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a b s t r a c t

Let K ∗3,t denote the graph obtained from K3,t by adding all edges between the three vertices
of degree t in it. We prove that for each t ≥ 6300 and n ≥ t + 3, each n-vertex graph G
with e(G) > 1

2 (t + 3)(n− 2)+ 1 has a K
∗

3,t -minor. The bound is sharp in the sense that for
every t , there are infinitely many graphs Gwith e(G) = 1

2 (t+ 3)(|V (G)|− 2)+ 1 that have
no K3,t -minor. The result confirms a partial case of the conjecture byWoodall and Seymour
that every (s+ t)-chromatic graph has a Ks,t -minor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are undirected simple graphs. For a graph G, V (G) is the set of its vertices, E(G) is the set of its edges,
e(G) = |E(G)|, and G is the complement of G. By G[X]we denote the subgraph of G induced by the vertex set X . By eG(X, Y )
we denote the number of edges connecting disjoint sets X and Y . We let NG(v) denote the set of neighbors of v in G and
NG[v] = NG(v) ∪ {v}. Similarly, for X ⊆ V (G), we define N(X) :=

⋃
x∈X N(x) and N[X] :=

⋃
x∈X N[x]. Contraction of edge xy

in G is the operation of replacing the vertices x and ywith a new vertex, denoted as x ∗ y, that is adjacent to all neighbors of
x, all neighbors of y, and to no other vertices. A minor of a graph G is a graph H that can be obtained from G by a sequence
of vertex and edge deletions and edge contractions. A subgraph F of G is an H-minor in G if H can be obtained from F by a
sequence of edge contractions and deletions.
A famous open problem concerning graph minors is the Hadwiger Conjecture.

Conjecture 1 (Hadwiger). Every k-chromatic graph has a Kk-minor.

The Conjecture is known to be true for k ≤ 6 but remains open for all larger values of k. In order to stimulate attacks on
the conjecture, Woodall [18] and independently Seymour [15] suggested proving the following weaker statement.

Conjecture 2. Every (s+ t)-chromatic graph has a Ks,t-minor.

Anotherway to approachHadwiger’s Conjecture is to search for sufficient conditions other than k-chromaticity that force
a graph to contain a Kk-minor. Mader [7] proved that for each positive integer k, there exists a function D(k) such that every

graph with average degree at least D(k) has a Kk-minor by demonstrating that D(k) ≤ 2
(
k
2

)
+1. Later, Kostochka [3,4] and

Thomason [16] determined that D(k) = Θ(k
√
log k). More recently, Thomason [17] determined that

D(k) = (α + o(1))k
√
log k,

where α = 0.6381726 . . . is given explicitly.
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Fig. 1. GraphM(2, 3, 4) has no K3,4-minor.

Myers and Thomason extended the function D above to general graphs H , that is, they defined

D(H) = inf{d | 2e(G)/n(G) ≥ d implies that G has an H-minor}.

They determined [12,9] D(H) for almost every H , showing, in particular, that for almost all H , the extremal graphs not
containingH are quasi-random (built deterministically from randomly generated subcomponents). However, theirmethods
work well only for dense graphs, i.e. for graphs H with average degree comparable with |V (H)|.
An example of a sparse H is Ks,t , where s is fixed and t is large with respect to s. For this reason, Myers [10,11] studied

D(Ks,t) when s is fixed and t is large. LetM(r, s, t) be the graph obtained by taking r copies of Ks+t−1 arranged so that each
two copies share the same fixed s−1 vertices (Fig. 1 showsM(2, 3, 4)). Myers [11] observed thatM(r, s, t) has no Ks,t-minor
and that

e(M(r, s, t)) =
1
2
(t + 2s− 3)(n− s+ 1)+

(
s− 1
2

)
, (1)

where n = |V (M(r, s, t))| = rt + s− 1. He proved the following.

Theorem 1 ([11]). Let t > 1029 be a positive integer. Let G be a graph with n ≥ 3 vertices such that

e(G) >
1
2
(t + 1)(n− 1). (2)

Then G has a K2,t-minor.

The graphsM(r, 2, t)witness that this bound is sharp when |V (G)| ≡ 1(mod t).
In connection with Conjecture 2, recently, Chudnovsky et al. [1] proved that Theorem 1 in fact holds for all t . They used

this result to prove that Conjecture 2 holds for s = 2 and each t .
Myers conjectured that a similar, more general statement is true for Ks,t-minors.

Conjecture 3. Let s be a positive integer. Then there exists a constant C(s) such that, for all positive integers t, if G has average
degree at least C(s) · t, then G has a Ks,t-minor.

Let K ∗s,t = Ks+t − E(Kt). In other words, K
∗
s,t is the graph obtained from Ks,t by adding all

( s
2

)
possible edges into the

s-vertex partite set. Myers noted that the average degree that forces G to contain a Ks,t-minor also likely forces a K ∗s,t-minor,
that is, D(Ks,t) = D(K ∗s,t)when s is fixed and t is large.
Myers’ Conjecturewas proved independently in [5,6] using differentmethods. Kühn andOsthus [6] showed the following.

Theorem 2 ([6]). For every ε > 0 and every positive integer s, there exists a number t0 = t0(s, ε) such that for all t ≥ t0, every
graph of average degree at least (1+ ε)t contains K∗s,t as a minor.

In [5], the following fact was proved.

Theorem 3. Let s and t be positive integers with

t > (240s log2 s)
8s log2 s+1.

Let G be a graph such that e(G) ≥ t+3s
2 (n(G)− s+ 1). Then G has a K

∗
s,t-minor. Furthermore, for n large, there exists a graph G

of order n and size at least t+3s−5
√
s

2 (n− s+ 1) that has no Ks,t-minor.

From Theorem 3 we have that for huge t ,

t + 3s− 5
√
s ≤ D(Ks,t) ≤ D(K ∗s,t) ≤ t + 3s.

Hence, Myers’ insight that D(Ks,t) is the same as D(K ∗s,t) is true asymptotically in s.
The second half of Theorem 3 shows that for s > 100, Myers’ construction of M(r, s, t) is not optimal. In Section 2,

we provide another construction with fewer edges that shows that M(r, s, t) is not optimal for s ≥ 6. Note that while
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Theorem 2 does not provide the dependence of D(Ks,t) on s, it applies for a much wider range of s than Theorem 3, namely
for s ≤ C · t/ log t .
The goal of the present paper is to determine D(K3,t) for t > 6300 exactly. We prove the slightly stronger version with

K ∗3,t in place of K3,t .

Theorem 4. Let t ≥ 6300. Let G be a graph of order n ≥ 3 with

e(G) >
1
2
(t + 3)(n− 2)+ 1. (3)

Then G has a K ∗3,t-minor.

The graphsM(r, 3, t) demonstrate the sharpness of Theorem 4 for the existence of minors for both K ∗3,t and K3,t .

Remark. If t ≥ 6300 and for some n ≥ 3, an n-vertex graph G satisfies (2), then adding a new vertex x adjacent to all
vertices of G creates a graph G′ with n′ = n + 1 vertices that satisfies the conditions of Theorem 4. By this theorem, G′ has
a K ∗3,t-minor, and hence G = G

′
− x has a K ∗2,t-minor. This implies Theorem 1 and the corresponding result of Chudnovsky

et al. [1], restricted to t ≥ 6300, in a slightly stronger form, namely, with the K ∗2,t-minor in place of the K2,t-minor.

Seymour showed that Theorem 4 implies the validity of Conjecture 2 for s = 3 and t ≥ 6300. With his kind permission,
we present this proof here.

Corollary 5 (Seymour). Let t ≥ 6300. Then every (3+ t)-chromatic graph has a K ∗3,t-minor.

Proof. Let G be a counter-example to this corollary with the smallest total number of edges and vertices. Then G is (3+ t)-
critical, and hence δ(G) ≥ t + 2. If δ(G) ≥ t + 3, then e(G) ≥ t+3

2 |V (G)|, and so by Theorem 4, G has a K
∗

3,t-minor. Thus,
G has a vertex v with dG(v) = t + 2. If G[N(v)] = Kt+2, then G contains Kt+3 which contains K ∗3,t . So, N(v) contains some
non-adjacent vertices x and y.
Let G′ be obtained from G by contracting the edges vx and vy. Since G′ is a minor of G, it does not have a K ∗3,t-minor.

Therefore, by the minimality of G, G′ is (t + 2)-colorable. Let f ′ be a proper (t + 2)-coloring of G′. It naturally yields a proper
(t + 2)-coloring f of G − v in which f (x) = f (y). But then one of the t + 2 colors is not used on N(v), and we can use this
color to color v, a contradiction to the definition of G. �

We also show that Theorem 4 cannot be extended to s ≥ 6. Namely, we prove the following two results.

Theorem 6. Let s and t be integers satisfying s ≥ 6 and t > (2s)2s−1 such that s+ t is odd. Then for infinitely many n > s+ t,
there exists a graph G(n, s, t) of order n with

e(G(n, s, t)) >
1
2
(t + 2s− 3+ 3−s−1)(n− s+ 1)+

(
s− 1
2

)
that has no Ks,t-minor.

The bound of this theorem is getting weaker when s grows. For larger s, the bound of the second part of Theorem 3 is
better.

Theorem 7. Let s and t be integers satisfying t ≥ s ≥ 4 such that s+ t is odd. Then for infinitely many n > s+ t, there exists a
graph G(n, s, t) of order n with

e(G(n, s, t)) >
1
2

(
t + 2s− 2−

2s
t

)
(n− s+ 1)+

(
s− 1
2

)
that has no K ∗s,t-minor.

The proof of our main theorem elaborates and refines the ideas of [5] and uses discharging to handle the most difficult
case: the case of n = t + 5.
The structure of the paper is the following. In the next section we prove Theorems 6 and 7. The subsequent five sections

are devoted to the proof of Theorem 4. In Section 3 we cite and prove several auxiliary statements. In Sections 4–7, we
consider several cases depending on how large the number n0 of vertices of a minimum counter-example to our statement
is. In Section 4, we set up the proof and handle the case n0 ≤ 1.1t , n0 6= t + 5. In Sections 5 and 6 we consider the case
n0 > 1.1t . The singular case n0 = t + 5 is postponed to the last section. We conclude the paper with a couple of comments.
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2. A lower bound for s ≥ 6

For this section, it will be convenient to use the following definition of a Ks,t-minor of G. We say that G has a Ks,t-minor if
there are a set V0 ∈ V (G) and a function f : (V (G)− V0)→ V (Ks,t) such that f −1(v) induces a connected subgraph of G for
all v ∈ V (Ks,t) and such that, for all v1v2 ∈ E(Ks,t), there is an xi ∈ f −1(vi) (i = 1, 2) such that x1x2 ∈ E(G).
We will need the following old result of Sauer [13]:

Theorem 8 ([13]). Let g ≥ 5 and m ≥ 4. Then, for every even n ≥ 2(m − 1)g−2, there exists an n-vertex m-regular graph of
girth at least g.

Lemma 9. Let s and t be integers satisfying s ≥ 6 and t > (2s)2s−1 such that s+ t is odd. Then there exists a graph G = G(s, t)
of order n = t + s+ 3 with

e(G) ≥
1
2
(t + s+ 3)

(
t + s− 2+

1
3s

)
that contains no Ks,t-minor.

Proof. Under the conditions of the lemma, the numbers n = s + t + 3, g = s + 7, and m = 4 satisfy the conditions of
Theorem 8. Hence, there exists an n-vertex 4-regular graphH = H(s, t)with girth at least s+7. Since the number of vertices
at distance at most j from a given edge inH is less than 4 ·3j, we can greedily find a set A of at least n

2·3s edges inH at distance
at least s from each other. Let H ′ = H ′(s, t) = H − A. Let us prove that

|NH ′(U)− U| ≥ 7 for every U ⊂ V (H ′)with s− 3 ≤ |U| ≤ s. (4)

Indeed, let u satisfy s − 3 ≤ u ≤ s and U be a set of u vertices in H ′. Let W = NH ′(U) − U . Since the girth of H ′ is
greater than s, H ′[U] has no cycles. So, if H ′[U] has x edges, k components, and ` vertices of degree 3, then x + k = u and
eH ′(U,W ) = 4u − ` − 2x. Furthermore, since vertices of degree 3 are at distance at least s ≥ u from each other, each
component of H ′[U] has at most one such vertex, and hence ` ≤ k = u − x. Suppose |W | ≤ 6. Then |U ∪W | ≤ s + 6 and
hence H ′[U ∪W ] has no cycles. Therefore, e(H ′[U ∪W ]) ≤ |U ∪W | − 1 ≤ u+ 5. On the other hand, by the above,

e(H ′[U ∪W ]) ≥ x+ (4u− `− 2x) = 3u+ (u− `− x) ≥ 3u.

So, 3u ≤ u+ 5 and u ≤ 2. It follows that s ≤ u+ 3 ≤ 5. This contradiction implies (4).
Let G = H ′. Suppose that G has a Ks,t-minor. Let S ⊆ V (G) be the set of vertices in the pre-image of the smaller partite

set of this minor, and let S ′ ⊆ S be the vertices that are not deleted or contracted with a neighbor to get the minor. By (4)
with U = S ′, there must be at least seven vertices with a non-neighbor in S ′, and at least one of these vertices x is the entire
pre-image of a vertex of the larger partite set in the minor. This contradicts the fact that every vertex of S ′ is adjacent to x.
Therefore G has no Ks,t-minor.
Since∆(H ′) = 4 and at least n3s vertices of H

′ have degree 3,

2e(G) ≥ n(n− 5)+
n
3s
= (t + s+ 3)

(
t + s− 2+

1
3s

)
. �

Now we are ready to prove Theorem 6

Proof. Consider G(s, t) and H ′(s, t) from the proof of Lemma 9. Since ∆(H ′(s, t)) = 4 and s + t + 3 > 5s, H ′(s, t) has an
independent set I of size s− 1. Then I induces an (s− 1)-clique in G(s, t). Let G′(r, s, t) be obtained from r copies of G(s, t)
by arranging them so that each two copies share the set I and nothing else. This is an analog of M(r, s, t); only the bricks
are different. By construction,

|V (G′(r, s, t))| = (s− 1)+ r(s+ t + 3− (s− 1)) = (s− 1)+ r(t + 4) (5)

and

e(G′(r, s, t)) = r · e(G(s, t))− (r − 1)
(
s− 1
2

)
= r

(
e(G(s, t))−

(
s− 1
2

))
+

(
s− 1
2

)
. (6)

Since for s ≥ 6 and t > (2s)2s−1,

e(G(s, t)) ≥
(t + s+ 3)

(
t + s− 2+ 1

3s
)

2
> (t + 4)

t + 2s− 3+ 3−s−1

2
+

(
s− 1
2

)
,

we get by (6) and (5) for n = |V (G′(r, s, t))| that

e(G′(r, s, t)) > r(t + 4)
t + 2s− 3+ 3−s−1

2
+

(
s− 1
2

)
= (n− s+ 1)

t + 2s− 3+ 3−s−1

2
+

(
s− 1
2

)
.
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Fig. 2. Lemma 10.

Suppose that G′(r, s, t) has a Ks,t-minor with partite sets Xs and Xt and f : (V (G) − V0) → V (Ks,t) is the corresponding
function. Since |I| < s, the pre-image of some vertex in Xs avoids I and is contained in some copy C1 of G(s, t). Then the
pre-image of each vertex in Xt has a vertex in C1 and hence at least t − s + 1 pre-images of vertices in Xt are contained in
C1 − I . It follows that the pre-image of each vertex of our Ks,t has a vertex in C1. Since these pre-images induce connected
subgraphs of G′(r, s, t), each of the pre-images that is not completely in C1 − I contains a vertex in I . Since I induces a
complete subgraph of G′(r, s, t), f −1(v) ∩ V (C1) induces a connected subgraph for every v ∈ V (Ks,t). For the same reason,
if the pre-images of some two vertices of Ks,t are connected by an edge in G′(r, s, t), then their intersections with V (C1) are
also connected by an edge. It follows that C1 also has a Ks,t-minor, a contradiction to Lemma 9.
Thus, for every n of the form n = (s − 1) + r(t + 4), the graph G(n, s, t) = G′(r, s, t) satisfies the statement of the

theorem. Note that the difference between e(G(n, s, t)) and the right-hand side of (1) is linear in n. �

The proof of Theorem 7 below essentially repeats that of Theorem 6; only the starting brick is different.

Proof of Theorem 7. Let G(s, t) be the graph on s + t + 1 vertices whose complement is a perfect matching. Clearly,
contracting an edge in G(s, t) creates at most three all-adjacent vertices. Thus G(s, t) has no K ∗s,t-minor and

e(G(s, t)) =
(s+ t + 1)(s+ t − 1)

2
>
t + 2
2

(
t + 2s− 2−

2s
t

)
+

(
s− 1
2

)
.

Fix the vertex set I of an (s − 1)-clique in G(s, t) and let G′(r, s, t) be obtained from r copies of G(s, t) by arranging them
so that each two copies share the set I and no other vertices. Repeating the proof of Theorem 6 (with slightly different
calculations) we obtain that G′(r, s, t) has no K ∗s,t-minor and that for n = |V (G

′(r, s, t))|,

e(G′(r, s, t)) > r(t + 2)
t + 2s− 2− 2s

t

2
+

(
s− 1
2

)
= (n− s+ 1)

t + 2s− 2− 2s
t

2
+

(
s− 1
2

)
. �

3. Lemmas on connectivity and domination

If H is a graph and X ⊂ V (H), we say that X is k-separable if N[X] 6= V (H) and |N(X)− X | ≤ k.

Lemma 10. Let k be a positive integer and H be a graph such that each edge of H belongs to at least 3k/2 triangles. If X is an
inclusion-minimal k-separable set in H and S = N(X)− X, then H[X ∪ S] is (1+ dk/2e)-connected.

Proof. Assume that there is a separating set D of H[X ∪ S] with |D| ≤ dk/2e. Let H1 be a component of H[X ∪ S] − D that
has minimum size of intersection with S, and let H2 = H[X ∪ S] − D− H1. Then the set S1 = D ∪ (S ∩ V (H1)) has at most
|D| + |S|/2 ≤ k vertices. If H1 − S1 6= ∅, then S1 separates H1 − S1 from the rest of the graph (see Fig. 2), and H1 − S1 is
properly contained in X , contradicting the minimality of X . Therefore V (H1) ⊆ S. Let y ∈ V (H1). By the definition of S, y
has some neighbor x ∈ X . Since xy belongs to at least 3k/2 triangles, y is adjacent to at least 3k/2 + 1 vertices in X ∪ S.
Since |S| ≤ k and y ∈ S, y has at least k/2 + 2 neighbors in X . It follows that y has a neighbor in X − D, a contradiction to
V (H1) ⊆ S. �

Let U1,U2, and U3 be disjoint sets of vertices in a graph G. Then a path P is a (U1,U2)-path if one end of P is in U1 and the
other is in U2. Similarly P is a strict ((U1,U2)−U3)-path if one end of P is in U1, the other is in U2 and no internal vertex of P
is in U1 ∪ U2 ∪ U3. Furthermore, a pair (P1, P2) of paths is (U1,U2,U3)-connecting if for some i ∈ {1, 2, 3}, one of the paths
is a strict ((Ui,Ui+1) − Ui+2)-path and the other is a strict ((Ui−1,Ui) − Ui+1)-path (indices sum modulo 3). Note that the
paths in a (U1,U2,U3)-connecting pair may share an end (in the set Ui) and also internal vertices (outside of U1 ∪ U2 ∪ U3).
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Lemma 11. Let G be a graph and let U1,U2, and U3 be disjoint sets of vertices in G. If G contains a U1,U2-path P1 and a U1,
U3-path P2 which is vertex-disjoint from P1, then P1 ∪ P2 contains a (U1,U2,U3)-connecting pair of paths.

Proof. For i = 1, 2, let P ′i be a shortest subpath of Pi that starts at U1 and finishes at U1+i. If neither of the P
′

i intersects
U4−i, then the pair (P ′1, P

′

2) is (U1,U2,U3)-connecting. Suppose that P
′

1 meets U3. Let Q1 be the subpath of P
′

1 from U1 to the
first vertex in U3 ∩ V (P1) and Q2 be the subpath of P ′1 from the last vertex in U3 ∩ V (P1) to U2. Then the pair (Q1,Q2) is
(U1,U2,U3)-connecting. �

For a graph G, a set T ⊆ V (G) is totally dominating if every vertex of G has a neighbor in T . We say that a set T ⊆ V (G) is
connected if G[T ] is connected.

Lemma 12. Let G be an n-vertex connected graph with minimum degree k ≥ 1. Then:

(a) G contains a totally dominating set T with |T | ≤ blogn/(n−k) nc + 1; and
(b) G contains a connected totally dominating set T ′ with |T ′| ≤ 2 logn/(n−k) n.

Proof. Let A ⊆ V (G). The total number of neighbors of vertices in A counted with multiplicities is at least k|A|. Hence

there exists vA ∈ V (G) that is adjacent to at least k|A|/n vertices in A. (7)

Consider the sequence A0, A1, . . ., where A0 = V (G) and for i ≥ 1, Ai = Ai−1 − N(vAi−1). By (7), for every i ≥ 1,
|Ai| ≤ n−k

n |Ai−1|. It follows that for i0 = blogn/(n−k) nc + 1,

|Ai0 | ≤ n
(
n− k
n

)i0
< n

(
n− k
n

)logn/(n−k) n
= 1,

and so Ai0 = ∅. Hence T = {vA0 , vA1 , . . . , vAi0−1} is totally dominating. This proves (a).
Let C1, . . . , Cm be the vertex sets of the components ofG[T ]. Since T is totally dominating, each Cj has at least two vertices.

It follows that m ≤ i0/2. Let T ′ = T and C0 = C1. We do the following iteration for C0: If C0 dominates V (G), then stop.
Otherwise, choose any vertexw at distance exactly 2 from C0. Letw′ be the intermediate vertex on a shortest path from C0
to w. By the choice of T , w has a neighbor z ∈ T − C0. By definition, z belongs to some Cj. Add to T ′ vertices w and w′ and
let the new C0 be the component of the new T ′ that contains C0 ∪ Cj ∪ {w,w′}. This increases |T ′| by 2 and decreases the
number of components in G[T ′] by at least 1.
After at mostm− 1 iterations, we obtain a connected totally dominating set T ′. By construction, |T ′| ≤ |T |+ 2(m− 1) ≤

i0 + 2(i0/2− 1) = 2i0 − 2 ≤ 2 logn/(n−k) n. �

Applying Lemma 12 s times, we have the following corollary.

Lemma 13. Let s, k, and n be positive integers. Suppose n > k ≥ 1. Let H be a graph of order n with δ(H) ≥ k + 2
(s − 1) logn/(n−k) n and connectivity greater than 2(s − 1) logn/(n−k) n. Then V (H) contains s disjoint subsets A1, . . . , As such
that, for every i = 1, . . . , s,

(i) H[Ai] is connected,
(ii) |Ai| ≤ 2 logn/(n−k) n,

(iii) Ai dominates H −
⋃i−1
j=1 Aj.

Schönheim [14], Mills [8] and others, form ≥ k ≥ l, studied the minimum number C(m, k, `) of k-element subsets of an
m-element set S that cover all `-tuples of elements of S. We will use the following bounds on C(m, k, `) due to Schönheim
and Mills.

Lemma 14 ([14,8]). (a) For all m ≥ k ≥ ` ≥ 1,

C(m, k, `) ≥
⌈m
k
C(m− 1, k− 1, `− 1)

⌉
; (8)

(b) if m/k > 9/5, then C(m, k, 2) ≥ 6;

(c) if m/k > 7/3, then C(m, k, 2) ≥ 8.

Erdős et al. [2] proved a result whose partial case is the following.

Lemma 15 ([2]). If 0 ≤ k < (5n − 3)/9 and H is an n-vertex graph with maximum degree k and diameter 2, then
e(H) ≥ 4n− 2k− 11. In particular, if k ≤ 0.5n+ α and α ≥ 0, then e(H) ≥ 3n− 11− 2α.
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4. Preliminaries and graphs of small order

We will prove Theorem 4 by contradiction. Suppose that the theorem is false. Then there exists a counter-example G0
which is minimum with respect to |V (G)| + |E(G)|. Suppose that n0 = |V (G0)|. Our starting point is the following lemma
concerning properties of such minimum counter-examples.

Lemma 16. Let t ≥ 3. Let G0 be a graph minimum with respect to |V (G)| + |E(G)| satisfying (3) such that n0 = |V (G0)| ≥ 3
and G0 has no K ∗3,t-minor. Then:

(p0) n0 ≥ t + 4;
(p1) 12 (t + 3)(n0 − 2)+ 1 < e(G0) ≤

1
2 (t + 3)(n0 − 2)+ 2;

(p2) each edge of G0 belongs to at least (t + 2)/2 triangles;
(p3) δ(G0) ≥ (4+ t)/2;
(p4) G0 is 3-connected.

Proof. Since no n-vertex graph can have more than
( n
2

)
edges, (3) yields

1
2
(t + 3)(n0 − 2)+ 1 <

n0(n0 − 1)
2

.

For n0 ≥ 3 this is equivalent to t+3 < n0+1, i.e. n0 ≥ t+3. Suppose that n0 = t+3. Then (3) gives 2e(G0) > n0(n0−2)+2.
It follows that at least three vertices have degree n0−1, i.e., are all-adjacent ones in G0. So, G0 contains K ∗3,t . This proves (p0).
Property (p1) holds by (3) and the minimality of G0. If an edge e of G0 belongs to at most (t + 1)/2 triangles, then after

contracting ewe obtain from G0 a graph G′0 with one vertex fewer and nomore than 1+ (t+ 1)/2 = (t+ 3)/2 fewer edges.
So if G0 satisfies (3), then G′0 also satisfies (3) and by (p0) has at least t + 4 − 1 vertices. This contradicts the minimality of
G0. So, (p2) holds, and (p3) follows from (p2).
Let us prove (p4). Suppose otherwise. Then there is S ⊂ V (G0) such that |S| ≤ 2 and G0 − S is disconnected. Then there

are V1, V2 ⊂ V (G0) such that V1 − S, V2 − S 6= ∅, V1 ∪ V2 = V (G0), V1 ∩ V2 = S, and V1 − S has no neighbors in V2 − S. Let
ni = |Vi| for i = 1, 2 and n1 ≥ n2. By (p3), δ(G0) ≥ d(4+ t)/2e ≥ 4. Hence n2 + |S| ≥ 1+ δ(G0) ≥ 5, and so n2 ≥ 3.
Case 1: |S| ≤ 1. By the minimality of G0 and the fact that n1, n2 ≥ 3, we have e(G0[Vi]) ≤ 1

2 (t + 3)(ni − 2)+ 1. So,

e(G0) = e(G0[V1])+ e(G0[V2]) ≤
(t + 3)(n1 + n2 − 4)

2
+ 2 ≤

(t + 3)(n0 − 3)
2

+ 2,

a contradiction to (3).
Case 2: |S| = 2. Let S = {x, y}. For i = 1, 2, let Gi be obtained from G0[Vi] by adding edge xy, if it does not belong to G0. Since
Case 1 does not hold, each of G0[V1] and G0[V2] contains an x, y-path and so Gi is a minor of G0 for i = 1, 2. Again by the
minimality of G0 and the fact that n1, n2 ≥ 3, we have e(Gi) ≤ 1

2 (t+3)(ni−2)+1. Furthermore, e(G0) ≤ e(G1)+ e(G2)−1,
since either we count edge xy twice or have added extra edges. Therefore,

e(G0) ≤ e(G1)+ e(G2)− 1 ≤
(t + 3)(n1 + n2 − 4)

2
+ 1 ≤

(t + 3)(n0 − 2)
2

+ 1,

a contradiction to (3), again. �

In the course of our proof, we will increase the lower bound on n0. For small n0, the complement of G0 has far fewer
edges than G0 and it is easier to understand its structure. Let H0 = G0. Then phrasing (p1) and (p3) in terms of H0, we get
the following.

Lemma 17. Let t ≥ 3. Let G0 be a minimum with respect to |V (G)| + |E(G)| graph satisfying (3) such that n0 = |V (G0)| ≥ 3
and G0 has no K ∗3,t-minor. Let d = n0 − t and H0 = G0. Then:

(q1) 12 (d− 2)(n0 − 2)− 1 ≤ e(H0) <
1
2 (d− 2)(n0 − 2);

(q2) ∆(H0) ≤
n0+d
2 − 3.

Lemma 18. n0 6= t + 4.

Proof. Suppose n0 = t + 4. By (q1) in Lemma 17, e(H0) < n0 − 2. Hence H0 has at least three tree components, say C1, C2,
and C3. If all three are singletons, then G0 contains K ∗3,t+1. If C2 and C3 are singletons and C1 is not, then deleting the neighbor,
say x, of a leaf in C1 we will have three isolated vertices in H0 − x, which correspond to three all-adjacent vertices in G0 − x.
Finally suppose that C1 and C2 are not singletons. For i = 1, 2, let yi be a leaf in Ci and xi be the neighbor of yi in Ci. Then
contracting in G0 the edge x1x2 creates a (t + 3)-vertex graph with all-adjacent vertices y1, y2, and x1 ∗ x2. �

The next statement has quite a long proof which we postpone to the last section.
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Lemma 19. n0 6= t + 5.

For the time being, we continue our proof assuming that Lemma 19 holds. To handle the cases t + 6 ≤ n0 ≤ t + 23, we
need a couple of auxiliary facts.

Lemma 20. Let t ≥ 162. Let G be a graph of order n ≥ t + 6 such that e(G) < 17n/6− 2 and∆(G) ≤ (n+ 3)/2. Then G has
a K ∗3,t-minor.

Proof. For n ≥ t + 6 ≥ 168, (n + 3)/2 < (5n − 3)/9 and 17n/6 − 2 ≤ 3n − 11 − 2(3/2), so by Lemma 15, G has two
vertices x1 and x2 at distance at least 3. Note that X = {x1, x2} is a connected dominating set in G. Let G1 = G − X and
n1 = |V (G1)| = n − 2. Again, for n ≥ 168, (n + 3)/2 = (n1 + 5)/2 < (5n1 − 3)/9 and 17n/6 − 2 ≤ 3n1 − 11 − 2(5/2),
so by Lemma 15, G1 has two vertices y1 and y2 at distance at least 3. Again, Y = {y1, y2} is a connected dominating set
in G1. Let G2 = G1 − Y and n2 = |V (G2)| = n − 4. Since n0 ≥ 168, (n + 3)/2 = (n2 + 7)/2 < (5n2 − 3)/9 and
17n/6− 2 ≤ 3n2− 11− 2(7/2), so by Lemma 15, G2 has two vertices z1 and z2 at distance at least 3. Contracting in G edges
x1x2, y1y2 and z1z2, we get a graph containing K ∗3,n−6 ⊇ K

∗

3,t . �

Here is another fact in a similar spirit.

Lemma 21. Let k ≥ 3 and n ≥ 4(k2 + 3k + 6). Let H be an n-vertex graph with maximum degree at most n/2 + k and
e(H) ≤ (k + 1.5)n/2 − k. If at most two vertices of H have degree less than k, then H contains three disjoint pairs (xi, yi) of
vertices such that dH(xi, yi) ≥ 3 for i = 1, 2, 3.

Proof. The total number of pairs of distinct vertices at distance at most 2 in H is at most e(H) plus the number of paths of
length 2 in H . Denoting this value by F(H), we have

F(H) ≤ e(H)+
∑
v∈V (H)

(
dH(v)
2

)
=
1
2

∑
v∈V (H)

dH(v)+
1
2

∑
v∈V (H)

dH(v)(dH(v)− 1) =
1
2

∑
v∈V (H)

d2H(v).

Under the conditions of the lemma, the maximum of the last sum is attained when two vertices have degree 0 and all other
vertices apart from atmost one have degree either k+n/2 or k. Recall that

∑
v∈V (H)(dH(v)−k) ≤ 1.5n−2k. In this situation,

the sum of the squares of the degrees of the vertices with degree greater than k is at most 3(k+ n/2)2. Thus,

F(H) ≤
1
2

[
3(k+ n/2)2 + (n− 5)k2

]
=
1
2

[
3n2

4
+ n(3k+ k2)− 2k2

]
<
n2

2
− 3n.

It follows that H has at least
( n
2

)
− F(H) ≥ 3n − n/2 = 2.5n pairs of vertices at distance at least 3. Hence some three of

these pairs are disjoint. �

The next fact is based on Lemma 14.

Lemma 22. Let t ≥ 231. Let G be a graph of order n ≥ t + 9 such that e(G) ≤ 3.75n− 6 and∆(G) ≤ n/2+ 6. Then G has a
K ∗3,t-minor.

Proof. Let G satisfy the conditions of the lemma. Order the vertices x1, x2, . . . , xn of G so that dG(x1) ≤ dG(x2) ≤ · · · ≤
dG(xn). For i = 1, . . . , n, let Ni = NG(xi).

Case 1: dG(x3) ≤ 5. Each of the neighbors of x1 in G has at most ∆(G) − 1 ≤ n/2 + 5 < 5(n − 8)/9 neighbors in
V (G) − N1 − {x1, x2, x3}. So, by Lemma 14(b) for m = n − 8 and k = ∆(G) − 1, V (G) − N1 − {x1, x2, x3} contains a
pair (y1, z1) of vertices such that no vertex in G is adjacent to all of x1, y1 and z1. This means that {x1, y1, z1} is a connected
dominating set in G. Similarly, each of the neighbors of x2 has at most ∆(G) − 1 ≤ n/2 + 5 < 5(n − 10)/9 neighbors in
V (G) − N2 − {x1, x2, x3, y1, z1}. Again, by Lemma 14(b), V (G) − N2 − {x1, x2, x3, y1, z1} contains a pair (y2, z2) of vertices
such that {x2, y2, z2} is a connected dominating set in G. Finally, since∆(G)− 1 ≤ n/2+ 5 < 5(n− 12)/9, by Lemma 14(b),
V (G)− N3 − {x1, x2, x3, y1, z1, y2, z2} contains a pair (y3, z3) of vertices such that {x3, y3, z3} is a connected dominating set
in G. Contracting these three sets in G, we find a K ∗3,t-minor of G.

Case 2: dG(x3) ≥ 6. Then n and H = G satisfy conditions of Lemma 21 with k = 6. Thus by this lemma, G has three disjoint
pairs of vertices at distance at least 3. Contracting the corresponding edges in G, we find a K ∗3,n−6-minor of G. �

Now we are ready to say more about our minimum counter-example G0 to Theorem 4 and about its complement H0.

Lemma 23. Let t ≥ 432. Then n0 6∈ {t + 6, t + 7, . . . , t + 22}.
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Proof. Recall that H0 satisfies (q1) and (q2). Let d = n0 − t .
Case 1: 6 ≤ d ≤ 7. By (q1) and (q2), e(H0) < 5(n0 − 2)/2 and∆(H0) ≤ (n0 + 1)/2. So, we are done by Lemma 20.
Case 2: d = 8. By (q1) and (q2), e(H0) < 3(n0 − 2) and ∆(H0) ≤ n0/2 + 1. If ∆(H0) ≥ n0/6 − 1, consider G′0 = G0 − v,
where v has maximum degree in H0. Then e(G

′

0) < 17n
′

0/6− 2 and∆(G
′

0) ≤ (n
′

0+ 3)/2, where n
′

0 = |V (G
′

0)| = n0− 1, and
so G′0 satisfies the conditions of Lemma 20. This yields our statement.
Suppose now that ∆(H0) < n0/6 − 1. By (q1), H0 has three vertices, x, y, z, of degree at most d − 3 = 5. Then each

of x, y, z has fewer than 5(n0/6 − 1) vertices at distance 1 or 2 from it. Hence, we can choose for each of them a vertex at
distance at least 3 in H0 so that all chosen vertices are distinct. Contracting the corresponding edges in G0, we get K ∗3,n0−6.

Case 3: d = 9. By (q1) and (q2), e(H0) < 3.5(n0 − 2) and∆(H0) ≤ n0/2+ 1.5. Since t ≥ 231, Lemma 22 yields the result.
Case 4: d = 10. By (q1) and (q2), e(H0) ≤ 4(n0 − 2) − 1 and ∆(H0) ≤ n0/2 + 2. If H0 has a vertex v of degree at least
(n0+ 3)/4, then applying Lemma 22 to H0− v we are done. Suppose that∆(H0) ≤ (n0+ 2)/4. Since e(H0) < 4(n0− 2), H0
has three vertices, x1, x2 and x3 of degree at most 7. Let Ni = NH0(xi), i = 1, 2, 3. Since∆(H0) ≤ (n0+ 2)/4, for i ∈ {1, 2, 3},

the number of pairs of vertices in V (H0) − Ni − {x1, x2, x3} that have a common neighbor in Ni is at most 7
(
(n0+2)/4−1

2

)
.

Since this is much less than
(
n0−10
2

)
, we can choose for i ∈ {1, 2, 3}, a pair {yi, zi} ⊂ V (H0) − Ni − {x1, x2, x3} so that all

there chosen pairs are disjoint and yi and zi have no common neighbor in Ni. Contracting in G0 for i ∈ {1, 2, 3}, xi with yi
and zi, we obtain a K ∗3,n0−9-minor of G0.

Case 5: d = 11. By (q1) and (q2), e(H0) < 4.5(n0−2) and∆(H0) ≤ n0/2+2.5. If at most two vertices inH0 have degree less
than 8, then we are done by Lemma 21 for k = 8. Suppose now that H0 has three vertices, x1, x2 and x3 of degree at most 7.
Let Ni = NH0(xi), i = 1, 2, 3.
If H0 has two vertices, v1 and v2, of degree at least 3(n0 − 15)/7, then H0 − v1 − v2 has less than 4.5n0 − 10 − 6(n0 −

15)/7+ 1 < 3.75(n0 − 2)− 6 edges and satisfies the conditions of Lemma 22 with n0 − 2 in place of n0. So, in this case by
Lemma 22, G0 − v1 − v2 has a K ∗3,t-minor. Thus, we may assume that for some v ∈ V (H0), ∆(H0 − v) < 3(n0 − 15)/7. By
Lemma 14(c), some pair {y1, z1} of vertices in V (H0) − {x1, x2, x3, v} − N1 has no common neighbor in N1. Similarly, some
pair {y2, z2} of vertices in V (H0)−{x1, x2, x3, v, y1, z1}−N2 has no common neighbor inN2, and some pair {y3, z3} of vertices
in V (H0)− {x1, x2, x3, v, y1, z1, y2, z2} − N3 has no common neighbor in N3. Thus contracting in G0 − v vertices xi, yi and zi
for i = 1, 2, 3, we find a K ∗3,n0−10-minor of G0.

Case 6: 12 ≤ d ≤ 14. By (q1) and (q2), e(H0) < 6(n0 − 2) and∆(H0) ≤ n0/2+ 4. If at most two vertices in H0 have degree
less than 11, then we are done by Lemma 21 for k = 11. Suppose now that H0 has three vertices, x1, x2 and x3, of degree at
most 10. Let Ni = NG0(xi), i = 1, 2, 3.
By Lemma 14(a) and (b), ifm ≥ 9k/5, thenm− 1 > 9(k− 1)/5 and

C(m, k, 3) ≥
⌈m
k
C(m− 1, k− 1, 2)

⌉
≥

⌈
9
5
6
⌉
= 11. (9)

Thus, since |N1| ≤ 10 and

|V (H0)− {x1, x2, x3} − N1| ≥ n0 − 13 ≥
9
5

(n0
2
+ 3

)
≥
9
5
(∆(H0)− 1),

the set V (H0)− {x1, x2, x3} − N1 contains a triple {y1, z1, u1} that has no common neighbors of all three of these vertices in
N1. Similarly, the set V (H0) − {x1, x2, x3, y1, z1, u1} − N2 contains a triple {y2, z2, u2} that has no common neighbors in N2
and the set V (H0)− {x1, x2, x3, y1, z1, u1, y2, z2, u2} − N3 contains a triple {y3, z3, u3} that has no common neighbors in N3.
For this we need n0 − 19 ≥ 9

5 (
n0
2 + 3)which holds for n0 ≥ 244. Now contracting in G0 the three quadruples {xi, yi, zi, ui},

we find a K ∗3,n0−12-minor of G0.

Case 7: 15 ≤ d ≤ 22. By (q1) and (q2), e(H0) < 10(n0 − 2) and ∆(H0) ≤ n0/2 + 8. Since e(H0) < 10(n0 − 2), H0 has
three vertices, x1, x2 and x3 of degree at most 19. Let Ni = NG0(xi), i = 1, 2, 3. By Lemma 14(a) and by (9), ifm ≥ 9k/5, then
m− 1 > 9(k− 1)/5 and

C(m, k, 4) ≥
⌈m
k
C(m− 1, k− 1, 3)

⌉
≥

⌈
9
5
11
⌉
= 20. (10)

Nowwe repeat the second part of the proof of Case 6 with quadruples in place of triples and 5-tuples in place of quadruples.
We will find a K ∗3,n0−15-minor of G0 if n0 − (19+ 3+ 4+ 4) ≥

9
5 (
n0
2 + 8)which holds for n0 ≥ 444. �

Lemma 24. Let t ≥ 432. Then n0 ≥ 1.1t.

Proof. Suppose that d := n0 − t ≤ 0.1t . If d ≤ 22 then we are done by the previous lemma. So suppose that d ≥ 23. By
(q1), H0 has three vertices, v1, v2, v3, with degree at most d− 3. So, the degrees of v1, v2, v3 in G0 are at least t + 2. We will
construct disjoint connected dominating sets D1,D2,D3 as follows.
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STEP 0: For j = 1, 2, 3, let D1,j = {vj} and Q1,j = V (G0)− NG0(vj)− vj.
STEP i, i ≥ 1: Consecutively, for j = 1, 2, 3, if Qi,j = ∅, then let Dj := Di+1,j := Di,j. When all Dj are defined, then stop. If
Qi,j 6= ∅, then let Fi,j := Qi,j ∪

⋃j−1
`=1 Di+1,` ∪

⋃3
`=j Di,`, then choose in V (G0) − Fi,j a vertex vi,j that has the most neighbors

in Qi,j and let Di+1,j := Di,j ∪ {vi,j} and Qi+1,j := Qi,j − NG0(vi,j)− vi,j.
By definition, for all i and j, Qi,j is exactly the set of vertices of G0 not dominated by Di,j. Since we always choose vi,j 6∈ Qi,j,

G0[Di,j] is a connected subgraph of G0 for all i and j. Also, Di,j and Di,j′ are disjoint if j′ 6= j. We now show by induction on i
that for each j ∈ {1, 2, 3}, if Qi,j 6= ∅, then for each x ∈ Qi,j,

|V (G0)− Fi,j|
|NG0(x)− Fi,j|

<
5
2
. (11)

It will be easier to prove a slightly stronger inequality

n0 − |NG0(x)|
|NG0(x)− Fi,j|

<
3
2
. (12)

By (p3), since n0 < 1.1t , we have n0 − |NG0(x)| < 1.1t − t/2 − 2 = 0.6t − 2. By the definition of Qi,j, for each x ∈ Qi,j,
NG0(x)− Fi,j = NG0(x)− (Fi,j − Di,j). Since

|Fi,j − Di,j| ≤ 2i+ |Qi,j|, (13)

we will estimate |Qi,j|.
By the choice of v1, v2, and v3, |Q1,j| ≤ d− 3 and hence |F1,j − D1,j| ≤ d− 1 < 0.1t − 1. So,

|NG0(x)− F1,j| ≥ 0.5t + 2− (0.1t − 1) ≥ 0.4t + 1,

and (since n0 − |NG0(x)| < 0.6t − 2) (12) (and hence (11), as well) holds for i = 1. Observe that

if (11) holds for a pair (i, j), then vi+1,j has more than 2|Qi,j|/5 neighbors in Qi,j. (14)

Thus if (11) holds for a pair (i, j) and |Qi,j| ≥ 3, then by (14),

|Fi+1,j − Di+1,j| ≤ |Fi,j − Di,j| + 2− (|Qi,j| − |Qi+1,j|) ≤ |Fi,j − Di,j| + 2− d2|Qi,j|/5e ≤ |Fi,j − Di,j|.

It follows that the inequality

|Fi,j − Di,j| ≤ 0.1t − 1 (15)

holds if |Qi−1,j| ≥ 3 and |Fi−1,j − Di−1,j| ≤ 0.1t − 1. Let i0 be the smallest i ≥ 2 such that |Qi−1,j| ≤ 2. If Qi0,j = ∅, then (12)
is proved for all i. Suppose that |Qi0,j| ≥ 1. Then inequalities (15) and (12) hold for i = i0 − 1. This implies that |Qi0,j| = 1
and that

|Fi0,j − Di0,j| ≤ |Fi0−1,j − Di0−1,j| + 2− (|Qi0,j| − |Qi0−1,j|) ≤ (0.1t − 1)+ 2− 1 = 0.1t.

So, if Qi0,j = {xj}, |N(xj)− Fi0,j| > 0.4t and hence Qi0+1,j = ∅. Thus in all cases (12) holds.
By (11) and (14), if Qi,j 6= ∅, then

|Qi+1,j| <
3
5
|Qi,j|. (16)

Let k = dlog5/3(d− 3)e. By (16) applied k times,

|Qk+1,j| < |Q1,j|
(
3
5

)k
≤ (d− 3)

(
3
5

)log5/3(d−3)
= 1.

Hence Qk+1,j = ∅ for each j ∈ {1, 2, 3} and so our algorithm constructs by the end of Step k disjoint connected dominating
sets D1,D2, and D3. In particular, this means that G0 has a K ∗3,n0−3(k+1)-minor.
It is left to show that 3(k + 1) ≤ d, i.e., that 3dlog5/3(d − 3)e ≤ d − 3. Since d − 3 ≥ 20, it is enough to show that for

integer x ≥ 20, log5/3 x ≤ bx/3c, which is true. For example, log5/3 20 < 5.87. �

5. Graphs with a dense subgraph of moderate order

Lemma 25. Let 2 ≤ s ≤ 3, t ≥ 500, and let G be a 2s-connected graph that contains a vertex subset U with

t + 19(s− 1) ln t ≤ |U| ≤ 2t + 20(s− 1) ln t

such that δ(G[U]) ≥ 2t/5+36(s−1) ln t. ThenGhas a K ∗s,t-minor such that the pre-image of each vertex of theminor intersects U.
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Proof. Let u = |U|. Perform the following procedure on G[U]. Let i = 1 and G1 = G[U]. Step i: If every component of Gi has
connectivity greater than 10(s− 1) ln t and the number of components in Gi is exactly i, then stop. Otherwise, choose a set
Si with |Si| = b10(s− 1) ln tc so that Gi − Si has more than i components and let Gi+1 = Gi − Si.
Let G′ be the resulting graph. Let H1,H2, . . . ,H` be the components of the graph G′ and let Ui = V (Hi) and ui = |Ui| for

i = 1, . . . , `. We may assume that u1 ≥ · · · ≥ u`. First, we show that

` ≤ 4. (17)

Suppose that (17) does not hold. Consider G4. By construction, G4 has at least four components. Since δ(G4) ≥ δ(G)− 30
(s − 1) ln t ≥ 0.4t + 6(s − 1) ln t , each component of G4 has more than 0.4t + 6(s − 1) ln t vertices. So, if G4 has at least
five components, then |V (G4)| > 5(0.4t + 6(s− 1) ln t) = 2t + 30(s− 1) ln t , a contradiction. Moreover, each component
of G4 that is not 10(s− 1) ln t-connected has more than 2δ(G4)− 10(s− 1) ln t ≥ 0.8t + 2(s− 1) ln t vertices. So, if there
is such a component, then |V (G4)| > 0.8t + 2(s − 1) ln t + 3(0.4t + 6(s − 1) ln t) = 2t + 20(s − 1) ln t , a contradiction.
This proves (17).
Case 1: ` = 1. This means that H1 = G[U], u1 = u, and the connectivity of H1 is greater than 10(s − 1) ln t . Let us check
that H1 satisfies the conditions of Lemma 13 with k = d0.4t + 4(s− 1) ln te and n = u. Indeed, in this case u ≤ 5k; hence
u/(u− k) ≥ 5/4, and so for t ≥ 500,

2(s− 1) logu/(u−k) u ≤ 2(s− 1) log5/4 u < 9(s− 1) ln(u).

Hence by this lemma, U contains s disjoint subsets A1, . . . , As such that, for every i = 1, . . . , s, (i) G[Ai] is connected,
(ii) |Ai| ≤ 2 logu/(u−k) u, and (iii) Ai dominates H1 −

⋃i−1
j=1 Aj.

Contracting each of A1, . . . , As into a vertex, we find a K ∗s,u−2s logu/(u−k) u-minor of G. We want to prove that u −
2s logu/(u−k) u ≥ t , i.e. that for 0.4t ≤ k < t ,

f (u, k) = u ln
u
u− k

− 2s ln u− t ln
u
u− k

≥ 0. (18)

For this we show first that f ′u(u, k) ≥ 0 when 0.4t ≤ k < t and u ≥ t . Indeed,

f ′u(u, k) = ln
u
u− k

+
u
u
−

u
u− k

−
2s
u
− t

(
1
u
−

1
u− k

)
= ln

u
u− k

−
k(u− t)
u(u− k)

−
2s
u
.

Hence,

(uf ′u(u, k))
′

u = ln
u
u− k

−
k
u− k

−
k(t − k)
(u− k)2

.

Since ln(1+ x) < x for x = k
u−k , function uf

′(u) decreases for u > t . So, to check the inequality f ′u(u, k) ≥ 0 for u ∈ (t, 2t],
it is enough to check it for u = 2t . For u = 2t ,

(f ′u(u, k))
′

k =
1
u− k

−
u− t
u

u
(u− k)2

=
t − k
(u− k)2

> 0.

So,

f ′u(2t, k) ≥ f
′

u(2t, 0.4t) = ln
2t
1.6t
−
0.4t · t
1.6t · 2t

−
2s
2t
= ln

5
4
−
1
8
−
s
t
.

Since ln 1.25 > 0.22, s ≤ 3 and t > 200, f ′u(2t, k) > 0 and f (u, k) grows with u on (t, 2t]. Let u0 = t + d2s log3/2 1.2te.
Since s ≤ 3 and t ≥ 500, u0 ≤ 1.2t . Hence

u0
u0−k
≥ 3/2 and

u0 − 2s logu0/(u0−k) u0 ≥ t + 2s log3/2 1.2t − 2s log3/2 u0 ≥ t.

Since log3/2 1.2t ≤ 2.6 ln t for t ≥ 500, this proves Case 1 for u ≤ 2t . If u ∈ [2t, 2t + 20(s − 1) ln t], then it is enough to
show that f1(u) = u− 2s log5/4 u ≥ t . Since for u ≥ 2t ≥ 1000, f ′1(u) = 1−

2s
u ln 5/4 > 1−

9s
u > 0, we have for such u

f1(u) ≥ f1(2t) > 2t − 9s ln 2t ≥ 2t − 27 ln 2t > t.

This finishes Case 1.
Case 2: ` = 2. Then δ(G′) ≥ δ(G[U]) − 10(s − 1) ln t ≥ 0.4t + 26(s − 1) ln t . For j = 1, 2, let uj = |V (Hj)|. If
u1 > t + 6(s − 1) ln t , then we simply repeat the proof of Case 1 for H1. The only difference would be the lower bound
on δ(G′), but the new bound is sufficient for the argument. Suppose that u2 ≤ u1 ≤ t+6(s−1) ln t . Since G is 2s-connected,
there are s pairwise disjoint paths P1, . . . , Ps connecting V (H1) with V (H2). We may assume that for i = 1, . . . , s and
j = 1, 2, V (Pi) ∩ V (Hj) = {xi,j}. Let H ′j = Hj − {x1,j, . . . , xs,j}. Then for j = 1, 2, δ(H

′

j ) ≥ δ(G
′) − s > 0.4t + 25(s − 1) ln t .

So each of H ′j satisfies the conditions of Lemma 13 with k = d0.4t + 3(s − 1) ln te and nj = u′j = uj − s. Hence
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V (H ′1) ∪ V (H
′

2) contains disjoint subsets A1,1, A2,1, . . . , As,2 such that for every i = 1, . . . , s and j = 1, 2, (i) G[Ai,j] is
connected, (ii) |Ai,j| ≤ 2 loguj/(uj−k) uj, and (iii) Ai,j dominates H

′

j −
⋃i−1
q=1 Aq,j.

Since uj ≤ 2.5k, by (ii),

2∑
j=1

s∑
i=1

|Ai,j| ≤ 4s log5/3 t + 6(s− 1) ln t < 4s · 2 ln t + 6(s− 1) ln t < 8.5s ln t. (19)

For j = 1, 2, choose in V (H ′j )−
⋃s
i=1 Ai,j vertices y1,j, . . . , ys,j so that xi,jyi,j ∈ E(G

′) for i = 1, . . . , s. We can do this because
each xi,j has at least 0.4t + 26(s − 1) ln t neighbors in Hj. For i = 1, . . . , s, let Bi = Ai,1 ∪ Ai,2 ∪ V (Pi) ∪ {yi,1, yi,2}. By the
dominating properties of Ai,j, yi,j has a neighbor in Ai,j. Hence each of B1, . . . , Bs induces a connected subgraph in G and
dominates the set X = V (H ′1) ∪ V (H

′

2)−
⋃2
j=1
⋃s
i=1(Ai,j ∪ {yi,j}). Under the assumptions of the case, by (19),

|X | ≥ |U| − |S1| − 2s−
2∑
j=1

s∑
i=1

|Ai,j| − 2s ≥ |U| − 10(s− 1) ln t − 8.5s ln t − 4s ≥ |U| − 18s ln t.

So, if |U| ≥ t + 18s ln t , then the case is proved. Suppose |U| < t + 18s ln t . Then u1 < |U| − δ(G′) ≤ t + 18s ln t − (2t/5+
36(s− 1) ln t) ≤ 0.6t and u2 ≤ u1. So, repeating the above argument, instead of (19), we get

2∑
j=1

s∑
i=1

|Ai,j| ≤ 4s log3 0.6t < 4s(ln t + ln 0.6) < 4s ln t − 2s. (20)

Hence

|X | ≥ |U| − 10(s− 1) ln t − (4s ln t − 2s)− 4s ≥ |U| − 18(s− 1) ln t − 2s ≥ t.

Case 3: ` = 3. Since δ(G′) ≥ 0.4t + 16(s − 1) ln t , u1 ≥ u2 ≥ u3 ≥ 1 + 0.4t + 16(s − 1) ln t . For j = 1, 2, 3, choose
Fj ⊂ Uj with |F1| = 2s and |F2| = |F3| = s. Since G is 2s-connected, G contains 2s vertex-disjoint paths P1, . . . , P2s from
F1 to F2 ∪ F3. By Lemma 11, P1 ∪ . . . ∪ P2s contains s vertex-disjoint (U1,U2,U3)-connecting pairs of paths (Qi,1,Qi,2),
i = 1, . . . , s. Let Q =

⋃s
i=1
⋃2
j=1 V (Qi,j). For j = 1, 2, 3, let H

′

j = Hj − Q and u
′

j = |V (H
′

j )|. Then for j = 1, 2, 3,
δ(H ′j ) ≥ δ(G

′)− 2s > 0.4t + 15(s− 1) ln t and hence u′j > 1+ 0.4t + 15(s− 1) ln t .
As in Case 2, u1 ≤ t+6s ln t . Moreover, u2 ≤ (|U|−20(s−1) ln t−u3)/2 ≤ 0.8t and u3 ≤ (|U|−20(s−1) ln t)/3 ≤ 2t/3.

So, each of H ′j (j = 1, 2, 3) satisfies the conditions of Lemma 13 with k1 = d0.4t + 2.5s ln te, u′1/(u
′

1 − k1) ≥ 5/3,
k2 = k3 = d0.4te, u′2/(u

′

2 − k2) ≥ 2 and u
′

3/(u
′

3 − k3) ≥ 5/2. Hence V (H
′

1) ∪ V (H
′

2) ∪ V (H
′

3) contains disjoint subsets
A1,1, A2,1, . . . , As,3 such that, for every i = 1, . . . , s and j = 1, 2, 3, (i) G[Ai,j] is connected, (ii) |Ai,j| ≤ 2 logu′j/(u′j−kj) u

′

j , and

(iii) Ai,j dominates V (H ′j )−
⋃i−1
q=1 Aq,j.

By construction,
∑3
j=1
∑s
i=1 |Ai,j| < 2s(log5/3 u1 + log2 u2 + log5/2 u3). Since u1 ≤ 1.2t (cf. Case 1) and u3 ≤ u2 < t ,

log5/3 u
′

1 + log2 u
′

2 + log5/2 u
′

3 ≤ ln t
(
1+ ln 1.2/ ln t

ln 5/3
+
1
ln 2
+

1
ln 5/2

)
,

so for t ≥ 500 we have

3∑
j=1

s∑
i=1

|Ai,j| < 2s · 4.6 ln t = 9.2s ln t. (21)

By the definition of (U1,U2,U3)-connecting pairs, for j = 1, 2, 3 and i = 1, . . . , s, (Qi,1 ∪ Qi,2) ∩ Uj 6= ∅. Let xi,j ∈
(Qi,1∪Qi,2)∩Uj. Since each xi,j has at least 0.4t+16(s−1) ln t neighbors inHj, for j = 1, 2, 3we can choose inV (H ′j )−

⋃s
i=1 Ai,j

vertices y1,j, . . . , ys,j so that xi,jyi,j ∈ E(G′) for i = 1, . . . , s. For i = 1, . . . , s, let Bi = V (Qi,1 ∪ Qi,2) ∪
⋃3
j=1(Ai,1 ∪ {yi,j}).

By the dominating properties of Ai,j and the choice of yi,j, each of B1, . . . , Bs induces a connected subgraph in G and
dominates the set

X = V (H ′1) ∪ V (H
′

2) ∪ V (H
′

3)−

3⋃
j=1

s⋃
i=1

(Ai,j ∪ {yi,j}).

Furthermore, by (21),

|X | ≥ 3(1+ 0.4t + 15(s− 1) ln t)− |Q ∩ (U1 ∪ U2 ∪ U3)| −
3∑
j=1

s∑
i=1

|Ai,j ∪ {yi,j}|

≥ 3+ 1.2t + 45(s− 1) ln t − 12− 9.2s ln t − 3s = 1.2t + 35.8(s− 1) ln t − 9− 3s > t.
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Case 4: ` = 4. Since δ(G′) ≥ 0.4t + 6(s − 1) ln t , u1 ≥ · · · ≥ u4 ≥ 1 + 0.4t + 6(s − 1) ln t . Hence u2 ≤ (|U| −
30(s− 1) ln t − u3 − u4)/2 < 0.6t and u4 ≤ u3 ≤ u2. We can now repeat the proof for Case 3 with H2,H3 and H4 in place
of H1,H2 and H3 and with k2 = k3 = k4 = 0.4t . The disadvantage is a slightly smaller minimum degree, but the advantage
is that uj

uj−0.4t
≥

0.6t
0.6t−0.4t = 3, and so instead of (21) we will have

4∑
j=2

s∑
i=1

|Ai,j| < 2s · 3 ln u′j < 6s ln t.

This finishes the proof of the lemma. �

6. The final argument

We are now ready to prove Theorem 4. Recall that G0 is our smallest counter-example to the theorem.
Case 1: G0 is 6-connected.
Case 1.1: G0 has a vertex vwith t+19 ln t ≤ d(v) ≤ 2t+20 ln t . Then G0−v is 5-connected and by (p2), δ(G0[N(v)]) > t/2.
Since t ≥ 3000, 2t/5 + 36 ln t ≤ t/2, so G0 − v with U = N(v) satisfies the conditions of Lemma 25 for s = 2. Hence by
this lemma, G0 − v has a K ∗2,t-minor such that the pre-image of each vertex of the minor intersects N(v). Adding v, we will
get a K ∗3,t-minor.
Case 1.2: G0 has no vertices v with t + 19 ln t ≤ d(v) ≤ 2t + 20 ln t . Let Vsm be the set of vertices of degree less than
t + 19 ln t . We first show that

|Vsm| ≤ t + 38 ln t. (22)

Assume that |Vsm| = ` > t + 38 ln t . Order v1, . . . , v`, the vertices in Vsm, so that for all 1 ≤ i < j ≤ `,∣∣∣∣∣ i⋃
q=1

N[vq]

∣∣∣∣∣ ≥
∣∣∣∣∣ i−1⋃
q=1

N[vq]

∣∣∣∣∣ ∪ N[vj]. (23)

In other words, having already defined v1, . . . , vi−1, we choose as vi a vertex v with maximum |N[v] −
⋃i−1
q=1 N[vq]|. If (22)

does not hold, then |
⋃`
q=1 N[vq]| > t + 38 ln t . Let i0 be the largest i such that |

⋃i
q=1 N[vq]| ≤ t + 38 ln t . Let us check that∣∣∣∣∣

i0+1⋃
q=1

N[vq]

∣∣∣∣∣ ≤ 2t + 20 ln t. (24)

By the definition of Vsm, i0 ≥ 1, and if i0 = 1, then (24) holds. So, let i0 ≥ 2. If (24) does not hold, then by the definition
of i0, |N[vi0+1] −

⋃i0
q=1 N[vq]| > t − 18 ln t . But then by the ordering of v1, . . . , vi1 , |N[vi0 ] −

⋃i0−1
q=1 N[vq]| > t − 18 ln t

and |N[vi0−1] −
⋃i0−2
q=1 N[vq]| > t − 18 ln t , so |

⋃i0
q=1 N[vq]| > 2t − 36 ln t . But for t ≥ 6300, 2t − 36 ln t > t + 38 ln t , a

contradiction to the definition of i0. Thus (24) holds. Then G0 and U =
⋃i0+1
q=1 N[vq] satisfy the conditions of Lemma 25 for

s = 3, since t ≥ 6300. This proves (22).
Since every vertex not in Vsm has degree at least 2t + 20 ln t , by (p1),

t|Vsm|
2
+ 2t(n0 − |Vsm|) ≤

∑
v∈V (G0)

dG0(v) ≤ (t + 3)(n0 − 2)+ 4 < (t + 3)n0.

It follows that n0 −
3n0
t <

3|Vsm|
2 and hence by (22),

n0 <
3t|Vsm|
2(t − 3)

≤ 2t
3(t + 38 ln t)
4(t − 3)

< 2t.

Thus if n0 ≥ t + 38 ln t , then we apply Lemma 25 for s = 3 to G0 and U = V (G0). If n0 < t + 38 ln t , then, since t ≥ 6300,
n0 < t + 0.1t , and by Lemma 24, the theorem holds for G0.
Case 2: G0 is not 6-connected. Let X be a separating set in G0 with |X | ≤ 5. Let V1 and V2 be vertex sets of some two
connected components of G0 − X . By definition, each of V1 and V2 is 5-separable, and hence 9-separable. For j = 1, 2, let
Wj be an inclusion-minimal 9-separable subset of Vj, let Sj = N(Wj) − Wj, and let Gj = G0[Wj ∪ Sj]. By (p2), for j = 1, 2,
δ(Gj) > t/2 and by Lemma 10 for k = 9, graph Gj is 6-connected.
Case 2.1: |V (G1)| ≥ t + 38 ln t . If |V (G1)| ≤ 2t , then G1 with U = V (G1) satisfies the conditions of Lemma 25 for s = 3. So,
we may assume that

|V (G1)| > 2t. (25)
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IfW1 contains a vertex v with t + 19 ln t ≤ d(v) ≤ 2t + 40 ln t , then we simply repeat the argument of Cases 1.1 and 1.2
with G1 in place of G0. If not, we let Vsm be the set of vertices inW1 of degree less than t+19 ln t . Note that we do not include
vertices of S1 into Vsm. Repeating the proof of (22) word by word, we get that it holds for our new definition of Vsm. By the
minimality of G0, e(G1) ≤ t+3

2 (|W1| + |S1| − 2)+ 1. So, since every vertex inW1 − Vsm has degree at least 2t + 40 ln t ,

(t + 3)(|Vsm| + |S1|)
2

+ 2t(|W1 − Vsm|) ≤
∑

w∈S1∪W1

dG1(w) < (t + 3)(|W1| + |S1|).

Since |S1| ≤ 9, this and (22) yield for t > 2000

|W1| ≤
3t(|Vsm| + 3+ 9/t)

2(t − 3)
<
3t(t + 38 ln t + 3+ 9/t)

2(t − 3)
<
3t(1.2t − 5)
2(t − 3)

< 1.8t < 2t − 9.

Hence |W1| + |S1| < 2t , a contradiction to (25). This proves Case 2.1.
Case 2.2: For j = 1, 2, |V (Gj)| ≤ t + 38 ln t . For eachw ∈ Wj, d(w) ≤ |Wj| + |Sj| − 1. On the other hand, by the minimality
of G0, e(G0)− e(G0 −Wj) ≥ (t + 3)|Wj|/2. Thus, since |Sj| ≤ 9,

(t + 3)|Wj| ≤
∑
w∈Wj

d(w)+ |Sj||Wj| ≤ |Wj|(|Wj| + 2|Sj| − 1) ≤ |Wj|(|Wj| + 17),

and hence |Wj| ≥ t − 14. Thus, if at most two vertices of Gj have degree greater than t − 12, then

(t + 3)|Wj| ≤
∑

w∈Wj∪Sj

dGj(w) ≤ 2(|Wj| + |Sj| − 1)+ (t − 12)(|Wj| + |Sj| − 2)

≤ (t − 10)|Wj| + 16+ 7(t − 12).

It follows that 13|Wj| ≤ 7(t − 12) + 16, a contradiction to |Wj| ≥ t − 14. So, Gj contains some three vertices v1,j, v2,j and
v3,j of degree at least t − 11 in Gj.
By (p4), there are three vertex-disjoint S1, S2-paths P1, P2, and P3. We may assume that for i = 1, 2, 3 and j = 1, 2,

the only common vertex of Pi and Sj is pi,j. We also may assume that if pi,j ∈ {v1,j, v2,j, v3,j}, then pi,j = vi,j. Let Fj =
{v1,j, v2,j, v3,j, p1,j, p2,j, p3,j} for j = 1, 2. If pi,j 6= vi,j and pi,jvi,j 6∈ E(Gj), then pi,j and vi,j have at least

dGj(pi,j)+ dGj(vi,j)− |V (Gj)| ≥
t + 3
2
+ (t − 11)− (t + 38 ln t) > 10

common neighbors. Thus, we can choose distinct vertices q1,j, q2,j, q3,j ∈ V (Gj)− Fj so that qi,j is a common neighbor of pi,j
and vi,j if pi,j 6= vi,j and pi,jvi,j 6∈ E(Gj). For j = 1, 2, let F ′j = Fj ∪ {q1,j, q2,j, q3,j} and let Mj be the set of common neighbors
of v1,j, v2,j and v3,j in V (Gj)− F ′j . By definition, for t ≥ 6000,

|Mj| ≥
3∑
i=1

dG1(vi,j)− 2|V (Gj)| − |F
′

j | ≥ 3(t − 11)− 2(t + 38 ln t)− 9 = t − 76 ln t − 42 > 7t/8.

For i = 1, 2, 3, let Bi = V (Pi) ∪ {vi,1, vi,2, qi,1, qi,2}. Then G0[Bi] is connected and contracting each Bi into a vertex, we get a
K3,7t/4-minor of G0, where the pre-images of the remaining vertices are the vertices inM1∪M2. Since K3,t+2 has a K ∗3,t-minor,
this finishes the proof of the theorem. �

7. Case n0 = t + 5

In this section we deliver the postponed proof of Lemma 19 that n0 6= t + 5. We assume that n0 = t + 5 and will
eventually get a contradiction. As was noted, in this case it is easier to consider the complement,H0, of our counter-example
G0 than G0 itself. By (q1),

e(H0) < 1.5n0 − 3. (26)

Lemma 26. H0 is connected.

Proof. Suppose first that each component of H0 has at least three vertices. Let x be a vertex of degree at most 2 in H0.
Contracting in G0 the neighbors of x in H0 with vertices in other components of H0, we find a K3,n−5-minor. Similarly, if H0
has a K2-component C with V (C) = {y1, y2}, then it has another vertex x of degree at most 2 in H0 − C . If NH0(x) ⊆ {z1, z2},
then we contract in G0 the edges y1z1 and y2z2. Suppose finally that H0 has an isolated vertex x. Let H1 = H0 − x and
n1 = |V (H1)| = n0−1. Since e(H1) = e(H0) < 1.5(n1−1), by Lemma 15,H1 contains two disjoint pairs (y1, y2) and (z1, z2)
of vertices at distance at least 3. Thus, contracting in G0 edges y1y2 and z1z2, we get a graph containing K ∗3,t . �

Lemma 27. If a vertex of H0 is adjacent to two degree-1 vertices, then there are no other degree-1 vertices in H0.
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Fig. 3. Some kinds of tiny components.

Proof. Suppose that a vertex x ∈ V (H0) is adjacent to degree-1 vertices v1 and v2, and that there is another degree-1 vertex
v3 adjacent to a vertex y (possibly, y = x). Then v1, v2 and v3 are isolated in H0 − x− y, i.e. G0 contains K ∗3,t . �

For A ⊂ V (H0), a component C of H0 − A is tiny if |V (C)| ≤ 2 and e(C, A) ≤ 2.
We need a couple of statements on tiny components. For this, let us first give names to some of these components. We

will say that a tiny component C of H0 − A is:

(c1) a V -component if |V (C)| = 1 and e(C, A) = 2,
(c2) a D-component if |V (C)| = 2 and both vertices in C are adjacent to the same vertex in A,
(c3) a Y -component if |V (C)| = 2 and two vertices in A are adjacent to the same vertex in C ,
(c4) a U-component if |V (C)| = 2 and the vertices in C are adjacent to distinct vertices in A.

(See Fig. 3.)

Lemma 28. For every x ∈ V (H0), the number of tiny components in H0 − x is at most 2.

Proof. Suppose that H0 − x has tiny components C1, C2, and C3. If |V (C1)| = |V (C2)| = |V (C3)| = 1, then we have K ∗3,t+1 in
G0−x, so suppose V (C1) = {v1, v2}. If |V (C2)| = |V (C3)| = 1, thenwe have K ∗3,t in G0−x−v1, so suppose V (C2) = {w1, w2}.
In this case the graphG′0 obtained fromG0−xby contracting edge v1w1 has three all-adjacent vertices: v2, w2, and v1∗w1. �

Lemma 29. For every x1, x2 ∈ V (H0), the number of tiny components in H0 − x1 − x2 that are not Y -components is at most 2.

Proof. Suppose that H0− x1− x2 has tiny components C1, C2, and C3 that are not Y -components. For convenience, suppose
that V (Ci) = {vi,1, . . . , vi,|V (Ci)|} for i = 1, 2, 3. If all of them are singletons, then G0 contains K

∗

3,t . So, we may assume that
|V (C1)| = 2.
Case 1: Vertex xi has no neighbors in C1 for some i ∈ {1, 2}. If, say, C3 is a singleton, then contracting in G0 − x3−i the edge
v1,1xi we get a (3+ t)-vertex graph with three all-adjacent vertices, namely v1,2, v1,1 ∗ xi, and the vertex in C3. So we may
assume that |V (C2)| = |V (C3)| = 2. If for some ` ∈ {2, 3} and j ∈ {1, 2}, v`,jxi 6∈ E(H0), then contracting in G0 − x3−i the
edge v1,1v`,3−j we get a (3 + t)-vertex graph with three all-adjacent vertices: v1,2, v`,j, and v1,1 ∗ v`,3−j. Thus both C2 and
C3 are D-components in H0 − xi. Switching the roles of xi and x3−i, we again get the same case and repeating the proof get a
contradiction.
Case 2: Both x1 and x2 have neighbors in C1. In other words, C1 is a U-component (recall that we forbid Y -components). We
may assume that x1v1,1, x2v1,2 ∈ E(H0).
Case 2.1: Some vertex u is at distance at least 3 from some xi in H0. If C2 and C3 are singletons, then contracting in G0 − x3−i
the edge xiu we get a (3 + t)-vertex graph with three all-adjacent vertices: v2,1, v3,1, and xi ∗ u. So, we may assume that
|V (C2)| = 2. Then contracting in G0 the edges xiu and v1,3−iv2,3−i we get a (3 + t)-vertex graph with three all-adjacent
vertices: v1,i, v2,i, and xi ∗ u.
Case 2.2: Each vertex in H0 is at distance at most 2 from x1 and from x2. Let Ni,j denote the set of vertices in H0 that are at
distance i from x1 and at distance j from x2. By definition, v1,1 ∈ N1,2 and v1,2 ∈ N2,1. We observe some properties of vertices
in Ni,j.

Each u ∈ N2,2 of degree at most 2 has a neighbor in N1,1. (27)

Indeed, suppose that u ∈ N2,2 has at most two neighbors, say w1 and w2, and that w1, w2 6∈ N1,1. Since Case 2.1 does not
hold, we may assume thatw1 ∈ N1,2 andw2 ∈ N2,1. Then contracting in G0 edgesw1v1,2 andw2v1,1 we get a (3+ t)-vertex
graph with three all-adjacent vertices: u, w1 ∗ v1,2, andw2 ∗ v1,1.

No two vertices u1, u2 ∈ N2,2 of degree 1 in H0 have a common neighbor. (28)

Indeed, assume that w is the only neighbor of u1, u2 ∈ N2,2. Then contracting in G0 the vertices w, v1,1, and v1,2 into the
new vertex z we get a (3+ t)-vertex graph with three all-adjacent vertices: z, u1, and u2.

Neither of x1 and x2 has a neighbor of degree 1. (29)
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Indeed, suppose that x1 has a neighborw of degree 1. If C2 and C3 are singletons, thenG0−x1−x2 has all-adjacent vertices
w, v2,1, and v3,1. So, we may assume that |V (C2)| = 2. Then contracting in G0 − x1 edge v1,2v2,2 we get a (3 + t)-vertex
graph with three all-adjacent vertices: v1,1, v2,1, andw.
Nowwe use discharging to find a contradiction. At the beginning, each edge has charge 1 and so the total charge is e(H0).

The edges give their charges to vertices according to the following rules.

(R1) If both ends of an edge e are in N2,2 or both are in N1,1 ∪ N1,2 ∪ N2,1, then e gives 1/2 to either of its ends.
(R2) If exactly one of the ends of e is in {x1, x2}, then e gives 1 to the other end.
(R3) If e = xy, x ∈ N2,2, and y ∈ N1,2 ∪ N2,1, then e gives 1/2 to either of its ends.
(R4) If e = xy, x ∈ N2,2, and y ∈ N1,1, then e gives 1 to x. Moreover, if dH0(x) = 1, then y forwards 0.5 from its charge of 2

received from the edges x1y and x2y by Rule (R2) to x.

We claim that the resulting charge of each vertex apart from x1 and x2 is at least 3/2, so the total charge is at least 3(n−2)/2,
a contradiction to (26). To prove the claim, consider all possible cases. If w ∈ N2,2 has degree at least 3, then by (R1), (R3),
and (R4), it receives at least 1/2 from each incident edge. If w ∈ N2,2 has degree exactly 2, then by (27) and (R4), at least
one of the incident withw edges gives 1 tow, sow gets at least 3/2 in total. Ifw ∈ N2,2 has degree 1, then by (R4),w gets 1
from the incident edge and 1/2 from the neighbor. Ifw ∈ N1,1, then it gets 2 from the edges x1w and x2w by Rule (R2), and
by (28) and Rule (R4), gives 1/2 to the at most one neighbor of degree 1 in N2,2.
Suppose thatw ∈ N1,2 ∪N2,1. Thenw gets 1 from the edge connectingw with {x1, x2}. Moreover, by (29),w has another

incident edge which gives 1/2 tow either by (R1) or by (R3). This proves the claim and thus the lemma. �

Lemma 30. If n0 ≥ 200, then H0 has no dominating set with at most
√
n0/2− 2 vertices.

Proof. Suppose that H0 has a dominating set S with |S| = s ≤
√
n0/2 − 2. Let S ′ = V (H0) − S and H ′0 = H0[S

′
]. Let m be

the number of tree components in H ′0. Since S dominates S
′, it intersects at least |S ′| edges. So, e(H ′0) < 3n0/2− 3− |S

′
| <

0.5n0 − 3+ s. It follows thatm ≥ 3+ 0.5n0 − 2s. Let ci denote the number of tree components of H ′0 with i vertices and ci,j
denote the number of tree components of H ′0 with i vertices that are connected with S by exactly j edges.

Claim 1:
∑n0
i=1((s− 1)ci,1 + ci,2) ≤ 2

( s
2

)
.

Proof. Since S is dominating, ci,1+ ci,2 = 0 for every i ≥ 3 and so
∑n0
i=1((s− 1)ci,1+ ci,2) counts only tiny components of

H0 − S. For the same reason, H0 − S has no Y -components. By Lemma 29, the sum over all pairs {x1, x2} ⊆ S of the number
of tiny components of H0 − {x1, x2} is at most 2

( s
2

)
. Furthermore, each component of H0 − S that has only one neighbor in

S is counted (s− 1) times in this sum. This proves the claim.
The number of edges in all components of H ′0 is at least |V (H

′

0)| −m = n0 − s−m. Thus by Claim 1, the total number of
edges in H0 is at least

e(H ′0)+
n∑
i=1

n2∑
j=1

jci,j ≥ (n0 − s−m)+ 3m−
n0∑
i=1

(2ci,1 + ci,2) ≥ n0 − s+ 2m− 2
( s
2

)
.

Sincem ≥ 3+ 0.5n0 − s and s ≤
√
n0/2− 2, for n0 ≥ 200 this is at least

2n0 + 6− 4s− s2 ≥ 2n0 + 10− (s+ 2)2 ≥ 2n0 + 10−
n0
2
>
3n0
2
,

a contradiction. �

Lemma 31. Each 2-vertex in H0 has a neighbor of degree greater than
√
n0/2− 4.

Proof. Suppose that neighbors of v ∈ V (H0) are x and y of degree at most
√
n0/2 − 4. By Lemma 30, each of the sets

N(x)−v+y and N(y)−v+ x does not dominate at least three vertices. So, we can choose distinct vertices x′ not dominated
by N(x)−v+y and y′ not dominated by N(y)−v+ x. By definition, dH0(x, x

′) ≥ 3 and dH0(y, y
′) ≥ 3. Contracting the edges

xx′ and yy′ in G0 we get a (3+ t)-vertex graph with all-adjacent vertices v, x ∗ x′, and y ∗ y′. �

A 2-vertex in H0 is weak if at least one of its neighbors has degree at most 5.

Lemma 32. If a vertex v ∈ V (H0) has at least five neighbors that are either 1 -vertices or weak 2-vertices, then it has at least five
neighbors of degree at least 3.

Proof. Suppose that v ∈ V (H0) is adjacent to ` 1-vertices u1, . . . , u`, to s weak 2-vertices z1, . . . , zs, and to k vertices
x1, . . . , xk of degree at least 3, where `+ s ≥ 5 and k ≤ 4. By Lemma 27, ` ≤ 2. In particular, s ≥ 3. Vertices zi and zj form
a weak pair if they are adjacent to each other.
Claim 1: There are no weak pairs.
Proof. Suppose (z1, z2) is a weak pair. Let y be the neighbor of z3 other than v. We delete v and contract in G0−v the edge

z1y. Now the vertices z2, z3, and z1 ∗ y are all-adjacent ones in the graph obtained.
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For 1 ≤ i ≤ s, let the neighbor of zi that is not v be yi. By Claim 1, no yj coincides with any zi. Some yj can coincide with
some other yj′ and with some xi. Let X = {x1, . . . , xk} and Y = {y1, . . . , ys}.
Claim 2: If yj ∈ Y − X , then it has a neighbor in X .
Proof. Suppose that yj′ ∈ Y −X and has no neighbor in X . Contract in G0 edge vyj′ . In the resulting graph G′0, the neighbors

of the vertex v ∗ yj′ are only some zj, and these zj have no other non-neighbors in G′0. If there are at least three such zj, then
G′0− v ∗ yj′ has at least three all-adjacent vertices. If there are exactly two of them, then contracting in G

′

0 vertex v ∗ yj′ with
any vertex distinct from these two, we again get three all-adjacent vertices. Suppose that only zj′ is a non-neighbor of v ∗ yj′
in G′0. Then, since s ≥ 3, there is some other yj′′ . Contracting in G

′

0 vertex v ∗ yj′ with yj′′ , we again get three all-adjacent
vertices.
Claim 3: Every vertex in H0 is at distance at most 2 from v.
Proof. Suppose that dH0(w, v) ≥ 3. Contract the edge vw in G0. If ` ≥ 1 or yj = yj′ for distinct j and j

′, then delete yj and
get a K ∗3,t . Suppose now that ` = 0 and all yj are distinct. Then s ≥ 5. Since z1, . . . , zs are weak, each of yj has at most four
neighbors in H0 − zj. Moreover, if yj ∈ X , then yjv ∈ E(H0) and if yj 6∈ X , then yj is adjacent to a vertex in X . So, some yj
has at most three neighbors in Y , and we may assume that y1y2 6∈ E(H0). In this case, contract in G0 edges vw and y1y2, and
vertices v ∗ w, z1 and z2 become all-adjacent ones in the graph obtained.
Claims 1, 2 and 3 together imply that the set X+v of size at most 5 is dominating inH0, a contradiction to Lemma 30. �

Lemma 33. If a vertex v ∈ V (H0) of degree at most
√
n0/2−4 is adjacent to a vertex of degree 1, then there are no other vertices

of degree 1 in H0.

Proof. Suppose that a vertex x of degree at most
√
n0/2 − 4 in H0 is adjacent to vertex y of degree 1, and that z is another

vertex of degree 1 in H0. By Lemma 30, there are at least three vertices at distance at least 3 from x. Identify x with such a
vertex u distinct from z and the neighbor of z and delete the neighbor of z. �

Consider the following discharging on the set of vertices of H0. The initial charge φ(v) is the degree of v in H0, and hence∑
v∈V (H0)

φ(v) ≤ 3n0 − 7. The rules are:

(R1) If d(v) >
√
n0/2 − 4 and v has neighbors of degree 1, it gives 2 to one of them and nothing to the other neighbors

of degree 1 (by Lemma 27, there could be only one ‘‘other neighbor’’ and only for one vertex v). If a vertex of degree 1 is
adjacent to a vertex of degree at most

√
n0/2− 4, it gets nothing. (By Lemma 33, in this case there are no other vertices of

degree 1.)
(R2) If v is a weak 2-vertex, then it gets 1 from the neighbor of the larger degree.
(R3) If v is a non-weak 2-vertex, then it gets 1/2 from each neighbor.
We claim that the new charge is at least 3 for all vertices, apart from at most one vertex of degree 1. That would imply

that e(H0) ≥ (3n0 − 2)/2, a contradiction to (26). To prove this, consider vertices of all possible degrees.
Case 1: d(v) = 1. By Lemmas 27 and 33, only one vertex of degree 1 may not receive the extra charge 2.
Case 2: d(v) = 2. By Rule (R1), v gives away nothing. By Rules (R2) and (R3), it gets 1 from the neighbors.
Case 3: 3 ≤ d(v) ≤ 5. By Rules (R1) and (R2), v gives away nothing.
Case 4: 6 ≤ d(v) ≤

√
n0/2− 4. By the rules, v gives away at most d(v)/2. So, it keeps at least d(v)/2 ≥ 3.

Case 5: d(v) >
√
n0/2− 4. If v has fewer than five adjacent weak 2-vertices, then it gives away at most d(v)/2+ 4/2+ 1

and hence retains at least d(v)/2− 3. For n0 > 800,

d(v)
2
− 3 ≥

√
n0

2
√
2
− 7 ≥ 3.

If v has at least five adjacent weak 2-vertices, then by Lemma 32, it gives away at most 1 + (d(v) − 5) = d(v) − 4. This
contradicts (26).

8. Concluding remarks

1. By elaborating Lemma 25, one can push the restriction t ≥ 6300 in Theorem 4 down to about t ≥ 3000. In the course
of some proofs, we pointed out how large t needed to be for the proofs to go through. If the bounds on t were less than
500, then we did not try to obtain the best bounds.

2. It was shown in Section 2 that for infinitely many t , graphs M(r, 4, t) and M(r, 5, t) are not extremal for the existence
of K ∗4,t-minors and K

∗

5,t-minors, respectively. However, we do not know whether M(r, 4, t) and M(r, 5, t) are extremal
for the existence of K4,t-minors and K5,t-minors, respectively.

3. It is annoying that the case n0 = t + 5 took so much effort and space. We believe that if one could handle for s = 4 the
cases n0 = t + 6 and n0 = t + 7, then we would be able to handle the remaining proof for s = 4 and large t using the
technique of the present paper.
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