (5a)

UT= Km’UK, K=KT, U = KUTKP’. (5b)

If (Y, p E G[u]/(Q(u)‘), then, since the algebra G[u]/(Q(u)‘> is commutative,

uJ3 = u,CY and aTIJ; = /3’Uz. (5c)

From (5a), (5b) and (5~) we obtain the following identity:

w~U,~=W~KU~K-~~=~~U~K-‘~=X~U~,K-’~=X~K-’U~~~. (6)

Classification of algorithms for computing polynomial products 29

By taking the ith row of W, wf, in (4) we get

n-l

(>

n-1
w; c x,U’ y= wT”.Y = Li(x)Mi(Y)+ C aijLn+j(x)Mn+j(Y),

i=O j=1

i=l,...,n. (7)

Substituting (5a) into (7) using (6) we get

(

n-1
XTK’(KWil UKWiI . . . 1 U”-‘Kwi)y = XT u,tT+ c cu$4,+it;f+j y = XTKP’ U,,y. (8)

,=L >

We can rewrite (8) as

n-1 n-1
l&.= c W,,$Jk = Ku&:+ 1 cxijKu,+jt;+j = (till L&I . . . I U”-‘w,),

k=O j=1

i=l,...,n. 0

Corollary 4.3. For all i = 1,. . . , n, lJa2 = Kt,u~+C,?~~ ~&t,+ju~+j.

Proof. From Lemma 4.2,

K-’ U,x = u&T+ C a+n+jt;S+j, i=l,...,n. (9)
,=I

Taking the transpose of (9) yields, for all i = 1,. . . , n,

n-1
(K-‘U,)T= t;u:+ C cx,jt,+ju:+,. (10)

j-1

Substituting K-’ U,, = UZ,K-’ into (10) using K = KT completes the proof. 0

Note that in Lemma 4.2 and Corollary 4.3 we view Wi, i = 1, . . . , n, as vectors in

the algebra G[u]/(Q(u)‘).

For 1> 1 the algebra has zero divisors. Let T(U) E G[u]/(Q(u)‘) and denote by

6(r(u)) the dimension of the null space of the polynomial Y(U); then, S(r(u)) =

dim{q(u)E G[u]/(Q(u)‘);r(u)q(u)=Omod Q(u)‘}. If a=~~~~gkuk with aE

G[u]/(P(u)) and gk E G, k = 0, . . . , n-l,P(u)=Q(u)‘anddegQ(u)=j,j>l,then

0
6 = s(a) =

if (a, Q(u)‘) = 1,

k if(a,Q(u)‘)=d(u)anddegd(u)=k.

Let a,bEG[u]/(Q(u)‘); then 8(axb)=min(n,S(a)+6(b)) where x is the

multiplication in G[u]/(Q(u)‘) and s(a) < n when a # 0. r(u) E G[u]/(Q(u)‘) is

invertible if and only if 6(r(u)) = 0.

G[u]/(Q(u)‘) has the following basis:

(1, u, . . .) uj-‘, Q(u), e(u), . . . , u’-‘Q(u), f.. ,

Q(up, uQ(u)‘-‘, . .) z.c’Q(u)“}.

30 A. Averbuch, Z. Galil, S. Winograd

The radical of G[u]/(Q(u)‘) has the following basis:

{Q(u), UQ(U), . . . , u’_‘Q(u), . . .) Q(IL)‘-‘, uQ(u)‘y . . .) &‘Q(IA)‘_‘}

and dim rad(G[u]/(Q(u)‘)) = n -j. Therefore, there are at least j invertible elements

in each basis of G[u]/(Q(u)‘). So we have the following lemma.

Lemma 4.4. If deg Q(u) = j, then there are at least j invertible rows in ki?

Proof. Since w is a nonsingular G-matrix, its rows constitute a base for

G[u]/(Q(u)‘). Since each base of G[u]/(Q(u)‘) contains at least j invertible ele-

ments, I? contains at least j invertible rows. 0

In order to classify all the minimal bilinear algorithms for computing x xy, we

will consider the following question: How many rows of w are invertible and how

is the structure of w determined by j and 1, where deg Q(u) = j, jZ = n?

Remark 4.5. We assume that the last j rows of w are invertible (i.e., for i = n -j +

1 ,..., n, 6(W,) = 0 or, equivalently, U,, is nonsingular). If the last j rows of I&’ are

not invertible, then, by applying Transformation 1 of Section 3 (permuting columns),

we can get an equivalent algorithm in the following way: Let ZZ be an n x n

G-permutation matrix, N an (2n - 1) x (2n - 1) G-matrix and J an (n - 1) x (n - 1)

unit matrix such that

N-’ =
n 0

[1 0 J’

If the algorithm is given in the form WA(x)y = (I 1 a)m, then, by Transformation 1

of Section 3, we get ITWA(= (I71 (ZZa)NN-‘m and IIWA(x)y = (I 1 ZZa) N-‘m.

Therefore, by choosing the right permutation matrix we obtain an equivalent

algorithm where, for i = n -j + 1, . . . , n, UGI are nonsingular.

Lemma 4.6. For every i, i=n-j+l,..., n, {ui,u,+ ,,..., u,,_,} and

{tl, t,+1, . . . , tzn-,} are two sets of n linearly independent n-dimensional vectors and

ai,l,..., ai,,_, f 0.

Proof. From Lemma 4.2, Kp’U,-., = uit~+C~~~ Cu,ju,+,,t~+j can be rewritten (in a

matrix form) as

K-‘U,<=(L&,+,

From Lemma 4.4 and Remark 4.5, since U,, is nonsingular for i = n -j+ 1,. . . , n,

I"iv un+l~...~ G-J and Iti, t,,+l,. . . , t2n-,} are two sets of n linearly independent

n-dimensional vectors and a,,, , . . . , czi+, # 0, i = n -j + 1, . . . , n. q

Classi$cation of algorithms for computing polynomial products 31

Since j 2 1, there is at least one invertible row, rig,,, in I%’ (Lemma 4.4) which will

yield Corollary 4.7, 4.7’ and 4.7”.

Corollary 4.7. Every algorithm described by WA(x)y = (I 1 a)m is equivalent to an

algorithm where (Y,,~ =. . . = a,,,_, = 1.

Proof. By Transformation 2 of Section 3 (multiply the ith column of the matrix (Y

by l/c~,,,, i=l, n - 1, and multiply the (n + i)th row of m by (Y,,~), we obtain

an equivalent algorithm such that LY,,, =. . . = a,,,_, = 1. 0

Corollary 4.7’. For all i = 1, . . , n - 1, t, = CyIi bitt,+,, ui = Cyii ai,u,+j and for all

i=n-j+l,..., n, wehaveai,o,bj,ofO.

Proof. Immediate from the fact that, for i = n -j+ 1,. . . , n, {u,, u,+, , . . . , uZn_,}

and iti, t,+l,. . . , tzn-,} are linearly independent (Lemma 4.6). 0

Corollary 4.7”. There exist n-dimensional vectors So,. . . , S,_, and n-dimensional

vectors V,, . . . , V,_, such that tfi+,S, = S,, and u,f+, V, = Sj,, j, I= 0, . . . , n - 1.

Lemma 4.8. Every minimal algorithm for computing the coeficients of (Cyii xiui) x

(C:zi yiui) mod Q(u)’ is equivalent to an algorithm where S,,= (l,O, . . . , 0) and W, =

(l,O,. . . ,O).

Proof. Since {S,, . . , S,_,} are n linearly independent n-dimensional vectors

(Corollary 4.7”), there must be at least one S,, i E (0,. . . , n - l}, such that 6(S) = 0.

Assume i = 0. If S, is not invertible, then we first prove that there exists a transforma-

tion T which takes the algorithm into an equivalent algorithm with S,, being

invertible. Assume that S, is invertible for some 14 i G n - 1. Let

T=

1 0 . . . 0 -ffl,i

0 1 . . . 0 -a2.i

. . . 1 -a,mI,I

0 0 . . . 0 1

T is nonsingular. Multiplying WA(x)y = (I 1 cx)m by T we get TWA(x)y = T(Z 1 a)m.

This transformation leaves the first n - 1 columns of Z invariant and column i of (Y

will become (0,. . . ,O, l)T. Exchange column n of Z with column i of (Y and rows

n and n + i of m. We get an equivalent algorithm (by Transformation 1 of Section

3) where S, has been interchanged with So. Continue to denote TW as W, the new

(Y,~, (Y and m as CQ, LY and m. Since the last row of T is (0,. . . ,O, l), W, stays

invariant under the transformation T, hence %,, is invertible (Lemma 4.4 and Remark

4.5). So assume that S, is invertible.

Every algorithm has the form (Lemma IV.l):

A(x)y = (WP’(WP’a)m, (11)

32 A. Averbuch, Z. Galil, S. Winograd

where m = (m,, . . . , mn-JT, mi = xTuityy, % = t&,0, . . . Y W,n-I), and ti =

(ti,Op..., ti,n-1) for ix1 ,..., 2n-1; further X=(X, ,..., x,_,)~ and y=

(Y”, . . . , Y,_,)~. We have shown that if we choose Transformation 3 of Section 3 by

choosing two invertible elements (Y, p E G[u]/(Q(u)‘) where their regular matrix

representation is given by U, and U,, then we can get from (11) an equivalent

algorithm such that

A(x)y = U$(W-*1 Wp’a)m’, (12)

where m’=(m:, . . . , m4,_,)T, ml = (x’Uzui)(tfUpy) for i = 1,. . . ,2n - 1, and

u;; = l&j-l. Denote U = (u,l . . . Iu~~_~),

L

T = ‘,.+I

[:I

, fl= KU;U, T= TU,

f2n-I

(the columns of U and the rows of T correspond to the new u,‘s and ti’s,
i=l,..., 2n - 1). Equation (12) can be written as

@A(x)y = (I 1 cx)m’, (13)

where @I= WU,,.

GT is the ith row of @. Since U& = K-‘U,,K and wTK = Wi, we have

GTK = w:lJapK = wTKU& = $,‘U&. Denote: gT= GTK; then,

;_T= *‘7&. (14)

For i = n, choose (Y and p such that

(ap)-‘= w,. (15)

Since (~$3~’ lJ& = (1, 0, . . . , O), from (4) and (5) we get W;f U& = (1, 0, . . . , 0) and

therefore,

G:= (l,O,. . .) 0). (16)

From Lemma 4.2 and Corollary 4.7 for i = n we get Uz,, = I%?

Let S be the new S matrix corresponding to T by Corollary 4.7”. Then S= T-’ =

U,-lTp’ = Up-[S. If we choose p = S, and (Y = P-I%;‘= (3,&J’, we get

U,~l(S,] . . +]S,_,)=(l(...]S~_,) since U,mlp=(l,O,...,O)T. 0

Remark 4.9. If 6(V,) = 0, then by the same procedure we can get an equivalent

algorithm where S,= V,,= (l,O, . . . ,O), but then Wl is not necessarily (1, 0, . . . , 0).

If6(S~)~O~i#O,thenwecanhaveSi=(1,0,...,0)insteadofS~being(1,0,...,0)

since in the proof of Lemma 4.8 we can choose p = S,.

So far we got some identities that depend on each other and were based on the

notion of equivalence classes. The purpose of the following remark is to check

whether applying these transformations do not destroy previous results.

Classijication of algorithms for computing polynomial products 33

Remark 4.10. After applying Lemma 4.8, can we guarantee that the last j rows of

6 are invertible (Lemma 4.4 and Remark 4.5)? We will see that Lemma 4.4 and

Remark 4.5 can coexist with Lemma 4.8. W, stays invertible since the transformation

matrix T, defined in Lemma 4.8 does not change W,. After applying T of Lemma

4.8, if the lastj rows of I&’ are not invertible, apply again the matrices N, N-’ and

n (as appeared in Remark 4.5) to WA(x)y= (IIa)m since the last row of II is

(0, _ . . , 0,l). This structure of the matrix 17 will cause W, to be invariant. The fact

that lastj rows of w are invertible is mainly for ease of the notation and presentation

of the coming proofs. Such an assumption will not be of any significance in [14]

since there we are classifying the algorithms in G[u]/(u”) (j = l), i.e., there is at

least one invertible row and as mentioned above we can guarantee that ti, is invertible

no matter which transformation we apply to the algorithm.

Lemma 4.1 states that every algorithm has the form WA(x)y = (II a)tn where

czi=(Ozi ,,,..., ai,,_,),i=l ,..., n, are the rows of the matrix cr. The following lemma

establishes the relationship between the ith row of W and (Y~.

Lemma 4.11. If S(i+T) = t, then at least n -t multiplications are needed to compute

w’A(x)y and at least n - t - 1 terms from a,,, , . . . , CY~,~_, are not equal to 0.

Proof. If 6(WT) = t, then the dimension of the null space of *i is t, hence, rank U,, =

n -nullity U,, = n - t, where (Lemma 4.2)

n-1 n-1

U,izI = 1 tii,JJk = Ku+:+ C uvKu,+jt;+j.
k=O j=l

But wTA(x) = xU,,,~ and thus rank wTA(x) = n - t, and by the Column-rank Theorem

(Theorem 2.3) at least n - t multiplications are needed to compute wTA(x)y. There-

fore, at least n - t summands of U,, are not equal to 0, and at least n - t - 1 terms

from (Y~,~, . . . , a,,,_, are not equal to 0. 0

Hence, from Lemmas 4.4, 4.8, Corollary 4.7 and Remarks 4.5, 4.10 we derive the

following summary.

Summary. From now on we will assume

(i) 6(*n)=o;

(ii) a,,,, = . . . = ff,,,_, =l;

(iii) So = (1, 0, . . . , 0);

(iv) the last j rows of w are invertible.

(i), (ii), (iii) and (iv) can be achieved simultaneously for each algorithm. (i) and

(iii) are necessary for derivation of the algorithms while (ii) and (iv) are for ease

of notation.

34 A. Averbuch, Z. Galil, S. Winograd

From now on we will derive more concrete description of { ui}, {t;}, {I&}, { c-u~} etc.

Lemma 4.12. Assume we use the same notation as in Lemma 4.6, Corollaries 4.7’ and

4.7”; then,

6) Ku,+~ = %,xS,forl=O,...,n-1;

(ii) b,,#Ofori=l,...,n-1;

(iii) K~~=*,/b,~fori=l,..., n-l;

(iv) iti, L+l, . . . , t2n-,} are linearly independent for i = 1,

(v) (Wi-czi,W,)x S, = b:Wi with bs = b,,/b,, for i, 1= 1,. .

where x is multiplication in G[u]/(Q(u)‘).

Proof. Multiply the identity of Lemma 4.7 by S,:

n--l

lJ,,s, = l-&tTs, + c a&ll,+jt~+,S,, i=l,...,n;
j=1

U,,S,=W,xS,, 1=0 ,..., n-l,i=l,..., n. (18)

. .

. 2

.,n-1;

n-l;

(17)

Substitute i = n in (17) using Corollary 4.7” and (18) to obtain

Ku,+,=~,,xS,, 1=0 ,..., n-l.

This proves (i) of the lemma.

(19)

Substitute ti = CJii b,t,+j, i = 1, . . . , n - 1 (Corollary 4.7’) in (17) using Corollary

4.7” and (18) to obtain

$ixSI=Kui(~~~ b,t~+j)TS,+~~~n,,Ku.+jti,S,, 1=0 ,..., n-l,i=l,..., n-l.

(20)

Here CJL: “gKU,+jtz+,, 0 S = 0 (Corollary 4.7”); then, for 1 = 0 in (20) using t:S, = 1

and (18), we get

bioKui=E+xS,, i=l,..., n-l.

&=(l,O,..., 0) (Lemma 4.8); then from (21a),

bioKu,=wi, i=l,..., n-l.

This proves (iii) of the lemma.

(21a)

(21b)

Now, uj#O, i=l,..., n-1,and Wi#O, i=l,..., n-l; then from (2lb),

b,,#O, i=l,..., n-l. (22a)

This proves (ii) of the lemma.

Equation (22a) with ti =I;:; but,, (Corollary 4.7’) yield

it,, r,+1, . . . , h-J, i=l,...,n-1

are linearly independent. This proves (iv) of the lemma.

(22b)

Classification of algorithms for computing polynomial products

For I > 0 in (20) we obtain

wi x S, = bi,Kui + q,Ku,+,, I=O,...,n-1.

Substitute (19) and (21b) into (23) using (22a) and Corollary 4.7’:

(wi-aij$,)xS,=b~tii b$=+and i,I=l,...,n-1.
1”

This proves (v) of the lemma. 0

35

(23)

Remark 4.13. It was sufficient to prove in Lemma 4.12(ii) that, for all i = 1,. . . , n -j,

b,,, # 0 since in Corollary 4.7’ we have shown that, for all i = n -j + 1, . . . , n, bi, # 0,

and it was sufficient to prove in Lemma 4.12(iv) that, for all i = 1,. . . , n-j,

It;, tn+1,. . . , t2n_,} are linearly independent since in Lemma 4.6 we have shown

that, for all i=n-j-tl,..., n, {ti, t,, ,,... , tsn-,} are linearly independent.

Lemma 4.12’. Assume we use the same notation as in Lemma 4.6 and Corollaries

4.7’, 4.7”; then:

(i) a,,Kt, = b3i X V, for i = 1,. . , n - 1;

(ii) Kt,,, = W,x V,fort=O ,..., n-l.

Ifai, # 0, i = 1, . . . , n -j, then

(iii) (~i-~i,W,)~V,=a~~i~V,witha~=air/ai,fori,~=1,...,n-1;

(iv) I%, %+I,. . . , uZn-,} are linearly independent, i = 1, . . . , n -j.

Proof. The proof is the same as Lemma 4.12 using U,, = Kt,uT+C:~~ criiKtn+ju~+j,

i=l,..., n (Corollary 4.3), u, = CyIi u~u,,+~ (Corollary 4.7’) and uT+~V, = 4!, j, I=

0 3 . . . 3 n - 1 (Corollary 4.7”). 0

Note that ajo, i = 1,. . . , n-j (or, equivalently, 6(V,)), are not known at this

point. Therefore we cannot say anything about {ui, u,+, , . . . , Q-~}, i = 1, . . . , n -j.

Corollary 4.14

Wlx(b~~,,,w-b~,(w-(Y,~,,,))=~i,b~~,,,w, i=l,..., n-2, I=1 ,..., n-l,
W,

where w = Wn-,I@,,.

Proof. By multiplying Lemma 4.12(v) with i = n - 1 by Wi - ai,,@, we have

(wi -‘y&j,,) x (+),_, - a,_,,,~,,) x S, = b:_,,rw,_, x (Wi - ~yi,,W,).

By using Lemma 4.12(v) (with i) dividing with W, (6(W,) =O) we obtain b$(w -

a,_,,l)xwi=b~_,,,wx(~i-a,,,w,). 0

Lemmas 4.16 and 4.16’ and Corollary 4.17 below will establish some relationships

among ‘Y~ and “t);. The restrictions we impose now are necessary to perform computa-

tion with division in the algebra.

36 A. Averbuch, 2. Galil, S. Winograd

Notation: From now on we assume that w = W,_,/+V, E G[u]/(Q(u)‘).

Claim 4.15. Let 6(w) <in. Then w @ G and w, w2 are linearly independent.

Proof. Since W,_, and R, are linearly independent, w& G, Assume w and w2 are

linearly dependent; then there exist A, ,U E G which are not both 0 such that Aw +

pw2 = 0. Then w x (A + pw) = 0, hence 6(w x (A +pw)) = n. If A, w # 0 and 6(w) = 0,

then

G(wx(A+~w))=6(A+~w)<n (wgG).

If A, p # 0 and 6(w)>O, then 6(A +pw) =O; therefore, 6(w x (A +pw)) = 6(w) < n.

IfA#O,~=O,then6(wx(A+~w))=~(w)<n,andifA=Oand~#O,then6(wx

((Y + pw)) = 6(w’) < n. We get contradictions in all these cases, hence A = p = 0. 0

1f6(~,,)=t>0,thenat1eastn-t-1termsof{a,,,...,~~,,~,}arenotequa1to0

(Lemma 4.11). Assume ai, i = 1, . . . , n -2 are n -2 sets of all indices for which

cyi, # 0, 1 E ni.

If S(Wj)=O, then {ail,..., (Yi,n_l} are not equal to 0 and fli = { 1, . . . , n - 1). We

will prove for one row i of the matrix (Y we can guarantee that if S(+i) = t > 0, then

fffil 3 . . . 3 CY~,~_~_,} # 0 and this will imply that, for all i, 16 is n - 1, we have

{%,.-., ai,n-r-ll # O.

Lemma 4.16. Assume b$, ai, #O, i= 1,. . . , n -1, 1~ ni, and 6(~--a,_~,,)=O,

6((b~_,,,-b~)w+b~a,~,,,)=Ofor i=l,..., n-2 and 1~0~; then,

(i) bzPl,,# bzfor i=l,..., n-2, and 1~0,;

(ii) (Y,-~,, # Pi for i = 1,. . . , n -2, and 1 E 0,;

wherep,=b$a,_,,,/(b:-bz_,,,) for i=l,. . . , n-2 and 1~0;.

Proof. Substituting i = n - 1 in Lemma 4.12(v) using S(9,) = 0 we obtain

(W-(Y,_I,,)XS,=b~~l,,W, lEOi, (24)

where w = W,_,/W,. 6(w - a,_,,,) = 0; then from (24),

s,=b~._,,,w/(w-a,~,,,), /Eni. (25)

Substitute (25) in (B, - a;,@,) x S, = bgtii, i = 1, . . . , n -2, I E C&,

((b:_,,,-b;)w+b;q_,,,)x ~i=ai,b;_,,,w, x w. (254

From (25a) and our assumption we get

Wi/~tn=(Yi,b~~l,,W/((bg~l,,-b~)W+b~(Yn_-l,l), i=l,...,n-2, ZEni.

(26)

If in (26) bz-,,, = b$, i = 1,. . . , n -2, 1 E Q, then J+;/%,, = (cui,b5_,,,/a,~,,,b2)W and

since w = %t(n--l/W,,, we get Wi = (LY~,~~_,,,/LY,_,,,~~)~~-~. Therefore %‘i and *+, are

linearly dependent which contradicts the nonsingularity of @C This proves (i) of

the lemma.

Class$cation of algorithms for computing polynomial products 37

Now if CU,_,,~ = pi, then bk,,, - -0 which is impossible. This proves (ii) of the

lemma. 0

Recall that WA(x)y = (I 1 (Y)IIZ and the matrix (Y has the form:

_[1;: ::: :::;;I.

The next lemma describes CQ as a function of (Y,-,,,.

Lemma 4.16’. Assume the same conditions as in Lemma 4.16. Then

YPn-I,/
a!i, =

an-l,/-Pi’

i=l,..., n-2, lEni,

where

PI =
&tan-,,I b;_ l,Iffi,/

b; - b:_,.,’ yi = b;_,,, - bf,’
i=l,..., n-2, lEni.

Proof. Since the conditions in this lemma are the same as in Lemma 4.16, we can

start our proof from (26) in the proof of Lemma 4.16. Therefore, assume

~,/W,=a,,b~-,,,w/((b~-,,,-b~)w+b~~~,_,,,), i=l,..., n-2,ZEf&.

(27)

Substituting I= 1 in (27) we get

Wi/W,=~i,b~_,,,w/((b~_,,,-b~,)w+b~,an_,,,), i=l,..., n-2. (28)

By comparing (27) and (28) we get

~i,b~-~,,W/((bf-~,,-b~)W+b~~,-~,,)=~i,b~-~,~Wl((b~-~,~-bT~)w+bT~~,~~,~),

i=l,..., n -2,l E L&. (29)

Hence, from Lemma 4.16(i) and (29) we obtain

(30)

where [= bfja+,,,/(bT, - bz_,,,) and l= b~LY,_,,,/(b~-b~-,,l).

Since W,_, and %,, are linearly independent, W,_r/W, = WE G. From Claim 4.15

we can equate the coefficients of w and w2. Compare the coefficients of w and w2

in (4):

at/b%1 I
A=

a,,b:-,,,
ati-,,,bZ b* ’

i=l,..., n-2, lEOi,
ff,-I.1 I,

Gun-I,, Gun-,,,

V, -K-,,, = b$ -b:_,,, =
Pt, i=l,..., n-2, lEni.

(314

(31b)

38 A. Averbuch, Z. Galil, S. Winograd

From (31a) and (31b):

(32)

Solve (31b) to get b?/bZp,,,:

b: PI
-=pi_a,_ ,,,,
b:-,,,

i=l,..., n-2,ZEQ. (33)

From (32) we have ai,b~--l,l/(b~p,,,- bs) = yi; therefore, ail/(1 - bs/bz-,,,) = yi and

we get from (33)

a;, =
YtffeI.1

ff,-1.1 -Pi’
i=l,..., n-2,1EQ. 0

The next lemma describes each Wi E @, i = 1,. . . , n -2 as a function of W,_,

Corollary 4.17. Assume the same conditions as in Lemma 4.16’. Then

w,=nw,~i/(W-Pi), i=l,..., n-2

where b$(Y,-,,,/(b~-b~-,,,)=Pi and b~-,,,~i,,/(b~-,,,-b~,)= yifor i= 1,. . . , n-2,

1EQ.

Proof. Since we assume the same conditions as in Lemma 4.16’, we can use the

following identities which were derived in the proof of Lemma 4.16’:

from (28),

from (31a) and (32),

1
= w,_, -w+

an-l,/ b;

Yi > ai,b%,,, '

from (33),

A 1
=w,_, -w+

anpl,,Pi

Yi) ai,(Pi-an-l,l '

and from Lemma 4.16’

A _ w+Pi(an-l,l-Pi) 1
= w,_,

X xm -%-I,,) >

So we get

Wi=yiW,_J(w-pi), i=l,..., n-2. 0

Classification of algorithms for computing polynomial products 39

Lemma 4.18. Assume 6(w) < $n and b;, aio, a$, ai/ f Ofor i = 1, . . . , r~ - 1 and 1 E ni;

assume S(w - a,-,,,) = 0 and

6((b:_,,,-b;)w+b;cy, _,,,)=s((af_,,,-a~)w+a~a,_,,,)=O

fori=l,...,n-2 and E Q. Then,

i=l ,..., n-l, lEni.

Proof. As in the proof of Lemma 4.16’ we get

Wi/~)n=~ilb~_,,Iw/((b~_,,l-b~)w+b~~n-,,l), i=l,..., n-2, ZEC&,

(34a)

W,/W,=LY~,~~~~,,W/((U~_,,,-a~)w+a~~u,_,,,), i=l,..., n-2, ZEf&.

We proved in Lemma 4.16(i) that bfj # b$,,,, i = 1,. . . , n -2, 1 E Oi. By the

proof, at # u:_,,~, i = 1,. . . , n -2, ZE 0,. Compare (34a) and (34b) to get

LYi,bf~,,1W/((b~-l,,-b~)W+b~~Y,-I,I)= ~i,~f-~,~w/((~~-~,~-~~)w+~~~,-,,,).

(34b)

same

(35)

As we did in Lemma 4.16’, since w E G, we can equate the powers of w in (35) and

derive the desired identity. 0

In Claim 4.15, Lemmas 4.16, 4.16’ and 4.18 we imposed the condition that

6(w) c$n. In all cases we will use these lemmas, either w will be invertible or

6(w) = 1, hence this constraint will never be mentioned.

The following lemma will be used to show that vectors that do appear in the

classification theorems (Section 6 and [14]) do not annihilate any polynomial of

degree less than n modulo Q(u)’ with deg Q(u)’ = n.

Lemma 4.19. Assume that w E G[u]/(P(u)), w g G, deg P(U) = n, for all i, 14 i s n;

gi E G are distinct, w - gi are invertible and {l/(w -g,), . . . , l/(w -g,)} are linearly

independent. Then (1, w, . . . , w”-‘} are linearly independent.

Proof. For u = w there is nothing to prove since (1, u, . . . , u”~‘} are linearly

independent.

Assume that u # w, (1, w, . . . , wk-‘}, k s n, are linearly independent and

(1, w,. . .) wk-‘, w”} are linearly dependent. We want to show that k = n. Since

(1, w, . . . , wk-1, w”} are linearly dependent, there exists a polynomial p(u) =

uk +x:1: aiu’, ai E G, such that p(w) = 0 mod P(u). The following identity always

holds:

~(U)=(U-g)(uk~‘+fk_2Uk-2+~~ .+flu+fO)+P(g), (36)

where

fn_j=gJp’+ak_‘f2+’ “+ak_j+‘, j=2,. . . , k.

40 A. Averbuch, Z. Galil, S. Winograd

Since P(w) = 0 mod P(U), from (36) we have

0=(w-gi)(Wk-1+&-2Wk-2+. . *+flw+tf,)+P(g,).

Since, for all i, IsiGn w -gi are invertible and L(u) =

u k-‘+fk_ZUk-2+ ’ * *+f,u +fo does’not have the form of L(u) = a(u)P(u), where

E(U) E G[u]/(P(u)), it holds that, for all i, 16 is n, I?(g,) # 0 and therefore,

1 _= _A (&-I +fk-,WkP2+fkqWkP3+. . * +fJ.

w -gi p(gi)

(37)

Since {l/(w - g,), . . . , l/(w - g,)} can be generated from (1, w, . . . , wk-‘} and are

linearly independent, it follows that k = n and (1, w, . . . , wnel} are linearly

independent. q

5. Classification in G[ul/< Q(u)‘> with 1, j > 1

As was mentioned before, for I> 1 we have to distinguish between two cases:

j > 1 and j = 1. For the rest of the paper we deal with the case j > 1.

The identities that have been derived by the technical lemmas (Section 4) are

used extensively in this section by applying them to the case deg Q(U) =j > 1 and

to the case j = 1 in [141.

We use the same notation as in Section 3. xT, yT will denote row vectors: xT=

(x0,... ,x,-,) and yT= h, . . . , ynpl). Computing the coefficients of (2;:; xiUi) x

(C:Ii yiui) mod Q(U)’ is the same as computing the coordinate values of x xy where

x stands for multiplication in G[u]/(Q(u)‘>, 1~ 1.

Let A be a minimal algorithm for computing the coefficients of x x y; then, from

Theorems 2.1 and 2.5, +!J = xxy = (C:Li x,U’)y = A(x)y = Mm, where + =

($0.. . ., (Cr,,_,)T, M is an nx2n-1 G-matrix with m,,,EM for i=l,..., n, j=

1 .*, 2n-1; m=(m ,,..., m2,_,)T, where mi = L,(x)M,(y) for i = 1,. . . ,2n - 1;

fkther Li(x) =cTii uqxj = UTX and M,(y) =C,“_i tiiy, = t:y with UT= (u,,~, . . . , %,-I)

and tT= (ti,,,, . . . , t,,n--l) for i = 1,. . . , 2n - 1 and where U is the companion matrix

of P(u) = Q(u)‘.

From Lemma 4.1 we can assume that there exists a nonsingular n x n G-matrix

W such that M = (W-’ (W-la). Denote each row of W by:

wT= (wi,O>. . . > Wi,n-l), i=l , n, (Ku’,)“. . . w: w: = w;K, w= 1 HI ; = ; = WK,

(Kw,)~ ~3:

where w:, . . . , w% are the n rows of W. WA(x)y=(iJa)m (Lemma 4.1) and the

matrix (Y has the form

Classification of algorithms for computing polynomial products 41

Note that in Lemma 4.2 and Corollary 4.3 we consider W,, i = 1, . . , n, as vectors

in the algebra G[u]/(Q(u)‘). H ence, 6(W) will denote the dimension of the null

space of the vector W, thus, when 6(W) = 0, we have that W is invertible.

We already derived a strong connection between the W,‘s and the rows (Y, =

CLyil,..., ai,n-l), i = 1, . . .)
n, of the matrix cy (Lemma 4.11) which appears in the

presentation of the minimal algorithm given in the form WA(x)y = (I 1 a)m. These

fact will imply in this section and in [14] that the structure of the matrix @ will

determine the minimal bilinear algorithms for computing the coefficients of x x y.

By using the tools that we developed in Section 4 we will see that any minimal

algorithm for computing the coefficients of x xy in G[u]/(Q(u)‘), Z, j > 1, which is

described by WA(x)y = (I 1 cu)m, has at least two invertible rows in w and, as we

will prove in Lemma 5.5, this will imply that all the rows of w are invertible. From

that we will obtain that all the multiplications in every minimal bilinear algorithm

for computing the coefficients of xxy are determined by an arbitrary invertible

vector w E G[u]/(Q(u)‘) and by 2n -2 distinct scalars from the field G (Theorem

5.1). The multiplications of the algorithm then determine the algorithm itself. We

will also prove that the other direction of Theorem 5.1 is true, i.e., for every choice

of an arbitrary invertible vector w E G[u]/(Q(u)‘) and of 2n - 2 distinct scalars from

G there exists a minimal bilinear algorithm for computing the coefficients of x x y

whose multiplications are given by Theorem 5.1 (Theorem 5.1’).

Theorem 5.1. Every algorithm A for computing the coeficients of (C:I: xiui) x

(C:ri yiui) mod Q(U)‘, deg Q(U) =j, Zj = n, I,j> 1 and Q(u) irreducible (over G), in

2n - 1 multiplications is equivalent to the algorithm whose L,(x)‘s and Mi(y)‘s are

given by

&=t;=K’(l/(w-p,)), i=l,..., n-2,

ii,_1 = r,_, = K_‘(l),

%+I = in+, = P(l/(w-a,_,,,)), 1=0)...) n-l,

where w @ G, 6(w) = 0, w E G[u]/(Q(u)‘) and the minimal degree polynomial (over

G) satisfied by w (mod Q(u)‘) is of d g e ree n, 1 is the unit vector in G[u]/(Q(u)‘)

and the set A = {p, , . . . , PnP2, 0, a,_,,, , . . . , CY,-~,~-,} has 2n -2 distinct elements.

In order to prove the theorem we first prove some lemmas.

Lemma 5.2. For all g, , . . . , g,_, E G there exist at least j - 1 indices k, 1 c kc n - 1,

such that

(i) 6(W,) = 0;

(ii) a(*,--g,W,)=O.

Proof. Let

g!= 0 ifs(*i)>O,

’ {gi ifS(tii)=O. (38)

42 A. Averbuch, Z. Galil, S. Winograd

Consider the set {W, -g;W,,, $)2-g;W,, . . . , W,_, -gk_,%,,, W,}. It is a basis for

G[u]/(Q(u)‘) since { 3,) . . . , tin_, , 13~) is a basis. Each basis for G[u]/(Q(u)‘) has

at least j invertible elements in it (Lemma 4.4) and %,, is one of them (Remark 4.5).

If 6(Wi) > 0, then Wi = Wi - g:W, (cf. (38)). So in the set

{wi-g;w”;6(wJ=o, 1~i~n-1}={si-gi~~;6(~,)=0, 1ci<n-1)

there are at least j - 1 invertible elements. I7

Lemma 5.3. For all I= 0, . . . , n - 1, 6(S,) = 0 (S, is defined in Corollary 4.7”).

Proof. It is sufficient to prove it for l> 0 because 6(&J = 0 (Lemma 4.8). Fix 1, then

from(K+-ai,~,)xS,=b~~i,i=l,..., n - 1 (Lemma 4.12(v)), choose gi = ai,. Since

j - 13 1, by Lemma 5.2, there exists a k such that S(Wk) = 0 and S(W, - q#,) = 0.

Therefore, since S, f 0, we get b$ # 0 and 6(Wk) = 6(S) = 0. 0

Lemma 5.4. For all i, 1, 1~ i, 1 s n - 1, b$ = bill b10 # 0.

Proof. From (*i-ai,@,)xS,=b$wi, i=l,_.., n - 1 (Lemma 4.12(v)) and Lemma

5.3 we get b$#O for all lsi, lsn-1. 0

Lemma5.5. Foralli=l,..., n-1,6(K+)=O.

Proof. Assume the lemma is false. Since w is nonsingular, there is a noninvertible

row 8, satisfying 6(Wi) < n -j 6 n - 2 (j > 1). Wj # 0, so by Lemma 4.11 there exists

at least one k such that

(Yik f 0. (39)

Since 6(Wi) > 0, from the fact that a linear combination of an invertible element

with a noninvertible one is invertible and from (39) we get

6(wi - (Y&W,) = 0. (40)

From (Wi - qkW,) x S, = b$Ei (Lemma 4.12(v)), Lemma 5.4 and (40) we get 6(+,) =

S(S,), in contradiction to Lemma 5.3. 0

Lemma5.6. Forall lsi,l=%n-1, 6(%,-czi,W,)=O.

Proof. From (Wi - CQ+~) x S, = b$Wi (Lemma 4.12(v)), using 6(S) = 0, I=

1 ,*.*, n - 1 (Lemma 5.3) and 6(Ri) = 0, i = 1, . . . , n - 1 (Lemma 5.5) we obtain that

S(~j-ai,~,)=Oforall lsi,lsn-1. q

Lemma 5.7. For all i, I= 1,. . . , n - 1,

(i) ai()# 0;

(ii) as = a,,/ ai, # 0.

Classi$cation of algorithms,for computing polynomial products 43

Proof. From q&t, = Wi x V, (Lemma 4.12’(i)) and Lemma 5.5 (6(Wi) =O, i =

1 Ye.., n-l) we get for all i=l,..., n - 1 that ai, # 0. (It was sufficient to prove

that, for all i = 1,. . . , n -j, ai, # 0 since in Corollary 4.7’ we have shown that, for

all i = n -j + 1, . . . , n, a,, # 0).

From (Wi - a,,$,,) x V, = a:@, (Lemma 4.12’(iii)) and Lemma 5.6 we obtain af # 0

forall i,l=l,..., n-l. 0

Lemma 5.8. For all I= 0, . . , n - 1, 6(V,) = 0 (V, is dejined in Corollary 4.7”).

Proof. From (Si - ail@,) x V, = u$wi x V, (Lemma 4.12’(iii)), Lemmas 5.5, 5.6 and

5.7(ii) we obtain 6(V,) = 6(V,), I= 1,. . . , n - 1. Since {V,, V,, _ . . , V,-,} are linearly

independent, there is at least one V,, 1 E (0,. . . , n - l}, that is invertible; therefore

S(V,)=O, I=0 ,..., n-l. q

Lemma5.9. Forulll-l,..., n-l,i=l,..., n-2,

(9 S = b%,,,wl(w - G,,J);
(ii) V,=U~~,,,WX V,,/(w-a,_,,,), where 6(Wi)=6(w)=6(W,)=0, w = W,,P,/%,,;

(iii) the assumptions of Lemmas 4.16, 4.16’ and Corollary 4.17 hold with 1 G i<

n-l, a,={1 ,..., n-l} (i.e., I=1 ,..., n-2).

Proof. From (I?+, - LY,~,,~W,) x S, = b~~,,,G,_, (Lemma 4.12(v) with i = n - l), from

(%)n_,-~,_,,,W,)~ V,= u~~,,,W,~,X V,, (Lemma 4.12’(iii) with i= n-l), and 6(W,-

cq,W,)=O, i, I= 1,. . . , n - 1 (Lemma 5.6), we get (i) and (ii) of the lemma. From

Lemma 5.5:

S(wi)=S(w)=6(*m)=t=0, w = w,_,/w,.

From Lemma 4.11 and (41a):

ail,..., ai,n-lfov i=l,...,n-1.

so K&=(1,..., n-l}. From Lemma 5.4:

bs#O, i,l=l,..., n-l.

Since S(W+, - a+,,,@,) = 0, I= 1,. . . , n - 1 (Lemma 5.6), we have

6(w-a,_,,,)=O, I=1 ,..., n-l.

From Corollary 4.14:

~X(h~~,,,w-b~,(w-(~,,~,,,)) = ai,bZP,,,w,
w,

i=l,..., n-2, l=l,...,n - 1.

(ala)

(4lb)

(42)

(43)

(44)

Now,sincea,,,#Oandb~fOfori=l,..., n-2,1=1 ,..., n-1and6(wi)#0,we

have that if in (44) bz_,,,= b$, then

44 A. Auerbuch, Z. Galil, S. Winograd

and Eji and W,_, are linearly dependent, contradicting the nonsingularity of # Then

from Lemma 5.4, (41a), (41b), (42) and (44) we obtain for all i = 1,. . . , n -2,

1=1,..., n - 1 (Q),

6((b~_,,,-b~)w+b~a,~,,,) =o. (45)

Then from (41b), (42), (43) and (45) we get that the assumptions of Lemmas 4.16,

4.16’andCorollary4.17holdforalli=1,...,n-2,1=1,...,n-2inthealgebra

G[u]/(Q(u)‘), j, I> 1 and deg Q(u) =j. Cl

The fact that all the rows of w are invertible will be sufficient to classify all the

minimal bilinear algorithms for computing the coefficients of x x y as we will see

in the proof of Theorem 5.1.

Proof of Theorem 5.1. From Lemma 5.9(iii) we can substitute “t)i = n+?,_,/(w -pi),

i=l,..., n -2 (Corollary 4.13) into 6,&u, = ei, i = 1,. . . , n -2 (Lemma 4.12(iii))

and from Lemma 5.9(i) substitute S,, I= 0,. . . , n - 1 into Ku,+r = $‘, x S, (Lemma

4.7(i)) and get

ui=~K-‘(~.-,l(w-Bi)), i=l,...,n-2, (46a)
10

1

unp1 =h, K-‘C,, (46b)

u, =K’w, =K-‘(~,_,/(w-(y,~,,~)), (Y”_,,O=o, (46~)

u,+l=bX~,,,K~l(w,_,/(w-a,_,,,)), 1=1,..., n-l. (46d)

From Lemma 5.9(iii) we can substitute K+ = xW,_,/(w -pi), i = 1,. . . , n - 2

(Corollary 4.17) into ai,Kti = W, x V,, i = 1, . . . , n -2 (Lemma 4.12’(i)) and, from

Lemma 5.9(ii), substitute V,, I = 0, _ . . , n - 1, into Kt,,, = GJ,, x V, (Lemma 4.12’(ii))

and get

t,=~K~l(~,_,~ V,/(w-pi)), i=l,...,n-2, (47a)

1
t,_, = - Kpl(G,_, x V,),

anpl,O
(47b)

t, =K-‘(w,,x Vo)=Kp’(w,_,x Vo/(w-~,_l,o)), a,_,,,,=O, (47c)

t .+,=a~~,rK-‘(~‘n~,~Vo/(w-~,~l,l)), I=1 ,..., n-l,w,_,/%,=w.

(47d)

By using Transformation 2 of Section 3 we can obtain an equivalent algorithm

where all the constants Yi/Uio, Yi/bioy l/b,_,,o, l/a,_,,,, bz_,,,, a~_,,,, are unity.

Classification of algorithms for computing polynomial products 45

Since 6(%n_,) = 6(V,) = 0 (Lemmas 5.5 and 5.8), we choose the following invertible

elements in the algebra G[u]/(Q(u)‘):
--1

CY = w,_,, p = (*‘n-1 x VJ’. (48a)

Let U, =Cyii cqUi and UP =Crzi PiU’ be the regular matrix representations of a

and p. Recall

K=KT, UZK_’ = K-J U a, U;K-‘= Km’Up,

U,(l/Ly) = (l,O,. . . ,O)T. (48b)

Transformation 3 of Section 3 eliminates the invertible elements “tr,-, and V, that

appear in the multiplications L,(X) and M,(y), i= 1,. . . ,2n-1. For all i=

1 ,...> 2n-1,

ui = u:ui, t; = u;ti, (49)

wherei&andt,,i=l,... ,2n - 1 are the vectors describing the multiplications after

applying Transformation 3 of Section 3. So apply (48a), (48b) and (49) on (46a)-

(47d); then if u; = K-‘(G,-l/(W-Pi))y i= 1,. . . , n -2 ((46a) after converting the

constants to be unity), we get

Ui= U~K~‘(~,_,/(W-~~)), i=l,..., n-2.

From (50a) using (48b) we obtain

U, = KplU,(~,_,/(w-P,)), i= 1,. . . , n-2.

(5Oa)

(50b)

Since cr = I?;’ (cf. (48a)) and since Uu(l/cr) = (1, 0, . . . , O)T (cf. (48b)) we get

U,= KP’(l/(w-Pi)), i=l,. .., n-2.

By doing the same to (46b)-(47d) we obtain the final form of the multiplications:

&=<=K-‘(l/(w-p,)), i=l,._., n-2, (51a)

U,~, = tn-, = K-‘(l), (51b)

U,,+,=t;l+,=K~~(1/(w-c1, _,,,)), I=0 ,..., n-l, (5Lc)

where CY,- 1,0 = 0 and 1 is the unit vector in G[u]/(Q(u)‘). Since { ti n, . . . , iL_,} are

linearly independent (Lemma 4.6), {l/(w - LY,-~,,J,. . . , l/(w - LY,-,,,~~)} are also

linearly independent. Therefore LY,~~,~, 1 = 0, . . . , n - 1, are distinct and since cqP1,, #

pi, I = 1, . . . , n - 1, i = 1, . . . , n -2 (Lemma 4.16(ii)), it follows that all the scalars

we choose from G are distinct. In addition, from Lemma 4.19 we get that

(1, w, . . . , wn-‘} are linearly independent, hence the minimal degree polynomial

P(u) such that P(w)=OmodQ(u)‘must havedegp(u)=n. 0

Notice that the multiplications of the algorithm have been described by an

invertible vector w and a unit vector 1 (1, w E G[u]/(Q(u)‘)) and by 2n - 2 distinct

scalars from the field G. This kind of description for the algorithms will be the

model for our further investigation in the case I> 1, j = 1.

We now prove the converse of Theorem 5.1.

46 A. Averbuch, 2. Galil, S. Winograd

Theorem5.1’. ForeverywEG[u]/(Q(u)‘),8(w)=O, w~Gsuchthat(1, w,..., w”~‘}

are linearly independent, and for every set A = {PI,. . . , PnP2, 0, an- ,,,, . . . , (Y,-,,~_,}

of 2n - 2 distinct elements of G there exists an algorithm A for computing the coeficients

of (CEli xiu’)(CyLi yiu’) mod Q(U)‘, deg Q(u) = j, Zj = n, 1, j > 1 and Q(u) irreducible

(over G), using 2n - 1 multiplications whose Li(x)‘s and M,(y)‘s, i = 1,. . . ,2n - 1,

are given by Theorem 5.1.

Proof. We have shown that for any minimal bilinear algorithm the following:

and

WA(x)y = (I 1 a)m (52)

(w;-a&,)xS,=b:qxS,,, i,I=l,...,n-1 (53)

are equivalent. Then if we can show that (53) is true for all i = 1,. . . , n,

l=l,..., n - 1, then we get an algorithm since {S,, . . . , S,_,} is a base of n linearly

independent n-dimensional vectors. In order to construct (53) we need the following:

wi (i=l,..., n), b, (i=l,..., n-l,j=O ,..., n-l), aii (i,j=l,..., n-1) (a,,,=

. . ‘=a n,n-1 = 1 by Corollary 4.7) and a nonsingular matrix S where S =

(S,lS,I * . . IS,_,). Since {t,, . . . , t2n_,} are given, from tj = Cyli b,t,,,, i = 1, . . . , n - 1

(Corollary 4.7’) we get b, for all i, j = 1,. . . , n - 1. S, is given by S, =

b:_,,,wxS,/(w-a,_,,,),l=l,..., n - 1 (Lemma 5.9(i)) and from our assumptions,

Lemma 4.16’ and Corollary 4.17 we have

a!i, =
Yian-I,/

-Pi'

wi=Yiwn-l/(W-Pi)y i=l,..., n-2, I=1 ,..., n-l.
QPl.1

Substituting it into (2) yields an identity. 0

6. Interpretation of the results of Section 5

The proof of Theorem 5.1 is constructive, i.e., the theorem states that by using a

vector w E G[u]/(Q(u)‘) and distinct scalars from the field G we can construct an

algorithm. For different choices of these vectors and scalars we might get an

equivalent algorithm. We now give an interpretation to the formal description of

the algorithm that appeared in Section 5 in order to relate it to the previous work,

especially to Theorem 2.4. Theorem 2.4 shows that computation of the coefficients

of R,(u)&,(u) (R,(u) =Ci=, xiui and S,(u)=C~=,yiui) using l+m+ 1 multiplica-

tions is done by

either using the identity

K(u)%(u) = &(u)&(u) mod n (u -ai),
i=Cl

where (Y~ E G, i = 0, . . . , m+l, are distinct (thus for all i, i =O, . . . , m-t 1, we have

that R,(cq)S,(ai) = (Cl+ xja<)(C,?=, yja{); then, by the Chinese Remainder Theorem,

Classification of algorithms for computing polynomial products 41

which uses only multiplications by elements of G, we obtain

R,(u)S,(u) mod fly=:’ (u-ai))

or by using the identity

??+I ??I+/

R,(u)S,(u)=R,(u)S,(u)mod H (u-P~)+XIY, II (U-Pi),
,=I ,=I

where pi E G, i = 1,. . , m + 1, are distinct and this identity is solved by choosing

m + 1 distinct elements of G; then R,(u)&,(u) mod nT=:“_:’ (U -pi) is computed as

follows: I+ m multiplications R,(p,)S,,,(/3,) = (cfCO x,p{)(~,“=, yip:), i = 1,. . . , m + I,

and the (1+ m + 1)st multiplication is x,y,.

Assume that Z=m=n-1, i.e., R(u)=C:Ii xiui, S(u)=C:iiyiui. Let P(u)=

Q(u)‘, with deg P(u) = n and with Q(u)’ = U” +C:i,; a,~‘, be a manic polynomial,

ai E G, Q(u) is irreducible (over G) deg Q(u) =j. We know that the minimal

algorithm for computing the coefficients of R(u)S(u) mod Q(u)’ requires 2n - 1

multiplications. Based on this minimality we classified all the minimal bilinear

algorithms for computing the coefficients of R(u)S(u) mod P(U). The coefficients

of x and y in the multiplications Li(x) and M,(y) that appear in Theorem 5.1 have

the following form:

ui = ti = KP’
1 (> w-ffi ’

where w E G[u]/(Q(u)‘), w & G, CY, E G and (1, w, . . . , w”-‘} are linearly indepen-

dent. We now prove that the method discussed above (Theorem 2.4) is “essentially”

the only way for obtaining minimal bilinear algorithm for computing the coefficients

of R(u)S(u) mod Q(u)’ (i.e., compute the coefficients of R(u)S(u) and then reduce

them modulo Q(u)‘). Hence we have to show that

Ui zz ti = KP’
1 (> = c(1, (Y,, . . . , a;-‘),

w - (Yi

where c is a constant.

We now state the main result of this paper:

Theorem 6.1. Every bilinear algorithm A in 9 oCUI’ for computing the coeficients of

(C:zi xiui)(C:it y,u’) mod Q(u)‘, deg Q(u) =j, Zj = n, Z, j> 1, Q(u) irreducible (over

G)P(u)=Q(u)‘,P(u)=u”+~~~~aiu’,ai~G,i=O,...,n-1,in2n-1multiplica-

tions is done byfirst computing the coeficients of (C:Ii x,ui)(C:~~ yiui) (using Theorem

2.4) and then reducing them modulo Q(u)‘.

Before we prove the theorem we prove several lemmas.

For the case w = u we prove that by using our regular basis (1, u, . . . , u”-‘> we

immediately get that

=c(l,g ,..., gnP’), gEG.

48 A. Averbuch, Z. Galil, S. Winograd

Hence the multiplications of all the algorithms for computing the coefficients of

(C:ii XiU’)(C~~~ YiU’) mod Q(U)’ are given by (C,Tii X&)(C,Tii J.~cx{) which means

that the algorithm computes the coefficients of (C:Ii xiui)(C:Ii v,ui) (Theorem 2.4)

and then reduces modulo Q(U)‘.

Lemma 6.2. Let P(u) = U” +I::; a,u’, ai E G. Assume that u -g is invertible in the

algebra G[u]/(P(u)). 7hen

1
--g and K’(l)=(O,.. .,O, l)T,

P(g)

where

K=

a, a, . . . an-2 a,-, 1

a, a3 . . . a,_, 1 0
. . . .
. . . .
. .

a,_, 1 . . . 6 00

1 0 . . . 0 0 0

and g = (1, g, . . . , g”-‘)T.

Proof. The proof is based on the following identity which is valid in any algebra:

P(t)=(t-g)(t”-‘+f,_*t”-2+...+f,t+fO)+P(g), (54)

where .k2 = (a,-, , 1X1, gjT,

fn-j = g’-‘+ a,_,gj-*+ a,_2gi-3+. . . + un_j+,

=(a,_j--l,. . . ,a,_,, a,_,, l)(l, . . .,g’-2,g’P’)T j=2,. . ., n,

and fO= (a,, a,, . . . , a,_, , l)(l, g, . . . , g”P’)T. Hence we have

(fo, . . . ,fn-*, l)‘= K(1, g,. . .) g”-‘)T. (55)

Substituting u for t in (54) and observing that P(u) = 0 in G[u]/(P(u)) we get

O=(u-g)L(u)+P(g), where

L(u) = un-’ +f,_,~“-~+f~_,~“-~+~ . . +fO # 0 mod P(u).

Since u -g is invertible and L(u) is not of the form L(u) = a(u)P(u) where

(Y(U)E G[u]/(P(u)), from (54) we have that P(g) #O, and in the basis

(1, u,. . .) un-’ } of G[u]/(P(u)) we have

1 1 (un-* -=--
P(g)

+f,_2u”-2+fn_3u”-3+ ’ . . +fo)
u-g

=-j&t, ,..., L-2,1)T. (56)

Class$cation of algorithms for computing polynomial products 49

Multiply (56) by K-’ and we get

K-l 1 (> l - =_-
P(g)

K-‘(hLfl,...> L-2, llT.
u-g

(57)

From (55) and (57):

K-l 1 (> 1
- C--g. 0
u-g P(g)

If w # u, then it is not the case that

1
Ui=fl=KP’ - (> = c(1, (Yi, . . .) a;-‘),

w - a,

where c is a constant. If (1, w, . . , w”~‘} are linearly independent and w E

G[u]/(Q(u)‘), w @ G (hence w annihilates only polynomial L(U) of degree n), then

(1, w, . . .) wn-l } is another basis for the algebra G[u]/(Q(u)‘) (in addition to

(1, U,. . .) u np’} which is our regular basis) and therefore the minimal degree poly-

nomial L(v) such that L(w) = 0 mod Q(U)’ is the generator of an isomorphic algebra

to G[u]/(Q(u)‘). If the minimal degree polynomial satisfied by w has the form

L(u)=v”+C~~~ diui, d,sG, then L(v)=q(v)’ and G[u]/(Q(u)‘)=G[v]/(q(v)‘).

Therefore, assume that we perform the computation by the algorithm we derived

in Section 5, in an algebra G[v]/(q(v)‘) isomorphic to G[u]/(Q(u)‘). Let

G[ull(O(u>‘)= G[~ll(du)‘), i.e., the fields G[u]/(Q(u)) and G[u]/(q(v)) are

isomorphic and the algorithms which are computed in G[u]/(Q(u)‘) are equivalent

to the algorithms which are computed in G[u]/(q(v)‘).

Each element in G[u]/(Q(u)‘) h as a regular matrix representation given by the

companion matrix of Q(U)‘. In Lemma 6.3 we will assume that G[u]/(Q(u)‘) =

G[v]/(q(v)‘) and we will derive the relation between the companion matrix of Q(u)’

and the companion matrix of q(v)‘.

Lemma6.3. AssumethatG[u]/(Q(u)‘)=G[v]/(q(v)’) whereQ(u)‘=u”+C:ii aiu

UiEG,undq(v)‘=v”+C:~~d,u’, d,EG,degQ(u)=degq(v)=j,jl=n. Then

(i) U, = S-‘C&S;

(ii) D = Qs,SKST = SKSTQ?&;

(iii) S-’ = KIJgSTDP’;

where U is the companion matrix I$ Q(u)’ such that UT = K-’ UK,

aI a, . . . an-2 6-l 1

a2 a3 . . . a,_, 1 0
K= ; : a,_, 1 .., 0 00

3
_ 1 0 . . . : 1 0 0 0

50 A. Averbuch, Z. Galil, S. Winograd

i

d, d2 . . . 4-z dnp, 1

d2 d3 . . . d,_, 1 0

D= ; !
. .
. .

d,ml 1 . . . 0 0 0

7

1 0 . . . 0 0 o_

Q is the companion matrix of q(v)‘, LY, v are n-dimensional vectors, ST is an n x n

nonsingular G-matrix which is a change of basis between a representation of vectors

in G[u]/(Q(u)‘) and a representation of vectors in G[v]/(q(v)‘), Sa E G[v]/(q(v)‘)

and Qse is the regular matrix representation of Sa in G[v]/(q(v)‘).

Proof. Let Q be the companion matrix of q(v)‘, and let v = (vO, . . . , v,-,)T. Let

QU = Cyzi uiQi be the regular matrix representation of u in G[v]/(q(v)‘). For every

two n-dimensional vectors (Y, p E G[v]/(q(v)‘), define the multiplication as

a o P = QaP, (58)

where 0 is the multiplication in G[v]/(q(v)‘).

So we have two different coordinate systems for representing elements in the

same algebra. One is represented by x which is the multiplication in G[u]/(Q(u)‘)

and one is represented by 0 which is the multiplication in the (isomorphic) algebra

G[v]/(q(v)‘) defined in (58). Since elements in the algebra A are represented by

two different coordinate systems, there is a nonsingular matrix S which transforms

vectors from one coordinate system to another. ST is the matrix which is the change

of basis between the two vectors representation and if x = (x,, . . . , x,_,) and y =

(yO, . . . , yn-,), then SX and Sy are the representation of x and y in G[v]/(q(u)‘);

therefore,

xxy=S’((sx)~(Sy)). (59)

U,/3 is the representation of (Y x p E G[u]/(Q(u)‘). Therefore, from (58) and (59)

we get

UJ~=CWX/~=S~((S~)~(S~))=S-~Q~~S/~. (60)

Since (60) is true for all vectors p we obtain (i) from (60).

Recall that Uz = K-‘lJ,K in G[u]/(Q(u)‘); then by taking the transpose of (i)

we get

U: = K-‘&K = STQ;a(ST)P1. (61)

Substitute (i) into (61) and get

KPISP’Qs,SK = STQ;,(sT)-‘; (62)

therefore, for every (Y we get

Q& = (SKST)-‘Qs,(SKST). (63)

Classijica’ion of algorithms for compuring polynomial products 51

(SKST) is a similarity transformation taking Q into Q’. By direct calculation

Q’= D-‘QD and Qs= DP’QPD. Substituting into (63) we get D-‘QsUD=

(SKST))’ Qsu (SKST) and

Qsu = D(SKST))‘Qs,(SKST)Dm’. (64)

Therefore, D(SKST))’ is commutative with Q. The only matrices that are

commutative with the matrix Q are polynomials of Q; it then follows that there

exists a vector ZI such that

D = Qs,SKSr = SKSTQ;,. (65)

This proves (ii). From (i) we get

(ST))’ U;S’= Q&. (66)

From (65) and (66) we get

D = SKSTQ;, = SKST(ST)-’ U;ST = SKU;ST.

Thus, D(ST)-‘(U]t)-‘K-’ = S, and therefore S’ = KU%STDP’ which proves

(iii). q

Lemma 6.4. Assume that { 1, w, . . . , w”-‘} arelinearlyindependent, w E G[u]/(Q(u)‘),

for all g, g E G, S(w -g) = 0 and w & G. Let q(v)’ be the minimal degree polynomial

(over G) satisfied by w (i.e., q(w)’ = 0 mod Q(u)‘) where Q(u)‘= u”+C:iC: a+‘,

a, E G and q(v)’ = v” +x:1; d,v’, d, E G, deg Q(u) = deg q(v) = j, jl = n. Then

1 =_-
q(g)’

lJ:S’g and K’(1) = UzSTDm’l,

where U is the companion matrix of Q(u)’ such that UT= K-‘UK, ST is an n x n

nonsingular G-matrix which is a change of basis between representation of vectors in

G[u]/(Q(u)‘) and a representation of vectors in G[v]/(q(v)‘) and g=

(1, g, . . .) g”P’)T.

Proof. From the identity

P(u)=(u-g)(u”~‘+f,~,u”~2+. . ~+f’u+fo)+P(g)

and since q(w)’ = 0 mod Q(u)’ we obtain for every g E G

o= q(w)‘= (w -g)(w”~‘ff,~,w”-2+f,~,W”-3+. . .+f”)+q(g)‘,

where

fn-j=gi~‘+d,_lgi-2+dn~2gJ-3+.~.+d,_,+,, j=2,...,n.

Since 6(w -g) = 0, from (67) we have that q(g)’ # 0; hence,

1
l (w”-‘+f,~2W”~*+fn~jWn~3+. . -= -- . +fo).

w-g q(g)’
(68)

52 A. Averbuch, 2. G&l, S. Winogrud

By substituting fni, j = 2,. . . , n, of (67) into (68) we have

1 1 (Wn-*

w-g dd’
+d,_,W+*+. . *-cd,, Wn-2

Denote

n = (llwl . . . Iwn-l),

then from (68):

1 1
--flog

-= q(g)’ w-g
(69)

From our assumptions, as in Lemma 6.3, it follows that the algebra G[u]/((I(u)‘)

with the multiplication x is isomorphic to the algebra G[v]/(q(v)‘) with the multipli-

cation 0 (i.e., the fields G[u]/(Q(u)) and G[v]/(q(v)) are isomorphic). Note that

Q, U, QU, (Y and /3 are the same as in Lemma 6.3. Since elements in the algebra A

are represented by two different coordinate systems, there is a nonsingular matrix

S which transforms vectors from one coordinate system to another. From Lemma

6.2 we have that in the basis (1, U, . . . , u”~‘}

1 1 --
-= Q(g)l Kg
w-g

while (69) is the representation in the basis (1, w, . . . , w”-‘}; therefore,

s=n-‘. (70)

As in the proof of Lemma 6.3 we have that xx y = S’((Sx) 0 (Sy)). From (69), (70),

Lemma 6.3(i) and (ii) we have

-1 K-‘fiDg”= -‘, K-'s-'Q~,sKs'~"
q(g)’ 4(g)

-L K-' lJ,KSTg’
= q(g)’

1
-- LJ;fs’gf.

= 4(g)’

Therefore,

K-l 1 (> 1 - =__
w-g 4(g)’

UfS’i. (71)

Classification of algorithms for computing polynomial products 53

Substitute Lemma 5.3(iii) into K-‘R = K’S’ (cf. (70)) and get

K -‘ii2 = U;fSTD-‘. (72)

Since the first column of 0 is 1, we have 1 = 01 and therefore (using (72)) we get

K-‘(l) = K’Rl = U;STD-‘1. 0

We outline the main ideas how to apply the above results (Lemmas 6.2-6.4) to

Theorem 5.1. We interpretate the algorithm in two bases. In the basis (1, U, . . . , u”~‘}

it is immediate. In order to interpretate the algorithm of Theorem 5.1 in the basis

(1, w, . . . , wfl-’ }, where w E G[u]/(Q(u)‘), w g G, w f u and w does not annihilate

any polynomial of degree less than n, on the one hand we compute KP’(l/(w -g))

using the identities of Lemma 6.4, on the other hand we compute the coefficients

of R(u)S(u) using Theorem 2.4 and then reduce them modulo Q(U)‘.

In evaluating the coefficients of R(u)S(u) we will use the fact that { 1, w, . . . , w”-‘}

are linearly independent and thus, the algebra G[v]/(L(v)) generated by the minimal

degree polynomial L(v) where L(w) = 0 mod Q(U)’ is isomorphic to G[u]/(Q(u)‘).

Therefore, let u : G[u]/(Q(u)‘) + G[v]/(q(v)‘) b e an algebra isomorphism, R’(v) =

a(R(u)) and S’(v) = cr(S(u)). This part uses no m/d-steps. In order to compute

the coefficients of R(u)S(u) mod Q(u)’ we will compute the coefficients of T’(v) =

R’(v)S’(v) mod q(u)‘. We will prove that when Theorem 5.1 is restated in

G[v]/(q(u)‘), then computing the coefficients of R’(v)S’(v) mod q(u)’ has to be

done by first computing the coefficients of R’(u)S’(u) (as in Theorem 2.4) and then

reduce them modulo q(v)‘.

Thus, once we determine the 2n - 1 multiplications for computing the coefficients

of T’(U) = R’(u)S’(v) mod q(u)‘, then the algorithm is determined uniquely and by

K’(T’(u)) (which does not use any m/d-steps) and we obtain the minimal algorithm

for computing the coefficients of R(u)S(u) mod Q(u)‘.

Proof of Theorem 6.1. By Theorem 5.1, the multiplications for computing the

coefficients of (CyIi x,u’)(C:ii y,u’) mod Q(u)’ are given by

i&=t;=K’(l/(w-P,)), i=l,..., n-2, (73a)

u,_, = tn_’ = K_‘(l), (73b)

t&t/ = C+, = K’(l/(w-a,_,,,)), I=0)...) n-l, (73c)

where 1 is the unit vector in G[u]/(Q(u)‘) and 6(w) = 0, w E G[u]/(Q(u)‘).

If we assume that u = w, then from Lemma 6.2 (73a)-(73c) can be rewritten as

&=fz=-Q(p,), Lb.
,) i=l,..., n-2, (74a)

ii,_’ = r,_, = (0,. . .) 0, l), (74b)

i&l+, = tn+i = -
1

Q(a,_l,,)r Gu,-l,j, j=O,. . . , n-1,

54 A. Averbuch, Z. Galil, S. Winograd

where + = (1, y, . . . , y”-’ T) . By eliminating the constants in (74a)-(74c) we get

identity (2) of Theorem 2.4. Thus the algorithm first computes the coefficients of

(C:Ii xiui)(C:Ii y,u’) (using Theorem 2.4) and then reduces them modulo Q(U)‘.

Assume that w # U. In Lemma 4.6 we saw already that {U,, . . . , ii,,_,} and

K,. . . , i2n_l} are linearly independent and we proved in Theorem 5.1 that {l/(w -

%,,o), *. . , l/(w-%,.n-,)l are linearly independent. Therefore, from Lemma 4.19

we obtain that { 1, w, . . . , w”-‘} are linearly independent and thus the minimal degree

polynomial (over G) satisfied by w is of degree n and generates an algebra isomorphic

to G[u]/(Q(u)‘). Hence we can use the identities which have been derived in Lemma

5.4. Rewriting (73a)-(73c) by using the identities of Lemma 6.4 yields

1
&=t;=_-

SW
lJzSr/?,, i=l,..., n-2, (75a)

u,_, = in_, = U;fSTDm’l, (75b)

1
ii,+j = in+j = -

4Can-l,j)’

lJ-$T~n_, ;, 3. j=O,...,n-1.

The algorithm that is described by (75a)-(75c) is equivalent to the following

algorithm:

Ui=t;=STbi, i=l,..., n-2, (76a)

u,_, = in_, = STD-‘1, (76b)

u,+j =in+i=ST&y,_,,j, j=O ,..., n-l. (76~)

We will complete the proof by showing that (76a)-(76c) are exactly the algorithm

that computes the product in an isomorphic algebra and then reduces it modulo a

polynomial. For this purpose we compute the coefficients of (Cyii x,ni) x

<C:ii y,u’) mod Q(u)’ in (C:ii xiu’)(C:ii y,v’) mod q(v)’ where the algebra

G[u]/(Q(u)‘) is isomorphic to G[u]/(q(v)‘).

Denote

and

sx = (50, . . . , tLl)T = 5, SY = (rlo,. . .1 %-AT’ T (77a)

5T = XTST, VT = yTsT, (77b)

where S is a nonsingular matrix which transforms vectors from one coordinate

system to another. x x y = K’((Sx) 0 (Sy)) = Sm’(5 0 r]) where x is the multiplication

in G[u]/(Q(u)‘) and 0 is the multiplication in G[v]/(q(v)‘). Thus, compute first

50 n which means compute first the coefficients of (Cyzi &iui)(C:~~ 7~~) mod q(u)’

and then apply S’. We will prove that to compute the coefficients of (x:1; @I’) x

(c:ii niu’) mod q(u))’ we first have to compute the coefficients of (CyIi [iv’) x

(C:li nisi) and then reduce modulo q(v)‘.

Classijication of algorithms for computing polynomial products 55

To compute the coefficients of (C:Ii [iD’)(C:ii TiZ7’) we must use Theorem 2.4

and by using identity (2) of Theorem 2.4 we have

n-2 n-1

+5n-Pln-1 n Cv-P~) II Cnpan-l,j), (78)
i=l j=O

whereforalliandj,i=l,..., n-2,j=0 ,..., n-l,/3,,a,_,,jEGaredistinct.

To compute the left side of (78) we use the Chinese Remainder Theorem. The

2n - 2 multiplications are

(79a)

j =O, . . . , n -1.

The (2n - 1)st multiplication we derive by using

&_rT&, = ([‘DP’l)(nTW1) (79c)

since in Dml the first column are 0 except for the last entry which is 1.

Substitute (77b) into (7a)-(7c) and we get (79a)-(79c). This completes the proof

of the case w # U. Therefore we have proved that every bilinear algorithm which

computes the coefficients of (C:1: x~u’)(C~~: y,u’) mod Q(u)‘, deg Q(u) =j, Ij = n,

I,j> 1 in 2n - 1 multiplications is done first by computing the coefficients of

(C:z(: x+‘)(C~~~ y,U’) and then reducing them modulo Q(u)‘. 0

7. Conclusions

In view of the result of Theorem 5.1 that all the minimal bilinear algorithms for

computing the coefficients of R(u)S(u) mod Q(u)‘, where R(u) =I::; x,ui, S(u) =

C:Li y,u’, deg Q(u) =j, ,jl= n, ,j, I> 1 and Q(U) is irreducible (over G), we get that

at least 2n -2 distinct scalars from the field G are needed and each multiplication

has the form R(cu;)S(a;-)m j = 1,. . . ,2n - 1, hence the algorithm requires large

coefficients (as in the case I = 1). Therefore, using the identity R(u)S(u) =

R(u)S(u) mod P(U) where deg P(u) = 2n - 1 with distinct irreducible factors, but

not necessarily only linear factors, does not reduce the large coefficients which the

algorithm generates. In order to achieve better “practical” algorithms, nonminimal

algorithms should be studied. In addition, classification of all the minimal (not

necessarily bilinear) algorithms for computing the coefficients R(u)S(U) mod Q(u)’

remains open.

56 A. Averbuch, Z. Galil, S. Winograd

References

[l] S. Winograd, On multiplication in algebraic extension fields, Theoret. Comput. Sci. 8 (1979) 359-377.

[2] S. Winograd, Some bilinear forms whose multiplicative complexity depends on the field of constants,

Math. Systems Theory 10 (1977) 169-180.

[3] S. Winograd, Arithmetic complexity of computations, SIAM J. Comput. (1980).

[4] S. Winograd, On the number of multiplications necessary to compute certain functions, Camm.

Pure Appl. Math. 23 (1970) 165-179.

[5] S. Winograd, On the multiplicative complexity of the Discrete Fourier Transform, Adu. in Math.

32 (1979) 83-117.

[6] S. Winograd, On computing the Discrete Fourier Transform, Math. Comput. 32 (1978) 175-199.

[7] A.L. Toom, The complexity of schemes of functional elements, Soviet Math. Dok/. 4 (1963) 714-716.

[S] C.M. Fiduccia and Y. Zalcstein, Algebras having linear multiplicative complexities, J. ACM 24

(1977).
[9] E. Feig, On systems of bilinear forms whose minimal division-free algorithms are all bilinear, J.

Algorithms 2 (1981) 261-281.

[lo] E. Feig, Certain systems of bilinear forms whose minimal algorithms are all quadratic, J Algorithms

4 (1983) 137-149.
[ll] H.F. de Groote, On varieties of optimal algorithms for the computation of bilinear mappings: I.

The isotropy group of bilinear mapping, Theoret. Comput. Sci. 7 (1978) l-24.

[12] H.F. de Groote, On varieties of optimal algorithms for the computation of bilinear mappings: II.

Optimal algorithms for 2 x 2 matrix multiplication, Theoret. Comput. Sci. 7 (1978) 124-148.

[13] H.F. de Groote, On varieties of optimal algorithms for the computation of bilinear mappings: III.

Optimal algorithms for the computation of x,v and yx where x, y E Mz(K), Theoret. Comput. Sci. 7

(1978) 239-249.

[14] A. Averbuch, Z. Galil and S. Winograd, Classification of all the minimal bilinear algorithms for

computing the coefficients of the product of two polynomials, Part II: The algebra G[u]/(u”), to

appear.

[15] A. Fellman, Optimal algorithms for the multiplications in simply generated local algebra, Tech.

Rept., UniversitKt Frankfurt, 1985.

