Dense graphs have $K_{3, t}$ minors

A.V. Kostochka ${ }^{\mathrm{a}, \mathrm{b}, *}$, N. Prince ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA
${ }^{\mathrm{b}}$ Sobolev Institute of Mathematics, Novosibirsk, Russia
${ }^{\text {c }}$ Illinois Mathematics and Science Academy, Aurora, IL, 60506, USA

ARTICLE INFO

Article history:

Received 1 December 2008
Accepted 25 March 2010
Available online 21 April 2010

Keywords:

Bipartite minors
Dense graphs

Abstract

Let $K_{3, t}^{*}$ denote the graph obtained from $K_{3, t}$ by adding all edges between the three vertices of degree t in it. We prove that for each $t \geq 6300$ and $n \geq t+3$, each n-vertex graph G with $e(G)>\frac{1}{2}(t+3)(n-2)+1$ has a $K_{3, t}^{*}-$ minor. The bound is sharp in the sense that for every t, there are infinitely many graphs G with $e(G)=\frac{1}{2}(t+3)(|V(G)|-2)+1$ that have no $K_{3, t}-$ minor. The result confirms a partial case of the conjecture by Woodall and Seymour that every $(s+t)$-chromatic graph has a $K_{s, t}$-minor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Graphs in this paper are undirected simple graphs. For a graph $G, V(G)$ is the set of its vertices, $E(G)$ is the set of its edges, $e(G)=|E(G)|$, and \bar{G} is the complement of G. By $G[X]$ we denote the subgraph of G induced by the vertex set X. By $e_{G}(X, Y)$ we denote the number of edges connecting disjoint sets X and Y. We let $N_{G}(v)$ denote the set of neighbors of v in G and $N_{G}[v]=N_{G}(v) \cup\{v\}$. Similarly, for $X \subseteq V(G)$, we define $N(X):=\bigcup_{x \in X} N(x)$ and $N[X]:=\bigcup_{x \in X} N[x]$. Contraction of edge $x y$ in G is the operation of replacing the vertices x and y with a new vertex, denoted as $x * y$, that is adjacent to all neighbors of x, all neighbors of y, and to no other vertices. A minor of a graph G is a graph H that can be obtained from G by a sequence of vertex and edge deletions and edge contractions. A subgraph F of G is an H-minor in G if H can be obtained from F by a sequence of edge contractions and deletions.

A famous open problem concerning graph minors is the Hadwiger Conjecture.
Conjecture 1 (Hadwiger). Every k-chromatic graph has a K_{k}-minor.
The Conjecture is known to be true for $k \leq 6$ but remains open for all larger values of k. In order to stimulate attacks on the conjecture, Woodall [18] and independently Seymour [15] suggested proving the following weaker statement.

Conjecture 2. Every $(s+t)$-chromatic graph has a $K_{s, t}$-minor.
Another way to approach Hadwiger's Conjecture is to search for sufficient conditions other than k-chromaticity that force a graph to contain a K_{k}-minor. Mader [7] proved that for each positive integer k, there exists a function $D(k)$ such that every graph with average degree at least $D(k)$ has a K_{k}-minor by demonstrating that $D(k) \leq 2^{\binom{k}{2}+1}$. Later, Kostochka [3,4] and Thomason [16] determined that $D(k)=\Theta(k \sqrt{\log k})$. More recently, Thomason [17] determined that

$$
D(k)=(\alpha+o(1)) k \sqrt{\log k}
$$

where $\alpha=0.6381726 \ldots$ is given explicitly.

[^0]

Fig. 1. Graph $M(2,3,4)$ has no $K_{3,4}$-minor.
Myers and Thomason extended the function D above to general graphs H, that is, they defined

$$
D(H)=\inf \{d \mid 2 e(G) / n(G) \geq d \text { implies that } G \text { has an } H \text {-minor }\} .
$$

They determined $[12,9] D(H)$ for almost every H, showing, in particular, that for almost all H, the extremal graphs not containing H are quasi-random (built deterministically from randomly generated subcomponents). However, their methods work well only for dense graphs, i.e. for graphs H with average degree comparable with $|V(H)|$.

An example of a sparse H is $K_{s, t}$, where s is fixed and t is large with respect to s. For this reason, Myers [10,11] studied $D\left(K_{s, t}\right)$ when s is fixed and t is large. Let $M(r, s, t)$ be the graph obtained by taking r copies of K_{s+t-1} arranged so that each two copies share the same fixed $s-1$ vertices (Fig. 1 shows $M(2,3,4)$). Myers [11] observed that $M(r, s, t)$ has no $K_{s, t}$-minor and that

$$
\begin{equation*}
e(M(r, s, t))=\frac{1}{2}(t+2 s-3)(n-s+1)+\binom{s-1}{2} \tag{1}
\end{equation*}
$$

where $n=|V(M(r, s, t))|=r t+s-1$. He proved the following.
Theorem 1 ([11]). Let $t>10^{29}$ be a positive integer. Let G be a graph with $n \geq 3$ vertices such that

$$
\begin{equation*}
e(G)>\frac{1}{2}(t+1)(n-1) \tag{2}
\end{equation*}
$$

Then G has a $K_{2, t}$-minor.
The graphs $M(r, 2, t)$ witness that this bound is sharp when $|V(G)| \equiv 1(\bmod t)$.
In connection with Conjecture 2, recently, Chudnovsky et al. [1] proved that Theorem 1 in fact holds for all t. They used this result to prove that Conjecture 2 holds for $s=2$ and each t.

Myers conjectured that a similar, more general statement is true for $K_{s, t}$-minors.
Conjecture 3. Let s be a positive integer. Then there exists a constant $C(s)$ such that, for all positive integers t, if G has average degree at least $C(s) \cdot t$, then G has a $K_{s, t}-$ minor.

Let $K_{s, t}^{*}=K_{s+t}-E\left(K_{t}\right)$. In other words, $K_{s, t}^{*}$ is the graph obtained from $K_{s, t}$ by adding all $\binom{s}{2}$ possible edges into the s-vertex partite set. Myers noted that the average degree that forces G to contain a $K_{s, t}$-minor also likely forces a $K_{s, t}^{*}-$ minor, that is, $D\left(K_{s, t}\right)=D\left(K_{s, t}^{*}\right)$ when s is fixed and t is large.

Myers' Conjecture was proved independently in [5,6] using different methods. Kühn and Osthus [6] showed the following.
Theorem 2 ([6]). For every $\epsilon>0$ and every positive integer s, there exists a number $t_{0}=t_{0}(s, \epsilon)$ such that for all $t \geq t_{0}$, every graph of average degree at least $(1+\epsilon) t$ contains $K_{s, t}^{*}$ as a minor.

In [5], the following fact was proved.
Theorem 3. Let s and t be positive integers with

$$
t>\left(240 s \log _{2} s\right)^{8 s \log _{2} s+1}
$$

Let G be a graph such that $e(G) \geq \frac{t+3 s}{2}(n(G)-s+1)$. Then G has a $K_{s, t}^{*}$-minor. Furthermore, for n large, there exists a graph G of order n and size at least $\frac{t+3 s-5 \sqrt{s}}{2}(n-s+1)$ that has no $K_{s, t}$-minor.

From Theorem 3 we have that for huge t,

$$
t+3 s-5 \sqrt{s} \leq D\left(K_{s, t}\right) \leq D\left(K_{s, t}^{*}\right) \leq t+3 s
$$

Hence, Myers' insight that $D\left(K_{s, t}\right)$ is the same as $D\left(K_{s, t}^{*}\right)$ is true asymptotically in s.
The second half of Theorem 3 shows that for $s>100$, Myers' construction of $M(r, s, t)$ is not optimal. In Section 2, we provide another construction with fewer edges that shows that $M(r, s, t)$ is not optimal for $s \geq 6$. Note that while

Theorem 2 does not provide the dependence of $D\left(K_{s, t}\right)$ on s, it applies for a much wider range of s than Theorem 3, namely for $s \leq C \cdot t / \log t$.

The goal of the present paper is to determine $D\left(K_{3, t}\right)$ for $t>6300$ exactly. We prove the slightly stronger version with $K_{3, t}^{*}$ in place of $K_{3, t}$.

Theorem 4. Let $t \geq 6300$. Let G be a graph of order $n \geq 3$ with

$$
\begin{equation*}
e(G)>\frac{1}{2}(t+3)(n-2)+1 . \tag{3}
\end{equation*}
$$

Then G has a $K_{3, t}^{*}$-minor.
The graphs $M(r, 3, t)$ demonstrate the sharpness of Theorem 4 for the existence of minors for both $K_{3, t}^{*}$ and $K_{3, t}$.

Remark. If $t \geq 6300$ and for some $n \geq 3$, an n-vertex graph G satisfies (2), then adding a new vertex x adjacent to all vertices of G creates a graph G^{\prime} with $n^{\prime}=n+1$ vertices that satisfies the conditions of Theorem 4. By this theorem, G^{\prime} has a $K_{3, t}^{*}$-minor, and hence $G=G^{\prime}-x$ has a $K_{2, t}^{*}$-minor. This implies Theorem 1 and the corresponding result of Chudnovsky et al. [1], restricted to $t \geq 6300$, in a slightly stronger form, namely, with the $K_{2, t}^{*}$-minor in place of the $K_{2, t}$-minor.

Seymour showed that Theorem 4 implies the validity of Conjecture 2 for $s=3$ and $t \geq 6300$. With his kind permission, we present this proof here.

Corollary 5 (Seymour). Let $t \geq 6300$. Then every $(3+t)$-chromatic graph has a $K_{3, t}^{*}$-minor.
Proof. Let G be a counter-example to this corollary with the smallest total number of edges and vertices. Then G is $(3+t)-$ critical, and hence $\delta(G) \geq t+2$. If $\delta(G) \geq t+3$, then $e(G) \geq \frac{t+3}{2}|V(G)|$, and so by Theorem $4, G$ has a $K_{3, t}^{*}-$ minor. Thus, G has a vertex v with $d_{G}(v)=t+2$. If $G[N(v)]=K_{t+2}$, then G contains K_{t+3} which contains $K_{3, t}^{*}$. So, $N(v)$ contains some non-adjacent vertices x and y.

Let G^{\prime} be obtained from G by contracting the edges $v x$ and $v y$. Since G^{\prime} is a minor of G, it does not have a $K_{3, t}^{*}-$ minor. Therefore, by the minimality of G, G^{\prime} is $(t+2)$-colorable. Let f^{\prime} be a proper $(t+2)$-coloring of G^{\prime}. It naturally yields a proper $(t+2)$-coloring f of $G-v$ in which $f(x)=f(y)$. But then one of the $t+2$ colors is not used on $N(v)$, and we can use this color to color v, a contradiction to the definition of G.

We also show that Theorem 4 cannot be extended to $s \geq 6$. Namely, we prove the following two results.
Theorem 6. Let s and t be integers satisfying $s \geq 6$ and $t>(2 s)^{2 s-1}$ such that $s+t$ is odd. Then for infinitely many $n>s+t$, there exists a graph $G(n, s, t)$ of order n with

$$
e(G(n, s, t))>\frac{1}{2}\left(t+2 s-3+3^{-s-1}\right)(n-s+1)+\binom{s-1}{2}
$$

that has no $K_{s, t}$-minor.
The bound of this theorem is getting weaker when s grows. For larger s, the bound of the second part of Theorem 3 is better.

Theorem 7. Let s and t be integers satisfying $t \geq s \geq 4$ such that $s+t$ is odd. Then for infinitely many $n>s+t$, there exists a graph $G(n, s, t)$ of order n with

$$
e(G(n, s, t))>\frac{1}{2}\left(t+2 s-2-\frac{2 s}{t}\right)(n-s+1)+\binom{s-1}{2}
$$

that has no $K_{s, t}^{*}$-minor.
The proof of our main theorem elaborates and refines the ideas of [5] and uses discharging to handle the most difficult case: the case of $n=t+5$.

The structure of the paper is the following. In the next section we prove Theorems 6 and 7 . The subsequent five sections are devoted to the proof of Theorem 4. In Section 3 we cite and prove several auxiliary statements. In Sections 4-7, we consider several cases depending on how large the number n_{0} of vertices of a minimum counter-example to our statement is. In Section 4, we set up the proof and handle the case $n_{0} \leq 1.1 t, n_{0} \neq t+5$. In Sections 5 and 6 we consider the case $n_{0}>1.1 t$. The singular case $n_{0}=t+5$ is postponed to the last section. We conclude the paper with a couple of comments.

2. A lower bound for $s \geq 6$

For this section, it will be convenient to use the following definition of a $K_{s, t}$-minor of G. We say that G has a $K_{s, t}$-minor if there are a set $V_{0} \in V(G)$ and a function $f:\left(V(G)-V_{0}\right) \rightarrow V\left(K_{s, t}\right)$ such that $f^{-1}(v)$ induces a connected subgraph of G for all $v \in V\left(K_{s, t}\right)$ and such that, for all $v_{1} v_{2} \in E\left(K_{s, t}\right)$, there is an $x_{i} \in f^{-1}\left(v_{i}\right)(i=1,2)$ such that $x_{1} x_{2} \in E(G)$.

We will need the following old result of Sauer [13]:
Theorem 8 ([13]). Let $g \geq 5$ and $m \geq 4$. Then, for every even $n \geq 2(m-1)^{g-2}$, there exists an n-vertex m-regular graph of girth at least g.

Lemma 9. Let s and t be integers satisfying $s \geq 6$ and $t>(2 s)^{2 s-1}$ such that $s+t$ is odd. Then there exists a graph $G=G(s, t)$ of order $n=t+s+3$ with

$$
e(G) \geq \frac{1}{2}(t+s+3)\left(t+s-2+\frac{1}{3^{s}}\right)
$$

that contains no $K_{s, t}$-minor.
Proof. Under the conditions of the lemma, the numbers $n=s+t+3, g=s+7$, and $m=4$ satisfy the conditions of Theorem 8. Hence, there exists an n-vertex 4-regular graph $H=H(s, t)$ with girth at least $s+7$. Since the number of vertices at distance at most j from a given edge in H is less than $4 \cdot 3^{j}$, we can greedily find a set A of at least $\frac{n}{2 \cdot 3^{s}}$ edges in H at distance at least s from each other. Let $H^{\prime}=H^{\prime}(s, t)=H-A$. Let us prove that

$$
\begin{equation*}
\left|N_{H^{\prime}}(U)-U\right| \geq 7 \quad \text { for every } U \subset V\left(H^{\prime}\right) \text { with } s-3 \leq|U| \leq s . \tag{4}
\end{equation*}
$$

Indeed, let u satisfy $s-3 \leq u \leq s$ and U be a set of u vertices in H^{\prime}. Let $W=N_{H^{\prime}}(U)-U$. Since the girth of H^{\prime} is greater than $s, H^{\prime}[U]$ has no cycles. So, if $H^{\prime}[U]$ has x edges, k components, and ℓ vertices of degree 3 , then $x+k=u$ and $e_{H^{\prime}}(U, W)=4 u-\ell-2 x$. Furthermore, since vertices of degree 3 are at distance at least $s \geq u$ from each other, each component of $H^{\prime}[U]$ has at most one such vertex, and hence $\ell \leq k=u-x$. Suppose $|W| \leq 6$. Then $|U \cup W| \leq s+6$ and hence $H^{\prime}[U \cup W]$ has no cycles. Therefore, $e\left(H^{\prime}[U \cup W]\right) \leq|U \cup W|-1 \leq u+5$. On the other hand, by the above,

$$
e\left(H^{\prime}[U \cup W]\right) \geq x+(4 u-\ell-2 x)=3 u+(u-\ell-x) \geq 3 u
$$

So, $3 u \leq u+5$ and $u \leq 2$. It follows that $s \leq u+3 \leq 5$. This contradiction implies (4).
Let $G=\overline{H^{\prime}}$. Suppose that G has a $K_{s, t}$-minor. Let $S \subseteq V(G)$ be the set of vertices in the pre-image of the smaller partite set of this minor, and let $S^{\prime} \subseteq S$ be the vertices that are not deleted or contracted with a neighbor to get the minor. By (4) with $U=S^{\prime}$, there must be at least seven vertices with a non-neighbor in S^{\prime}, and at least one of these vertices x is the entire pre-image of a vertex of the larger partite set in the minor. This contradicts the fact that every vertex of S^{\prime} is adjacent to x. Therefore G has no $K_{s, t}$-minor.

Since $\Delta\left(H^{\prime}\right)=4$ and at least $\frac{n}{3^{s}}$ vertices of H^{\prime} have degree 3 ,

$$
2 e(G) \geq n(n-5)+\frac{n}{3^{s}}=(t+s+3)\left(t+s-2+\frac{1}{3^{s}}\right)
$$

Now we are ready to prove Theorem 6
Proof. Consider $G(s, t)$ and $H^{\prime}(s, t)$ from the proof of Lemma 9. Since $\Delta\left(H^{\prime}(s, t)\right)=4$ and $s+t+3>5 s, H^{\prime}(s, t)$ has an independent set I of size $s-1$. Then I induces an $(s-1)$-clique in $G(s, t)$. Let $G^{\prime}(r, s, t)$ be obtained from r copies of $G(s, t)$ by arranging them so that each two copies share the set I and nothing else. This is an analog of $M(r, s, t)$; only the bricks are different. By construction,

$$
\begin{equation*}
\left|V\left(G^{\prime}(r, s, t)\right)\right|=(s-1)+r(s+t+3-(s-1))=(s-1)+r(t+4) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
e\left(G^{\prime}(r, s, t)\right)=r \cdot e(G(s, t))-(r-1)\binom{s-1}{2}=r\left(e(G(s, t))-\binom{s-1}{2}\right)+\binom{s-1}{2} \tag{6}
\end{equation*}
$$

Since for $s \geq 6$ and $t>(2 s)^{2 s-1}$,

$$
e(G(s, t)) \geq \frac{(t+s+3)\left(t+s-2+\frac{1}{3^{s}}\right)}{2}>(t+4) \frac{t+2 s-3+3^{-s-1}}{2}+\binom{s-1}{2}
$$

we get by (6) and (5) for $n=\left|V\left(G^{\prime}(r, s, t)\right)\right|$ that

$$
e\left(G^{\prime}(r, s, t)\right)>r(t+4) \frac{t+2 s-3+3^{-s-1}}{2}+\binom{s-1}{2}=(n-s+1) \frac{t+2 s-3+3^{-s-1}}{2}+\binom{s-1}{2}
$$

Fig. 2. Lemma 10.
Suppose that $G^{\prime}(r, s, t)$ has a $K_{s, t}$-minor with partite sets X_{s} and X_{t} and $f:\left(V(G)-V_{0}\right) \rightarrow V\left(K_{s, t}\right)$ is the corresponding function. Since $|I|<s$, the pre-image of some vertex in X_{s} avoids I and is contained in some copy C_{1} of $G(s, t)$. Then the pre-image of each vertex in X_{t} has a vertex in C_{1} and hence at least $t-s+1$ pre-images of vertices in X_{t} are contained in $C_{1}-I$. It follows that the pre-image of each vertex of our $K_{s, t}$ has a vertex in C_{1}. Since these pre-images induce connected subgraphs of $G^{\prime}(r, s, t)$, each of the pre-images that is not completely in $C_{1}-I$ contains a vertex in I. Since I induces a complete subgraph of $G^{\prime}(r, s, t), f^{-1}(v) \cap V\left(C_{1}\right)$ induces a connected subgraph for every $v \in V\left(K_{s, t}\right)$. For the same reason, if the pre-images of some two vertices of $K_{s, t}$ are connected by an edge in $G^{\prime}(r, s, t)$, then their intersections with $V\left(C_{1}\right)$ are also connected by an edge. It follows that C_{1} also has a $K_{s, t}$-minor, a contradiction to Lemma 9 .

Thus, for every n of the form $n=(s-1)+r(t+4)$, the graph $G(n, s, t)=G^{\prime}(r, s, t)$ satisfies the statement of the theorem. Note that the difference between $e(G(n, s, t))$ and the right-hand side of (1) is linear in n.

The proof of Theorem 7 below essentially repeats that of Theorem 6; only the starting brick is different.
Proof of Theorem 7. Let $G(s, t)$ be the graph on $s+t+1$ vertices whose complement is a perfect matching. Clearly, contracting an edge in $G(s, t)$ creates at most three all-adjacent vertices. Thus $G(s, t)$ has no $K_{s, t}^{*}$-minor and

$$
e(G(s, t))=\frac{(s+t+1)(s+t-1)}{2}>\frac{t+2}{2}\left(t+2 s-2-\frac{2 s}{t}\right)+\binom{s-1}{2}
$$

Fix the vertex set I of an $(s-1)$-clique in $G(s, t)$ and let $G^{\prime}(r, s, t)$ be obtained from r copies of $G(s, t)$ by arranging them so that each two copies share the set I and no other vertices. Repeating the proof of Theorem 6 (with slightly different calculations) we obtain that $G^{\prime}(r, s, t)$ has no $K_{s, t}^{*}$-minor and that for $n=\left|V\left(G^{\prime}(r, s, t)\right)\right|$,

$$
e\left(G^{\prime}(r, s, t)\right)>r(t+2) \frac{t+2 s-2-\frac{2 s}{t}}{2}+\binom{s-1}{2}=(n-s+1) \frac{t+2 s-2-\frac{2 s}{t}}{2}+\binom{s-1}{2} .
$$

3. Lemmas on connectivity and domination

If H is a graph and $X \subset V(H)$, we say that X is k-separable if $N[X] \neq V(H)$ and $|N(X)-X| \leq k$.
Lemma 10. Let k be a positive integer and H be a graph such that each edge of H belongs to at least $3 k / 2$ triangles. If X is an inclusion-minimal k-separable set in H and $S=N(X)-X$, then $H[X \cup S]$ is $(1+\lceil k / 2\rceil)$-connected.

Proof. Assume that there is a separating set D of $H[X \cup S]$ with $|D| \leq\lceil k / 2\rceil$. Let H_{1} be a component of $H[X \cup S]-D$ that has minimum size of intersection with S, and let $H_{2}=H[X \cup S]-D-H_{1}$. Then the set $S_{1}=D \cup\left(S \cap V\left(H_{1}\right)\right)$ has at most $|D|+|S| / 2 \leq k$ vertices. If $H_{1}-S_{1} \neq \emptyset$, then S_{1} separates $H_{1}-S_{1}$ from the rest of the graph (see Fig. 2), and $H_{1}-S_{1}$ is properly contained in X, contradicting the minimality of X. Therefore $V\left(H_{1}\right) \subseteq S$. Let $y \in V\left(H_{1}\right)$. By the definition of S, y has some neighbor $x \in X$. Since $x y$ belongs to at least $3 k / 2$ triangles, y is adjacent to at least $3 k / 2+1$ vertices in $X \cup S$. Since $|S| \leq k$ and $y \in S, y$ has at least $k / 2+2$ neighbors in X. It follows that y has a neighbor in $X-D$, a contradiction to $V\left(H_{1}\right) \subseteq S$.

Let U_{1}, U_{2}, and U_{3} be disjoint sets of vertices in a graph G. Then a path P is a $\left(U_{1}, U_{2}\right)$-path if one end of P is in U_{1} and the other is in U_{2}. Similarly P is a strict $\left(\left(U_{1}, U_{2}\right)-U_{3}\right)$-path if one end of P is in U_{1}, the other is in U_{2} and no internal vertex of P is in $U_{1} \cup U_{2} \cup U_{3}$. Furthermore, a pair $\left(P_{1}, P_{2}\right)$ of paths is (U_{1}, U_{2}, U_{3})-connecting if for some $i \in\{1,2,3\}$, one of the paths is a strict $\left(\left(U_{i}, U_{i+1}\right)-U_{i+2}\right)$-path and the other is a strict $\left(\left(U_{i-1}, U_{i}\right)-U_{i+1}\right)$-path (indices sum modulo 3$)$. Note that the paths in a (U_{1}, U_{2}, U_{3})-connecting pair may share an end (in the set U_{i}) and also internal vertices (outside of $U_{1} \cup U_{2} \cup U_{3}$).

Lemma 11. Let G be a graph and let U_{1}, U_{2}, and U_{3} be disjoint sets of vertices in G. If G contains a U_{1}, U_{2}-path P_{1} and a U_{1}, U_{3}-path P_{2} which is vertex-disjoint from P_{1}, then $P_{1} \cup P_{2}$ contains a (U_{1}, U_{2}, U_{3})-connecting pair of paths.

Proof. For $i=1,2$, let P_{i}^{\prime} be a shortest subpath of P_{i} that starts at U_{1} and finishes at U_{1+i}. If neither of the P_{i}^{\prime} intersects U_{4-i}, then the pair $\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ is $\left(U_{1}, U_{2}, U_{3}\right)$-connecting. Suppose that P_{1}^{\prime} meets U_{3}. Let Q_{1} be the subpath of P_{1}^{\prime} from U_{1} to the first vertex in $U_{3} \cap V\left(P_{1}\right)$ and Q_{2} be the subpath of P_{1}^{\prime} from the last vertex in $U_{3} \cap V\left(P_{1}\right)$ to U_{2}. Then the pair (Q_{1}, Q_{2}) is $\left(U_{1}, U_{2}, U_{3}\right)$-connecting.

For a graph G, a set $T \subseteq V(G)$ is totally dominating if every vertex of G has a neighbor in T. We say that a set $T \subseteq V(G)$ is connected if $G[T]$ is connected.

Lemma 12. Let G be an n-vertex connected graph with minimum degree $k \geq 1$. Then:
(a) G contains a totally dominating set T with $|T| \leq\left\lfloor\log _{n /(n-k)} n\right\rfloor+1$; and
(b) G contains a connected totally dominating set T^{\prime} with $\left|T^{\prime}\right| \leq 2 \log _{n /(n-k)} n$.

Proof. Let $A \subseteq V(G)$. The total number of neighbors of vertices in A counted with multiplicities is at least $k|A|$. Hence there exists $v_{A} \in V(G)$ that is adjacent to at least $k|A| / n$ vertices in A.

Consider the sequence A_{0}, A_{1}, \ldots, where $A_{0}=V(G)$ and for $i \geq 1, A_{i}=A_{i-1}-N\left(v_{A_{i-1}}\right)$. By (7), for every $i \geq 1$, $\left|A_{i}\right| \leq \frac{n-k}{n}\left|A_{i-1}\right|$. It follows that for $i_{0}=\left\lfloor\log _{n /(n-k)} n\right\rfloor+1$,

$$
\left|A_{i_{0}}\right| \leq n\left(\frac{n-k}{n}\right)^{i_{0}}<n\left(\frac{n-k}{n}\right)^{\log _{n /(n-k)} n}=1
$$

and so $A_{i_{0}}=\emptyset$. Hence $T=\left\{v_{A_{0}}, v_{A_{1}}, \ldots, v_{A_{i_{0}-1}}\right\}$ is totally dominating. This proves (a).
Let C_{1}, \ldots, C_{m} be the vertex sets of the components of $G[T]$. Since T is totally dominating, each C_{j} has at least two vertices. It follows that $m \leq i_{0} / 2$. Let $T^{\prime}=T$ and $C_{0}=C_{1}$. We do the following iteration for C_{0} : If C_{0} dominates $V(G)$, then stop. Otherwise, choose any vertex w at distance exactly 2 from C_{0}. Let w^{\prime} be the intermediate vertex on a shortest path from C_{0} to w. By the choice of T, w has a neighbor $z \in T-C_{0}$. By definition, z belongs to some C_{j}. Add to T^{\prime} vertices w and w^{\prime} and let the new C_{0} be the component of the new T^{\prime} that contains $C_{0} \cup C_{j} \cup\left\{w, w^{\prime}\right\}$. This increases $\left|T^{\prime}\right|$ by 2 and decreases the number of components in $G\left[T^{\prime}\right]$ by at least 1 .

After at most $m-1$ iterations, we obtain a connected totally dominating set T^{\prime}. By construction, $\left|T^{\prime}\right| \leq|T|+2(m-1) \leq$ $i_{0}+2\left(i_{0} / 2-1\right)=2 i_{0}-2 \leq 2 \log _{n /(n-k)} n$.

Applying Lemma 12 s times, we have the following corollary.
Lemma 13. Let s, k, and n be positive integers. Suppose $n>k \geq 1$. Let H be a graph of order n with $\delta(H) \geq k+2$ $(s-1) \log _{n /(n-k)} n$ and connectivity greater than $2(s-1) \log _{n /(n-k)} n$. Then $V(H)$ contains s disjoint subsets A_{1}, \ldots, A_{s} such that, for every $i=1, \ldots, s$,
(i) $H\left[A_{i}\right]$ is connected,
(ii) $\left|A_{i}\right| \leq 2 \log _{n /(n-k)} n$,
(iii) A_{i} dominates $H-\bigcup_{j=1}^{i-1} A_{j}$.

Schönheim [14], Mills [8] and others, for $m \geq k \geq l$, studied the minimum number C (m, k, ℓ) of k-element subsets of an m-element set S that cover all ℓ-tuples of elements of S. We will use the following bounds on $C(m, k, \ell)$ due to Schönheim and Mills.

Lemma 14 ([14,8]). (a) For all $m \geq k \geq \ell \geq 1$,

$$
\begin{equation*}
C(m, k, \ell) \geq\left\lceil\frac{m}{k} C(m-1, k-1, \ell-1)\right\rceil ; \tag{8}
\end{equation*}
$$

(b) if $m / k>9 / 5$, then $C(m, k, 2) \geq 6$;
(c) if $m / k>7 / 3$, then $C(m, k, 2) \geq 8$.

Erdős et al. [2] proved a result whose partial case is the following.

Lemma 15 ([2]). If $0 \leq k<(5 n-3) / 9$ and H is an n-vertex graph with maximum degree k and diameter 2 , then $e(H) \geq 4 n-2 k-11$. In particular, if $k \leq 0.5 n+\alpha$ and $\alpha \geq 0$, then $e(H) \geq 3 n-11-2 \alpha$.

4. Preliminaries and graphs of small order

We will prove Theorem 4 by contradiction. Suppose that the theorem is false. Then there exists a counter-example G_{0} which is minimum with respect to $|V(G)|+|E(G)|$. Suppose that $n_{0}=\left|V\left(G_{0}\right)\right|$. Our starting point is the following lemma concerning properties of such minimum counter-examples.

Lemma 16. Let $t \geq 3$. Let G_{0} be a graph minimum with respect to $|V(G)|+|E(G)|$ satisfying (3) such that $n_{0}=\left|V\left(G_{0}\right)\right| \geq 3$ and G_{0} has no $K_{3, t}^{*}$-minor. Then:
(p0) $n_{0} \geq t+4$;
(p1) $\frac{1}{2}(t+3)\left(n_{0}-2\right)+1<e\left(G_{0}\right) \leq \frac{1}{2}(t+3)\left(n_{0}-2\right)+2$;
(p2) each edge of G_{0} belongs to at least $(t+2) / 2$ triangles;
(p3) $\delta\left(G_{0}\right) \geq(4+t) / 2$;
(p4) G_{0} is 3-connected.
Proof. Since no n-vertex graph can have more than $\binom{n}{2}$ edges, (3) yields

$$
\frac{1}{2}(t+3)\left(n_{0}-2\right)+1<\frac{n_{0}\left(n_{0}-1\right)}{2}
$$

For $n_{0} \geq 3$ this is equivalent to $t+3<n_{0}+1$, i.e. $n_{0} \geq t+3$. Suppose that $n_{0}=t+3$. Then (3) gives $2 e\left(G_{0}\right)>n_{0}\left(n_{0}-2\right)+2$. It follows that at least three vertices have degree $n_{0}-1$, i.e., are all-adjacent ones in G_{0}. So, G_{0} contains $K_{3, t}^{*}$. This proves (p0).

Property (p1) holds by (3) and the minimality of G_{0}. If an edge e of G_{0} belongs to at most $(t+1) / 2$ triangles, then after contracting e we obtain from G_{0} a graph G_{0}^{\prime} with one vertex fewer and no more than $1+(t+1) / 2=(t+3) / 2$ fewer edges. So if G_{0} satisfies (3), then G_{0}^{\prime} also satisfies (3) and by (p 0) has at least $t+4-1$ vertices. This contradicts the minimality of G_{0}. So, (p2) holds, and (p3) follows from (p2).

Let us prove (p4). Suppose otherwise. Then there is $S \subset V\left(G_{0}\right)$ such that $|S| \leq 2$ and $G_{0}-S$ is disconnected. Then there are $V_{1}, V_{2} \subset V\left(G_{0}\right)$ such that $V_{1}-S, V_{2}-S \neq \emptyset, V_{1} \cup V_{2}=V\left(G_{0}\right), V_{1} \cap V_{2}=S$, and $V_{1}-S$ has no neighbors in $V_{2}-S$. Let $n_{i}=\left|V_{i}\right|$ for $i=1,2$ and $n_{1} \geq n_{2}$. By (p3), $\delta\left(G_{0}\right) \geq\lceil(4+t) / 2\rceil \geq 4$. Hence $n_{2}+|S| \geq 1+\delta\left(G_{0}\right) \geq 5$, and so $n_{2} \geq 3$.
Case 1: $|S| \leq 1$. By the minimality of G_{0} and the fact that $n_{1}, n_{2} \geq 3$, we have $e\left(G_{0}\left[V_{i}\right]\right) \leq \frac{1}{2}(t+3)\left(n_{i}-2\right)+1$. So,

$$
e\left(G_{0}\right)=e\left(G_{0}\left[V_{1}\right]\right)+e\left(G_{0}\left[V_{2}\right]\right) \leq \frac{(t+3)\left(n_{1}+n_{2}-4\right)}{2}+2 \leq \frac{(t+3)\left(n_{0}-3\right)}{2}+2
$$

a contradiction to (3).
Case 2: $|S|=2$. Let $S=\{x, y\}$. For $i=1,2$, let G_{i} be obtained from $G_{0}\left[V_{i}\right]$ by adding edge $x y$, if it does not belong to G_{0}. Since Case 1 does not hold, each of $G_{0}\left[V_{1}\right]$ and $G_{0}\left[V_{2}\right]$ contains an x, y-path and so G_{i} is a minor of G_{0} for $i=1$, 2 . Again by the minimality of G_{0} and the fact that $n_{1}, n_{2} \geq 3$, we have $e\left(G_{i}\right) \leq \frac{1}{2}(t+3)\left(n_{i}-2\right)+1$. Furthermore, $e\left(G_{0}\right) \leq e\left(G_{1}\right)+e\left(G_{2}\right)-1$, since either we count edge $x y$ twice or have added extra edges. Therefore,

$$
e\left(G_{0}\right) \leq e\left(G_{1}\right)+e\left(G_{2}\right)-1 \leq \frac{(t+3)\left(n_{1}+n_{2}-4\right)}{2}+1 \leq \frac{(t+3)\left(n_{0}-2\right)}{2}+1
$$

a contradiction to (3), again.
In the course of our proof, we will increase the lower bound on n_{0}. For small n_{0}, the complement of G_{0} has far fewer edges than G_{0} and it is easier to understand its structure. Let $H_{0}=\overline{G_{0}}$. Then phrasing (p1) and (p3) in terms of H_{0}, we get the following.

Lemma 17. Let $t \geq 3$. Let G_{0} be a minimum with respect to $|V(G)|+|E(G)|$ graph satisfying (3) such that $n_{0}=\left|V\left(G_{0}\right)\right| \geq 3$ and G_{0} has no $K_{3, t}^{*}-$ minor. Let $d=n_{0}-t$ and $H_{0}=\overline{G_{0}}$. Then:
(q1) $\frac{1}{2}(d-2)\left(n_{0}-2\right)-1 \leq e\left(H_{0}\right)<\frac{1}{2}(d-2)\left(n_{0}-2\right)$;
(q2) $\Delta\left(H_{0}\right) \leq \frac{n_{0}+d}{2}-3$.
Lemma 18. $n_{0} \neq t+4$.
Proof. Suppose $n_{0}=t+4$. By (q1) in Lemma 17, $e\left(H_{0}\right)<n_{0}-2$. Hence H_{0} has at least three tree components, say C_{1}, C_{2}, and C_{3}. If all three are singletons, then G_{0} contains $K_{3, t+1}^{*}$. If C_{2} and C_{3} are singletons and C_{1} is not, then deleting the neighbor, say x, of a leaf in C_{1} we will have three isolated vertices in $H_{0}-x$, which correspond to three all-adjacent vertices in $G_{0}-x$. Finally suppose that C_{1} and C_{2} are not singletons. For $i=1,2$, let y_{i} be a leaf in C_{i} and x_{i} be the neighbor of y_{i} in C_{i}. Then contracting in G_{0} the edge $x_{1} x_{2}$ creates a $(t+3)$-vertex graph with all-adjacent vertices y_{1}, y_{2}, and $x_{1} * x_{2}$.

The next statement has quite a long proof which we postpone to the last section.

Lemma 19. $n_{0} \neq t+5$.
For the time being, we continue our proof assuming that Lemma 19 holds. To handle the cases $t+6 \leq n_{0} \leq t+23$, we need a couple of auxiliary facts.

Lemma 20. Let $t \geq 162$. Let G be a graph of order $n \geq t+6$ such that $e(\bar{G})<17 n / 6-2$ and $\Delta(\bar{G}) \leq(n+3) / 2$. Then G has a $K_{3, t}^{*}$-minor.

Proof. For $n \geq t+6 \geq 168$, $(n+3) / 2<(5 n-3) / 9$ and $17 n / 6-2 \leq 3 n-11-2(3 / 2)$, so by Lemma 15 , \bar{G} has two vertices x_{1} and x_{2} at distance at least 3 . Note that $X=\left\{x_{1}, x_{2}\right\}$ is a connected dominating set in G. Let $G_{1}=G-X$ and $n_{1}=\left|V\left(G_{1}\right)\right|=n-2$. Again, for $n \geq 168$, $(n+3) / 2=\left(n_{1}+5\right) / 2<\left(5 n_{1}-3\right) / 9$ and $17 n / 6-2 \leq 3 n_{1}-11-2(5 / 2)$, so by Lemma $15, \bar{G}_{1}$ has two vertices y_{1} and y_{2} at distance at least 3 . Again, $Y=\left\{y_{1}, y_{2}\right\}$ is a connected dominating set in G_{1}. Let $G_{2}=G_{1}-Y$ and $n_{2}=\left|V\left(G_{2}\right)\right|=n-4$. Since $n_{0} \geq 168$, $(n+3) / 2=\left(n_{2}+7\right) / 2<\left(5 n_{2}-3\right) / 9$ and $17 n / 6-2 \leq 3 n_{2}-11-2(7 / 2)$, so by Lemma $15, \bar{G}_{2}$ has two vertices z_{1} and z_{2} at distance at least 3 . Contracting in G edges $x_{1} x_{2}, y_{1} y_{2}$ and $z_{1} z_{2}$, we get a graph containing $K_{3, n-6}^{*} \supseteq K_{3, t}^{*}$.

Here is another fact in a similar spirit.
Lemma 21. Let $k \geq 3$ and $n \geq 4\left(k^{2}+3 k+6\right)$. Let H be an n-vertex graph with maximum degree at most $n / 2+k$ and $e(H) \leq(k+1.5) n / 2-k$. If at most two vertices of H have degree less than k, then H contains three disjoint pairs $\left(x_{i}, y_{i}\right)$ of vertices such that $d_{H}\left(x_{i}, y_{i}\right) \geq 3$ for $i=1,2,3$.

Proof. The total number of pairs of distinct vertices at distance at most 2 in H is at most $e(H)$ plus the number of paths of length 2 in H. Denoting this value by $F(H)$, we have

$$
F(H) \leq e(H)+\sum_{v \in V(H)}\binom{d_{H}(v)}{2}=\frac{1}{2} \sum_{v \in V(H)} d_{H}(v)+\frac{1}{2} \sum_{v \in V(H)} d_{H}(v)\left(d_{H}(v)-1\right)=\frac{1}{2} \sum_{v \in V(H)} d_{H}^{2}(v) .
$$

Under the conditions of the lemma, the maximum of the last sum is attained when two vertices have degree 0 and all other vertices apart from at most one have degree either $k+n / 2$ or k. Recall that $\sum_{v \in V(H)}\left(d_{H}(v)-k\right) \leq 1.5 n-2 k$. In this situation, the sum of the squares of the degrees of the vertices with degree greater than k is at most $3(k+n / 2)^{2}$. Thus,

$$
F(H) \leq \frac{1}{2}\left[3(k+n / 2)^{2}+(n-5) k^{2}\right]=\frac{1}{2}\left[\frac{3 n^{2}}{4}+n\left(3 k+k^{2}\right)-2 k^{2}\right]<\frac{n^{2}}{2}-3 n .
$$

It follows that H has at least $\binom{n}{2}-F(H) \geq 3 n-n / 2=2.5 n$ pairs of vertices at distance at least 3 . Hence some three of these pairs are disjoint.

The next fact is based on Lemma 14.
Lemma 22. Let $t \geq 231$. Let G be a graph of order $n \geq t+9$ such that $e(\bar{G}) \leq 3.75 n-6$ and $\Delta(\bar{G}) \leq n / 2+6$. Then G has a $K_{3, t}^{*}$-minor.

Proof. Let G satisfy the conditions of the lemma. Order the vertices $x_{1}, x_{2}, \ldots, x_{n}$ of \bar{G} so that $d_{\bar{G}}\left(x_{1}\right) \leq d_{\bar{G}}\left(x_{2}\right) \leq \cdots \leq$ $d_{\bar{G}}\left(x_{n}\right)$. For $i=1, \ldots, n$, let $N_{i}=N_{\bar{G}}\left(x_{i}\right)$.
Case 1: $d_{\bar{G}}\left(x_{3}\right) \leq 5$. Each of the neighbors of x_{1} in \bar{G} has at most $\Delta(\bar{G})-1 \leq n / 2+5<5(n-8) / 9$ neighbors in $V(G)-N_{1}-\left\{x_{1}, x_{2}, x_{3}\right\}$. So, by Lemma $14(\mathrm{~b})$ for $m=n-8$ and $k=\Delta(\bar{G})-1, V(G)-N_{1}-\left\{x_{1}, x_{2}, x_{3}\right\}$ contains a pair $\left(y_{1}, z_{1}\right)$ of vertices such that no vertex in \bar{G} is adjacent to all of x_{1}, y_{1} and z_{1}. This means that $\left\{x_{1}, y_{1}, z_{1}\right\}$ is a connected dominating set in G. Similarly, each of the neighbors of x_{2} has at most $\Delta(\bar{G})-1 \leq n / 2+5<5(n-10) / 9$ neighbors in $V(G)-N_{2}-\left\{x_{1}, x_{2}, x_{3}, y_{1}, z_{1}\right\}$. Again, by Lemma 14(b), $V(G)-N_{2}-\left\{x_{1}, x_{2}, x_{3}, y_{1}, z_{1}\right\}$ contains a pair (y_{2}, z_{2}) of vertices such that $\left\{x_{2}, y_{2}, z_{2}\right\}$ is a connected dominating set in G. Finally, since $\Delta(\bar{G})-1 \leq n / 2+5<5(n-12) / 9$, by Lemma 14 (b), $V(G)-N_{3}-\left\{x_{1}, x_{2}, x_{3}, y_{1}, z_{1}, y_{2}, z_{2}\right\}$ contains a pair $\left(y_{3}, z_{3}\right)$ of vertices such that $\left\{x_{3}, y_{3}, z_{3}\right\}$ is a connected dominating set in G. Contracting these three sets in G, we find a $K_{3, t}^{*}$-minor of G.

Case 2: $d_{\bar{G}}\left(x_{3}\right) \geq 6$. Then n and $H=\bar{G}$ satisfy conditions of Lemma 21 with $k=6$. Thus by this lemma, \bar{G} has three disjoint pairs of vertices at distance at least 3 . Contracting the corresponding edges in G, we find a $K_{3, n-6}^{*}-$ minor of G.

Now we are ready to say more about our minimum counter-example G_{0} to Theorem 4 and about its complement H_{0}.
Lemma 23. Let $t \geq 432$. Then $n_{0} \notin\{t+6, t+7, \ldots, t+22\}$.

Proof. Recall that H_{0} satisfies (q1) and (q2). Let $d=n_{0}-t$.
Case 1: $6 \leq d \leq 7$. By (q1) and (q2), $e\left(H_{0}\right)<5\left(n_{0}-2\right) / 2$ and $\Delta\left(H_{0}\right) \leq\left(n_{0}+1\right) / 2$. So, we are done by Lemma 20.
Case 2: $d=8$. By (q1) and (q2), $e\left(H_{0}\right)<3\left(n_{0}-2\right)$ and $\Delta\left(H_{0}\right) \leq n_{0} / 2+1$. If $\Delta\left(H_{0}\right) \geq n_{0} / 6-1$, consider $G_{0}^{\prime}=G_{0}-v$, where v has maximum degree in H_{0}. Then $e\left(\bar{G}_{0}^{\prime}\right)<17 n_{0}^{\prime} / 6-2$ and $\Delta\left(\bar{G}_{0}^{\prime}\right) \leq\left(n_{0}^{\prime}+3\right) / 2$, where $n_{0}^{\prime}=\left|V\left(G_{0}^{\prime}\right)\right|=n_{0}-1$, and so G_{0}^{\prime} satisfies the conditions of Lemma 20. This yields our statement.

Suppose now that $\Delta\left(H_{0}\right)<n_{0} / 6-1$. By (q1), H_{0} has three vertices, x, y, z, of degree at most $d-3=5$. Then each of x, y, z has fewer than $5\left(n_{0} / 6-1\right)$ vertices at distance 1 or 2 from it. Hence, we can choose for each of them a vertex at distance at least 3 in H_{0} so that all chosen vertices are distinct. Contracting the corresponding edges in G_{0}, we get $K_{3, n_{0}-6}^{*}$.
Case 3: $d=9$. By (q1) and (q2), $e\left(H_{0}\right)<3.5\left(n_{0}-2\right.$) and $\Delta\left(H_{0}\right) \leq n_{0} / 2+1.5$. Since $t \geq 231$, Lemma 22 yields the result.
Case 4: $d=10$. By (q1) and (q2), $e\left(H_{0}\right) \leq 4\left(n_{0}-2\right)-1$ and $\Delta\left(H_{0}\right) \leq n_{0} / 2+2$. If H_{0} has a vertex v of degree at least $\left(n_{0}+3\right) / 4$, then applying Lemma 22 to $H_{0}-v$ we are done. Suppose that $\Delta\left(H_{0}\right) \leq\left(n_{0}+2\right) / 4$. Since $e\left(H_{0}\right)<4\left(n_{0}-2\right), H_{0}$ has three vertices, x_{1}, x_{2} and x_{3} of degree at most 7. Let $N_{i}=N_{H_{0}}\left(x_{i}\right), i=1,2$, 3 . Since $\Delta\left(H_{0}\right) \leq\left(n_{0}+2\right) / 4$, for $i \in\{1,2,3\}$, the number of pairs of vertices in $V\left(H_{0}\right)-N_{i}-\left\{x_{1}, x_{2}, x_{3}\right\}$ that have a common neighbor in N_{i} is at most $7\binom{\left(n_{0}+2\right) / 4-1}{2}$. Since this is much less than $\binom{n_{0}-10}{2}$, we can choose for $i \in\{1,2,3\}$, a pair $\left\{y_{i}, z_{i}\right\} \subset V\left(H_{0}\right)-N_{i}-\left\{x_{1}, x_{2}, x_{3}\right\}$ so that all there chosen pairs are disjoint and y_{i} and z_{i} have no common neighbor in N_{i}. Contracting in G_{0} for $i \in\{1,2,3\}, x_{i}$ with y_{i} and z_{i}, we obtain a $K_{3, n_{0}-9}^{*}$-minor of G_{0}.
Case 5: $d=11$. By (q1) and (q2), $e\left(H_{0}\right)<4.5\left(n_{0}-2\right)$ and $\Delta\left(H_{0}\right) \leq n_{0} / 2+2.5$. If at most two vertices in H_{0} have degree less than 8 , then we are done by Lemma 21 for $k=8$. Suppose now that H_{0} has three vertices, x_{1}, x_{2} and x_{3} of degree at most 7 . Let $N_{i}=N_{H_{0}}\left(x_{i}\right), i=1,2,3$.

If H_{0} has two vertices, v_{1} and v_{2}, of degree at least $3\left(n_{0}-15\right) / 7$, then $H_{0}-v_{1}-v_{2}$ has less than $4.5 n_{0}-10-6\left(n_{0}-\right.$ 15) $/ 7+1<3.75\left(n_{0}-2\right)-6$ edges and satisfies the conditions of Lemma 22 with $n_{0}-2$ in place of n_{0}. So, in this case by Lemma 22, $G_{0}-v_{1}-v_{2}$ has a $K_{3, t}^{*}$-minor. Thus, we may assume that for some $v \in V\left(H_{0}\right), \Delta\left(H_{0}-v\right)<3\left(n_{0}-15\right) / 7$. By Lemma 14(c), some pair $\left\{y_{1}, z_{1}\right\}$ of vertices in $V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}, v\right\}-N_{1}$ has no common neighbor in N_{1}. Similarly, some pair $\left\{y_{2}, z_{2}\right\}$ of vertices in $V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}, v, y_{1}, z_{1}\right\}-N_{2}$ has no common neighbor in N_{2}, and some pair $\left\{y_{3}, z_{3}\right\}$ of vertices in $V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}, v, y_{1}, z_{1}, y_{2}, z_{2}\right\}-N_{3}$ has no common neighbor in N_{3}. Thus contracting in $G_{0}-v$ vertices x_{i}, y_{i} and z_{i} for $i=1,2$, 3 , we find a $K_{3, n_{0}-10}^{*}$-minor of G_{0}.
Case 6: $12 \leq d \leq 14$. By (q1) and (q2), $e\left(H_{0}\right)<6\left(n_{0}-2\right)$ and $\Delta\left(H_{0}\right) \leq n_{0} / 2+4$. If at most two vertices in H_{0} have degree less than 11, then we are done by Lemma 21 for $k=11$. Suppose now that H_{0} has three vertices, x_{1}, x_{2} and x_{3}, of degree at most 10 . Let $N_{i}=N_{\bar{G}_{0}}\left(x_{i}\right), i=1,2,3$.

By Lemma 14(a) and (b), if $m \geq 9 k / 5$, then $m-1>9(k-1) / 5$ and

$$
\begin{equation*}
C(m, k, 3) \geq\left\lceil\frac{m}{k} C(m-1, k-1,2)\right\rceil \geq\left\lceil\frac{9}{5} 6\right\rceil=11 . \tag{9}
\end{equation*}
$$

Thus, since $\left|N_{1}\right| \leq 10$ and

$$
\left|V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}\right\}-N_{1}\right| \geq n_{0}-13 \geq \frac{9}{5}\left(\frac{n_{0}}{2}+3\right) \geq \frac{9}{5}\left(\Delta\left(H_{0}\right)-1\right)
$$

the set $V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}\right\}-N_{1}$ contains a triple $\left\{y_{1}, z_{1}, u_{1}\right\}$ that has no common neighbors of all three of these vertices in N_{1}. Similarly, the set $V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}, y_{1}, z_{1}, u_{1}\right\}-N_{2}$ contains a triple $\left\{y_{2}, z_{2}, u_{2}\right\}$ that has no common neighbors in N_{2} and the set $V\left(H_{0}\right)-\left\{x_{1}, x_{2}, x_{3}, y_{1}, z_{1}, u_{1}, y_{2}, z_{2}, u_{2}\right\}-N_{3}$ contains a triple $\left\{y_{3}, z_{3}, u_{3}\right\}$ that has no common neighbors in N_{3}. For this we need $n_{0}-19 \geq \frac{9}{5}\left(\frac{n_{0}}{2}+3\right)$ which holds for $n_{0} \geq 244$. Now contracting in G_{0} the three quadruples $\left\{x_{i}, y_{i}, z_{i}, u_{i}\right\}$, we find a $K_{3, n_{0}-12}^{*}$-minor of G_{0}.
Case 7: $15 \leq d \leq 22$. By (q1) and (q2), $e\left(H_{0}\right)<10\left(n_{0}-2\right)$ and $\Delta\left(H_{0}\right) \leq n_{0} / 2+8$. Since $e\left(H_{0}\right)<10\left(n_{0}-2\right)$, H_{0} has three vertices, x_{1}, x_{2} and x_{3} of degree at most 19. Let $N_{i}=N_{\bar{G}_{0}}\left(x_{i}\right), i=1,2,3$. By Lemma 14(a) and by (9), if $m \geq 9 k / 5$, then $m-1>9(k-1) / 5$ and

$$
\begin{equation*}
\left.C(m, k, 4) \geq\left\lceil\frac{m}{k} C(m-1, k-1,3)\right\rceil \geq \frac{9}{5} 11\right\rceil=20 . \tag{10}
\end{equation*}
$$

Now we repeat the second part of the proof of Case 6 with quadruples in place of triples and 5-tuples in place of quadruples. We will find a $K_{3, n_{0}-15}^{*}-$ minor of G_{0} if $n_{0}-(19+3+4+4) \geq \frac{9}{5}\left(\frac{n_{0}}{2}+8\right)$ which holds for $n_{0} \geq 444$.

Lemma 24. Let $t \geq 432$. Then $n_{0} \geq 1.1$ t.
Proof. Suppose that $d:=n_{0}-t \leq 0.1 t$. If $d \leq 22$ then we are done by the previous lemma. So suppose that $d \geq 23$. By (q1), H_{0} has three vertices, v_{1}, v_{2}, v_{3}, with degree at most $d-3$. So, the degrees of v_{1}, v_{2}, v_{3} in G_{0} are at least $t+2$. We will construct disjoint connected dominating sets D_{1}, D_{2}, D_{3} as follows.

STEP 0 : For $j=1,2,3$, let $D_{1, j}=\left\{v_{j}\right\}$ and $Q_{1, j}=V\left(G_{0}\right)-N_{G_{0}}\left(v_{j}\right)-v_{j}$.
STEP $i, i \geq 1$: Consecutively, for $j=1,2,3$, if $Q_{i, j}=\emptyset$, then let $D_{j}:=D_{i+1, j}:=D_{i, j}$. When all D_{j} are defined, then stop. If $Q_{i, j} \neq \emptyset$, then let $F_{i, j}:=Q_{i, j} \cup \bigcup_{\ell=1}^{j-1} D_{i+1, \ell} \cup \bigcup_{\ell=j}^{3} D_{i, \ell}$, then choose in $V\left(G_{0}\right)-F_{i, j}$ a vertex $v_{i, j}$ that has the most neighbors in $Q_{i, j}$ and let $D_{i+1, j}:=D_{i, j} \cup\left\{v_{i, j}\right\}$ and $Q_{i+1, j}:=Q_{i, j}-N_{G_{0}}\left(v_{i, j}\right)-v_{i, j}$.

By definition, for all i and $j, Q_{i, j}$ is exactly the set of vertices of G_{0} not dominated by $D_{i, j}$. Since we always choose $v_{i, j} \notin Q_{i, j}$, $G_{0}\left[D_{i, j}\right]$ is a connected subgraph of G_{0} for all i and j. Also, $D_{i, j}$ and $D_{i, j^{\prime}}$ are disjoint if $j^{\prime} \neq j$. We now show by induction on i that for each $j \in\{1,2,3\}$, if $Q_{i, j} \neq \emptyset$, then for each $x \in Q_{i, j}$,

$$
\begin{equation*}
\frac{\left|V\left(G_{0}\right)-F_{i, j}\right|}{\left|N_{G_{0}}(x)-F_{i, j}\right|}<\frac{5}{2} . \tag{11}
\end{equation*}
$$

It will be easier to prove a slightly stronger inequality

$$
\begin{equation*}
\frac{n_{0}-\left|N_{G_{0}}(x)\right|}{\left|N_{G_{0}}(x)-F_{i, j}\right|}<\frac{3}{2} . \tag{12}
\end{equation*}
$$

By (p3), since $n_{0}<1.1 t$, we have $n_{0}-\left|N_{G_{0}}(x)\right|<1.1 t-t / 2-2=0.6 t-2$. By the definition of $Q_{i, j}$, for each $x \in Q_{i, j}$, $N_{G_{0}}(x)-F_{i, j}=N_{G_{0}}(x)-\left(F_{i, j}-D_{i, j}\right)$. Since

$$
\begin{equation*}
\left|F_{i, j}-D_{i, j}\right| \leq 2 i+\left|Q_{i, j}\right|, \tag{13}
\end{equation*}
$$

we will estimate $\left|Q_{i, j}\right|$.
By the choice of v_{1}, v_{2}, and $v_{3},\left|Q_{1, j}\right| \leq d-3$ and hence $\left|F_{1, j}-D_{1, j}\right| \leq d-1<0.1 t-1$. So,

$$
\left|N_{G_{0}}(x)-F_{1, j}\right| \geq 0.5 t+2-(0.1 t-1) \geq 0.4 t+1,
$$

and (since $\left.n_{0}-\left|N_{G_{0}}(x)\right|<0.6 t-2\right)$ (12) (and hence (11), as well) holds for $i=1$. Observe that

$$
\begin{equation*}
\text { if }(11) \text { holds for a pair }(i, j) \text {, then } v_{i+1, j} \text { has more than } 2\left|Q_{i, j}\right| / 5 \text { neighbors in } Q_{i, j} \text {. } \tag{14}
\end{equation*}
$$

Thus if (11) holds for a pair (i, j) and $\left|Q_{i, j}\right| \geq 3$, then by (14),

$$
\left|F_{i+1, j}-D_{i+1, j}\right| \leq\left|F_{i, j}-D_{i, j}\right|+2-\left(\left|Q_{i, j}\right|-\left|Q_{i+1, j}\right|\right) \leq\left|F_{i, j}-D_{i, j}\right|+2-\left\lceil 2\left|Q_{i, j}\right| / 5\right\rceil \leq\left|F_{i, j}-D_{i, j}\right| .
$$

It follows that the inequality

$$
\begin{equation*}
\left|F_{i, j}-D_{i, j}\right| \leq 0.1 t-1 \tag{15}
\end{equation*}
$$

holds if $\left|Q_{i-1, j}\right| \geq 3$ and $\left|F_{i-1, j}-D_{i-1, j}\right| \leq 0.1 t-1$. Let i_{0} be the smallest $i \geq 2$ such that $\left|Q_{i-1, j}\right| \leq 2$. If $Q_{i 0, j}=\emptyset$, then (12) is proved for all i. Suppose that $\left|Q_{i_{0}, j}\right| \geq 1$. Then inequalities (15) and (12) hold for $i=i_{0}-1$. This implies that $\left|Q_{i_{0}, j}\right|=1$ and that

$$
\left|F_{i_{0}, j}-D_{i_{0}, j}\right| \leq\left|F_{i_{0}-1, j}-D_{i_{0}-1, j}\right|+2-\left(\left|Q_{i_{0}, j}\right|-\left|Q_{i_{0}-1, j}\right|\right) \leq(0.1 t-1)+2-1=0.1 t .
$$

So, if $Q_{i_{0}, j}=\left\{x_{j}\right\},\left|N\left(x_{j}\right)-F_{i_{0}, j}\right|>0.4 t$ and hence $Q_{i_{0}+1, j}=\emptyset$. Thus in all cases (12) holds.
By (11) and (14), if $Q_{i, j} \neq \emptyset$, then

$$
\begin{equation*}
\left|Q_{i+1, j}\right|<\frac{3}{5}\left|Q_{i, j}\right| . \tag{16}
\end{equation*}
$$

Let $k=\left\lceil\log _{5 / 3}(d-3)\right\rceil$. By (16) applied k times,

$$
\left|Q_{k+1, j}\right|<\left|Q_{1, j}\right|\left(\frac{3}{5}\right)^{k} \leq(d-3)\left(\frac{3}{5}\right)^{\log _{5 / 3}(d-3)}=1 .
$$

Hence $Q_{k+1, j}=\emptyset$ for each $j \in\{1,2,3\}$ and so our algorithm constructs by the end of Step k disjoint connected dominating sets D_{1}, D_{2}, and D_{3}. In particular, this means that G_{0} has a $K_{3, n_{0}-3(k+1)}^{*}$-minor.

It is left to show that $3(k+1) \leq d$, i.e., that $3\left\lceil\log _{5 / 3}(d-3)\right\rceil \leq d-3$. Since $d-3 \geq 20$, it is enough to show that for integer $x \geq 20, \log _{5 / 3} x \leq\lfloor x / 3\rfloor$, which is true. For example, $\log _{5 / 3} 20<5.87$.

5. Graphs with a dense subgraph of moderate order

Lemma 25. Let $2 \leq s \leq 3, t \geq 500$, and let G be a $2 s$-connected graph that contains a vertex subset U with

$$
t+19(s-1) \ln t \leq|U| \leq 2 t+20(s-1) \ln t
$$

such that $\delta(G[U]) \geq 2 t / 5+36(s-1) \ln t$. Then G has a $K_{s, t}^{*}-$ minor such that the pre-image of each vertex of the minor intersects U.

Proof. Let $u=|U|$. Perform the following procedure on $G[U]$. Let $i=1$ and $G_{1}=G[U]$. Step i : If every component of G_{i} has connectivity greater than $10(s-1) \ln t$ and the number of components in G_{i} is exactly i, then stop. Otherwise, choose a set S_{i} with $\left|S_{i}\right|=\lfloor 10(s-1) \ln t\rfloor$ so that $G_{i}-S_{i}$ has more than i components and let $G_{i+1}=G_{i}-S_{i}$.

Let G^{\prime} be the resulting graph. Let $H_{1}, H_{2}, \ldots, H_{\ell}$ be the components of the graph G^{\prime} and let $U_{i}=V\left(H_{i}\right)$ and $u_{i}=\left|U_{i}\right|$ for $i=1, \ldots, \ell$. We may assume that $u_{1} \geq \cdots \geq u_{\ell}$. First, we show that

$$
\begin{equation*}
\ell \leq 4 \tag{17}
\end{equation*}
$$

Suppose that (17) does not hold. Consider G_{4}. By construction, G_{4} has at least four components. Since $\delta\left(G_{4}\right) \geq \delta(G)-30$ $(s-1) \ln t \geq 0.4 t+6(s-1) \ln t$, each component of G_{4} has more than $0.4 t+6(s-1) \ln t$ vertices. So, if G_{4} has at least five components, then $\left|V\left(G_{4}\right)\right|>5(0.4 t+6(s-1) \ln t)=2 t+30(s-1) \ln t$, a contradiction. Moreover, each component of G_{4} that is not $10(s-1) \ln t$-connected has more than $2 \delta\left(G_{4}\right)-10(s-1) \ln t \geq 0.8 t+2(s-1) \ln t$ vertices. So, if there is such a component, then $\left|V\left(G_{4}\right)\right|>0.8 t+2(s-1) \ln t+3(0.4 t+6(s-1) \ln t)=2 t+20(s-1) \ln t$, a contradiction. This proves (17).
Case 1: $\ell=1$. This means that $H_{1}=G[U], u_{1}=u$, and the connectivity of H_{1} is greater than $10(s-1) \ln t$. Let us check that H_{1} satisfies the conditions of Lemma 13 with $k=\lceil 0.4 t+4(s-1) \ln t\rceil$ and $n=u$. Indeed, in this case $u \leq 5 k$; hence $u /(u-k) \geq 5 / 4$, and so for $t \geq 500$,

$$
2(s-1) \log _{u /(u-k)} u \leq 2(s-1) \log _{5 / 4} u<9(s-1) \ln (u) .
$$

Hence by this lemma, U contains s disjoint subsets A_{1}, \ldots, A_{s} such that, for every $i=1, \ldots, s$, (i) $G\left[A_{i}\right]$ is connected, (ii) $\left|A_{i}\right| \leq 2 \log _{u /(u-k)} u$, and (iii) A_{i} dominates $H_{1}-\bigcup_{j=1}^{i-1} A_{j}$.

Contracting each of A_{1}, \ldots, A_{s} into a vertex, we find a $K_{s, u-2 s}^{*} \log _{u /(u-k)} u$-minor of G. We want to prove that u $2 s \log _{u /(u-k)} u \geq t$, i.e. that for $0.4 t \leq k<t$,

$$
\begin{equation*}
f(u, k)=u \ln \frac{u}{u-k}-2 s \ln u-t \ln \frac{u}{u-k} \geq 0 \tag{18}
\end{equation*}
$$

For this we show first that $f_{u}^{\prime}(u, k) \geq 0$ when $0.4 t \leq k<t$ and $u \geq t$. Indeed,

$$
f_{u}^{\prime}(u, k)=\ln \frac{u}{u-k}+\frac{u}{u}-\frac{u}{u-k}-\frac{2 s}{u}-t\left(\frac{1}{u}-\frac{1}{u-k}\right)=\ln \frac{u}{u-k}-\frac{k(u-t)}{u(u-k)}-\frac{2 s}{u} .
$$

Hence,

$$
\left(u f_{u}^{\prime}(u, k)\right)_{u}^{\prime}=\ln \frac{u}{u-k}-\frac{k}{u-k}-\frac{k(t-k)}{(u-k)^{2}} .
$$

Since $\ln (1+x)<x$ for $x=\frac{k}{u-k}$, function $u f^{\prime}(u)$ decreases for $u>t$. So, to check the inequality $f_{u}^{\prime}(u, k) \geq 0$ for $u \in(t, 2 t]$, it is enough to check it for $u=2 t$. For $u=2 t$,

$$
\left(f_{u}^{\prime}(u, k)\right)_{k}^{\prime}=\frac{1}{u-k}-\frac{u-t}{u} \frac{u}{(u-k)^{2}}=\frac{t-k}{(u-k)^{2}}>0
$$

So,

$$
f_{u}^{\prime}(2 t, k) \geq f_{u}^{\prime}(2 t, 0.4 t)=\ln \frac{2 t}{1.6 t}-\frac{0.4 t \cdot t}{1.6 t \cdot 2 t}-\frac{2 s}{2 t}=\ln \frac{5}{4}-\frac{1}{8}-\frac{s}{t}
$$

Since $\ln 1.25>0.22, s \leq 3$ and $t>200, f_{u}^{\prime}(2 t, k)>0$ and $f(u, k)$ grows with u on $(t, 2 t]$. Let $u_{0}=t+\left\lceil 2 s \log _{3 / 2} 1.2 t\right\rceil$. Since $s \leq 3$ and $t \geq 500, u_{0} \leq 1.2 t$. Hence $\frac{u_{0}}{u_{0}-k} \geq 3 / 2$ and

$$
u_{0}-2 s \log _{u_{0} /\left(u_{0}-k\right)} u_{0} \geq t+2 s \log _{3 / 2} 1.2 t-2 s \log _{3 / 2} u_{0} \geq t
$$

Since $\log _{3 / 2} 1.2 t \leq 2.6 \ln t$ for $t \geq 500$, this proves Case 1 for $u \leq 2 t$. If $u \in[2 t, 2 t+20(s-1) \ln t]$, then it is enough to show that $f_{1}(u)=u-2 s \log _{5 / 4} u \geq t$. Since for $u \geq 2 t \geq 1000, f_{1}^{\prime}(u)=1-\frac{2 s}{u \ln 5 / 4}>1-\frac{9 s}{u}>0$, we have for such u

$$
f_{1}(u) \geq f_{1}(2 t)>2 t-9 s \ln 2 t \geq 2 t-27 \ln 2 t>t .
$$

This finishes Case 1.
Case 2: $\ell=2$. Then $\delta\left(G^{\prime}\right) \geq \delta(G[U])-10(s-1) \ln t \geq 0.4 t+26(s-1) \ln t$. For $j=1,2$, let $u_{j}=\left|V\left(H_{j}\right)\right|$. If $u_{1}>t+6(s-1) \ln t$, then we simply repeat the proof of Case 1 for H_{1}. The only difference would be the lower bound on $\delta\left(G^{\prime}\right)$, but the new bound is sufficient for the argument. Suppose that $u_{2} \leq u_{1} \leq t+6(s-1) \ln t$. Since G is $2 s$-connected, there are s pairwise disjoint paths P_{1}, \ldots, P_{s} connecting $V\left(H_{1}\right)$ with $V\left(H_{2}\right)$. We may assume that for $i=1, \ldots, s$ and $j=1,2, V\left(P_{i}\right) \cap V\left(H_{j}\right)=\left\{x_{i, j}\right\}$. Let $H_{j}^{\prime}=H_{j}-\left\{x_{1, j}, \ldots, x_{s, j}\right\}$. Then for $j=1,2, \delta\left(H_{j}^{\prime}\right) \geq \delta\left(G^{\prime}\right)-s>0.4 t+25(s-1) \ln t$. So each of H_{j}^{\prime} satisfies the conditions of Lemma 13 with $k=\lceil 0.4 t+3(s-1) \ln t\rceil$ and $n_{j}=u_{j}^{\prime}=u_{j}-s$. Hence
$V\left(H_{1}^{\prime}\right) \cup V\left(H_{2}^{\prime}\right)$ contains disjoint subsets $A_{1,1}, A_{2,1}, \ldots, A_{s, 2}$ such that for every $i=1, \ldots, s$ and $j=1$, 2 , (i) $G\left[A_{i, j}\right]$ is connected, (ii) $\left|A_{i, j}\right| \leq 2 \log _{u_{j} /\left(u_{j}-k\right)} u_{j}$, and (iii) $A_{i, j}$ dominates $H_{j}^{\prime}-\bigcup_{q=1}^{i-1} A_{q, j}$.

Since $u_{j} \leq 2.5 k$, by (ii),

$$
\begin{equation*}
\sum_{j=1}^{2} \sum_{i=1}^{s}\left|A_{i, j}\right| \leq 4 s \log _{5 / 3} t+6(s-1) \ln t<4 s \cdot 2 \ln t+6(s-1) \ln t<8.5 s \ln t \tag{19}
\end{equation*}
$$

For $j=1,2$, choose in $V\left(H_{j}^{\prime}\right)-\bigcup_{i=1}^{s} A_{i, j}$ vertices $y_{1, j}, \ldots, y_{s, j}$ so that $x_{i, j} y_{i, j} \in E\left(G^{\prime}\right)$ for $i=1, \ldots, s$. We can do this because each $x_{i, j}$ has at least $0.4 t+26(s-1) \ln t$ neighbors in H_{j}. For $i=1, \ldots, s$, let $B_{i}=A_{i, 1} \cup A_{i, 2} \cup V\left(P_{i}\right) \cup\left\{y_{i, 1}, y_{i, 2}\right\}$. By the dominating properties of $A_{i, j}, y_{i, j}$ has a neighbor in $A_{i, j}$. Hence each of B_{1}, \ldots, B_{s} induces a connected subgraph in G and dominates the set $X=V\left(H_{1}^{\prime}\right) \cup V\left(H_{2}^{\prime}\right)-\bigcup_{j=1}^{2} \bigcup_{i=1}^{s}\left(A_{i, j} \cup\left\{y_{i, j}\right\}\right)$. Under the assumptions of the case, by (19),

$$
|X| \geq|U|-\left|S_{1}\right|-2 s-\sum_{j=1}^{2} \sum_{i=1}^{s}\left|A_{i, j}\right|-2 s \geq|U|-10(s-1) \ln t-8.5 s \ln t-4 s \geq|U|-18 s \ln t
$$

So, if $|U| \geq t+18 s \ln t$, then the case is proved. Suppose $|U|<t+18 s \ln t$. Then $u_{1}<|U|-\delta\left(G^{\prime}\right) \leq t+18 s \ln t-(2 t / 5+$ $36(s-1) \ln t) \leq 0.6 t$ and $u_{2} \leq u_{1}$. So, repeating the above argument, instead of (19), we get

$$
\begin{equation*}
\sum_{j=1}^{2} \sum_{i=1}^{s}\left|A_{i, j}\right| \leq 4 s \log _{3} 0.6 t<4 s(\ln t+\ln 0.6)<4 s \ln t-2 s \tag{20}
\end{equation*}
$$

Hence

$$
|X| \geq|U|-10(s-1) \ln t-(4 s \ln t-2 s)-4 s \geq|U|-18(s-1) \ln t-2 s \geq t
$$

Case 3: $\ell=3$. Since $\delta\left(G^{\prime}\right) \geq 0.4 t+16(s-1) \ln t, u_{1} \geq u_{2} \geq u_{3} \geq 1+0.4 t+16(s-1) \ln t$. For $j=1$, 2 , 3 , choose $F_{j} \subset U_{j}$ with $\left|F_{1}\right|=2 s$ and $\left|F_{2}\right|=\left|F_{3}\right|=s$. Since G is $2 s$-connected, G contains $2 s$ vertex-disjoint paths $P_{1}, \ldots, P_{2 s}$ from F_{1} to $F_{2} \cup F_{3}$. By Lemma 11, $P_{1} \cup \ldots \cup P_{2 s}$ contains s vertex-disjoint $\left(U_{1}, U_{2}, U_{3}\right)$-connecting pairs of paths $\left(Q_{i, 1}, Q_{i, 2}\right)$, $i=1, \ldots$, s. Let $Q=\bigcup_{i=1}^{s} \bigcup_{j=1}^{2} V\left(Q_{i, j}\right)$. For $j=1,2$, 3, let $H_{j}^{\prime}=H_{j}-Q$ and $u_{j}^{\prime}=\left|V\left(H_{j}^{\prime}\right)\right|$. Then for $j=1,2,3$, $\delta\left(H_{j}^{\prime}\right) \geq \delta\left(G^{\prime}\right)-2 s>0.4 t+15(s-1) \ln t$ and hence $u_{j}^{\prime}>1+0.4 t+15(s-1) \ln t$.

As in Case $2, u_{1} \leq t+6 s \ln t$. Moreover, $u_{2} \leq\left(|U|-20(s-1) \ln t-u_{3}\right) / 2 \leq 0.8 t$ and $u_{3} \leq(|U|-20(s-1) \ln t) / 3 \leq 2 t / 3$. So, each of $H_{j}^{\prime}(j=1,2,3)$ satisfies the conditions of Lemma 13 with $k_{1}=\lceil 0.4 t+2.5 \sin t\rceil, u_{1}^{\prime} /\left(u_{1}^{\prime}-k_{1}\right) \geq 5 / 3$, $k_{2}=k_{3}=\lceil 0.4 t\rceil, u_{2}^{\prime} /\left(u_{2}^{\prime}-k_{2}\right) \geq 2$ and $u_{3}^{\prime} /\left(u_{3}^{\prime}-k_{3}\right) \geq 5 / 2$. Hence $V\left(H_{1}^{\prime}\right) \cup V\left(H_{2}^{\prime}\right) \cup V\left(H_{3}^{\prime}\right)$ contains disjoint subsets $A_{1,1}, A_{2,1}, \ldots, A_{s, 3}$ such that, for every $i=1, \ldots, s$ and $j=1,2,3$, (i) $G\left[A_{i, j}\right]$ is connected, (ii) $\left|A_{i, j}\right| \leq 2 \log _{u_{j}^{\prime} /\left(u_{j}^{\prime}-k_{j}\right)} u_{j}^{\prime}$, and (iii) $A_{i, j}$ dominates $V\left(H_{j}^{\prime}\right)-\bigcup_{q=1}^{i-1} A_{q, j}$.

By construction, $\sum_{j=1}^{3} \sum_{i=1}^{s}\left|A_{i, j}\right|<2 s\left(\log _{5 / 3} u_{1}+\log _{2} u_{2}+\log _{5 / 2} u_{3}\right)$. Since $u_{1} \leq 1.2 t($ cf. Case 1$)$ and $u_{3} \leq u_{2}<t$,

$$
\log _{5 / 3} u_{1}^{\prime}+\log _{2} u_{2}^{\prime}+\log _{5 / 2} u_{3}^{\prime} \leq \ln t\left(\frac{1+\ln 1.2 / \ln t}{\ln 5 / 3}+\frac{1}{\ln 2}+\frac{1}{\ln 5 / 2}\right)
$$

so for $t \geq 500$ we have

$$
\begin{equation*}
\sum_{j=1}^{3} \sum_{i=1}^{s}\left|A_{i, j}\right|<2 s \cdot 4.6 \ln t=9.2 s \ln t \tag{21}
\end{equation*}
$$

By the definition of $\left(U_{1}, U_{2}, U_{3}\right)$-connecting pairs, for $j=1,2,3$ and $i=1, \ldots, s,\left(Q_{i, 1} \cup Q_{i, 2}\right) \cap U_{j} \neq \emptyset$. Let $x_{i, j} \in$ $\left(Q_{i, 1} \cup Q_{i, 2}\right) \cap U_{j}$. Since each $x_{i, j}$ has at least $0.4 t+16(s-1) \ln t$ neighbors in H_{j}, for $j=1,2$, 3 we can choose in $V\left(H_{j}^{\prime}\right)-\bigcup_{i=1}^{s} A_{i, j}$ vertices $y_{1, j}, \ldots, y_{s, j}$ so that $x_{i, j} y_{i, j} \in E\left(G^{\prime}\right)$ for $i=1, \ldots, s$. For $i=1, \ldots, s$, let $B_{i}=V\left(Q_{i, 1} \cup Q_{i, 2}\right) \cup \bigcup_{j=1}^{3}\left(A_{i, 1} \cup\left\{y_{i, j}\right\}\right)$.

By the dominating properties of $A_{i, j}$ and the choice of $y_{i, j}$, each of B_{1}, \ldots, B_{s} induces a connected subgraph in G and dominates the set

$$
X=V\left(H_{1}^{\prime}\right) \cup V\left(H_{2}^{\prime}\right) \cup V\left(H_{3}^{\prime}\right)-\bigcup_{j=1}^{3} \bigcup_{i=1}^{s}\left(A_{i, j} \cup\left\{y_{i, j}\right\}\right)
$$

Furthermore, by (21),

$$
\begin{aligned}
|X| & \geq 3(1+0.4 t+15(s-1) \ln t)-\left|Q \cap\left(U_{1} \cup U_{2} \cup U_{3}\right)\right|-\sum_{j=1}^{3} \sum_{i=1}^{s}\left|A_{i, j} \cup\left\{y_{i, j}\right\}\right| \\
& \geq 3+1.2 t+45(s-1) \ln t-12-9.2 s \ln t-3 s=1.2 t+35.8(s-1) \ln t-9-3 s>t
\end{aligned}
$$

Case 4: $\ell=4$. Since $\delta\left(G^{\prime}\right) \geq 0.4 t+6(s-1) \ln t, u_{1} \geq \cdots \geq u_{4} \geq 1+0.4 t+6(s-1) \ln t$. Hence $u_{2} \leq(|U|-$ $\left.30(s-1) \ln t-u_{3}-u_{4}\right) / 2<0.6 t$ and $u_{4} \leq u_{3} \leq u_{2}$. We can now repeat the proof for Case 3 with H_{2}, H_{3} and H_{4} in place of H_{1}, H_{2} and H_{3} and with $k_{2}=k_{3}=k_{4}=0.4 t$. The disadvantage is a slightly smaller minimum degree, but the advantage is that $\frac{u_{j}}{u_{j}-0.4 t} \geq \frac{0.6 t}{0.6 t-0.4 t}=3$, and so instead of (21) we will have

$$
\sum_{j=2}^{4} \sum_{i=1}^{s}\left|A_{i, j}\right|<2 s \cdot 3 \ln u_{j}^{\prime}<6 s \ln t
$$

This finishes the proof of the lemma.

6. The final argument

We are now ready to prove Theorem 4. Recall that G_{0} is our smallest counter-example to the theorem.
Case 1: G_{0} is 6-connected.
Case 1.1: G_{0} has a vertex v with $t+19 \ln t \leq d(v) \leq 2 t+20 \ln t$. Then $G_{0}-v$ is 5-connected and by $(\mathrm{p} 2), \delta\left(G_{0}[N(v)]\right)>t / 2$. Since $t \geq 3000,2 t / 5+36 \ln t \leq t / 2$, so $G_{0}-v$ with $U=N(v)$ satisfies the conditions of Lemma 25 for $s=2$. Hence by this lemma, $G_{0}-v$ has a $K_{2, t}^{*}-$ minor such that the pre-image of each vertex of the minor intersects $N(v)$. Adding v, we will get a $K_{3, t}^{*}$-minor.
Case 1.2: G_{0} has no vertices v with $t+19 \ln t \leq d(v) \leq 2 t+20 \ln t$. Let $V_{s m}$ be the set of vertices of degree less than $t+19 \ln t$. We first show that

$$
\begin{equation*}
\left|V_{\mathrm{sm}}\right| \leq t+38 \ln t \tag{22}
\end{equation*}
$$

Assume that $\left|V_{\mathrm{sm}}\right|=\ell>t+38 \ln t$. Order v_{1}, \ldots, v_{ℓ}, the vertices in V_{sm}, so that for all $1 \leq i<j \leq \ell$,

$$
\begin{equation*}
\left|\bigcup_{q=1}^{i} N\left[v_{q}\right]\right| \geq\left|\bigcup_{q=1}^{i-1} N\left[v_{q}\right]\right| \cup N\left[v_{j}\right] \tag{23}
\end{equation*}
$$

In other words, having already defined v_{1}, \ldots, v_{i-1}, we choose as v_{i} a vertex v with maximum $\left|N[v]-\bigcup_{q=1}^{i-1} N\left[v_{q}\right]\right|$. If (22) does not hold, then $\left|\bigcup_{q=1}^{\ell} N\left[v_{q}\right]\right|>t+38 \ln t$. Let i_{0} be the largest i such that $\left|\bigcup_{q=1}^{i} N\left[v_{q}\right]\right| \leq t+38 \ln t$. Let us check that

$$
\begin{equation*}
\left|\bigcup_{q=1}^{i_{0}+1} N\left[v_{q}\right]\right| \leq 2 t+20 \ln t \tag{24}
\end{equation*}
$$

By the definition of $V_{\mathrm{sm}}, i_{0} \geq 1$, and if $i_{0}=1$, then (24) holds. So, let $i_{0} \geq 2$. If (24) does not hold, then by the definition of $i_{0},\left|N\left[v_{i_{0}+1}\right]-\bigcup_{q=1}^{i_{0}} N\left[v_{q}\right]\right|>t-18 \ln t$. But then by the ordering of $v_{1}, \ldots, v_{i_{1}},\left|N\left[v_{i_{0}}\right]-\bigcup_{q=1}^{i_{0}-1} N\left[v_{q}\right]\right|>t-18 \ln t$ and $\left|N\left[v_{i_{0}-1}\right]-\bigcup_{q=1}^{i_{0}-2} N\left[v_{q}\right]\right|>t-18 \ln t$, so $\left|\bigcup_{q=1}^{i_{0}} N\left[v_{q}\right]\right|>2 t-36 \ln t$. But for $t \geq 6300,2 t-36 \ln t>t+38 \ln t$, a contradiction to the definition of i_{0}. Thus (24) holds. Then G_{0} and $U=\bigcup_{q=1}^{i_{0}+1} N\left[v_{q}\right]$ satisfy the conditions of Lemma 25 for $s=3$, since $t \geq 6300$. This proves (22).

Since every vertex not in V_{sm} has degree at least $2 t+20 \ln t$, by (p1),

$$
\frac{t\left|V_{\mathrm{sm}}\right|}{2}+2 t\left(n_{0}-\left|V_{\mathrm{sm}}\right|\right) \leq \sum_{v \in V\left(G_{0}\right)} d_{G_{0}}(v) \leq(t+3)\left(n_{0}-2\right)+4<(t+3) n_{0}
$$

It follows that $n_{0}-\frac{3 n_{0}}{t}<\frac{3\left|V_{s m}\right|}{2}$ and hence by (22),

$$
n_{0}<\frac{3 t\left|V_{\mathrm{sm}}\right|}{2(t-3)} \leq 2 t \frac{3(t+38 \ln t)}{4(t-3)}<2 t
$$

Thus if $n_{0} \geq t+38 \ln t$, then we apply Lemma 25 for $s=3$ to G_{0} and $U=V\left(G_{0}\right)$. If $n_{0}<t+38 \ln t$, then, since $t \geq 6300$, $n_{0}<t+0.1 t$, and by Lemma 24, the theorem holds for G_{0}.
Case 2: G_{0} is not 6 -connected. Let X be a separating set in G_{0} with $|X| \leq 5$. Let V_{1} and V_{2} be vertex sets of some two connected components of $G_{0}-X$. By definition, each of V_{1} and V_{2} is 5 -separable, and hence 9 -separable. For $j=1,2$, let W_{j} be an inclusion-minimal 9-separable subset of V_{j}, let $S_{j}=N\left(W_{j}\right)-W_{j}$, and let $G_{j}=G_{0}\left[W_{j} \cup S_{j}\right]$. By (p2), for $j=1$, 2 , $\delta\left(G_{j}\right)>t / 2$ and by Lemma 10 for $k=9$, graph G_{j} is 6-connected.
Case 2.1: $\left|V\left(G_{1}\right)\right| \geq t+38 \ln t$. If $\left|V\left(G_{1}\right)\right| \leq 2 t$, then G_{1} with $U=V\left(G_{1}\right)$ satisfies the conditions of Lemma 25 for $s=3$. So, we may assume that

$$
\begin{equation*}
\left|V\left(G_{1}\right)\right|>2 t \tag{25}
\end{equation*}
$$

If W_{1} contains a vertex v with $t+19 \ln t \leq d(v) \leq 2 t+40 \ln t$, then we simply repeat the argument of Cases 1.1 and 1.2 with G_{1} in place of G_{0}. If not, we let $V_{\text {sm }}$ be the set of vertices in W_{1} of degree less than $t+19 \ln t$. Note that we do not include vertices of S_{1} into V_{sm}. Repeating the proof of (22) word by word, we get that it holds for our new definition of V_{sm}. By the minimality of $G_{0}, e\left(G_{1}\right) \leq \frac{t+3}{2}\left(\left|W_{1}\right|+\left|S_{1}\right|-2\right)+1$. So, since every vertex in $W_{1}-V_{\text {sm }}$ has degree at least $2 t+40 \ln t$,

$$
\frac{(t+3)\left(\left|V_{\mathrm{sm}}\right|+\left|S_{1}\right|\right)}{2}+2 t\left(\left|W_{1}-V_{\mathrm{sm}}\right|\right) \leq \sum_{w \in S_{1} \cup W_{1}} d_{G_{1}}(w)<(t+3)\left(\left|W_{1}\right|+\left|S_{1}\right|\right)
$$

Since $\left|S_{1}\right| \leq 9$, this and (22) yield for $t>2000$

$$
\left|W_{1}\right| \leq \frac{3 t\left(\left|V_{\mathrm{sm}}\right|+3+9 / t\right)}{2(t-3)}<\frac{3 t(t+38 \ln t+3+9 / t)}{2(t-3)}<\frac{3 t(1.2 t-5)}{2(t-3)}<1.8 t<2 t-9
$$

Hence $\left|W_{1}\right|+\left|S_{1}\right|<2 t$, a contradiction to (25). This proves Case 2.1.
Case 2.2: For $j=1,2,\left|V\left(G_{j}\right)\right| \leq t+38 \ln t$. For each $w \in W_{j}, d(w) \leq\left|W_{j}\right|+\left|S_{j}\right|-1$. On the other hand, by the minimality of $G_{0}, e\left(G_{0}\right)-e\left(G_{0}-W_{j}\right) \geq(t+3)\left|W_{j}\right| / 2$. Thus, since $\left|S_{j}\right| \leq 9$,

$$
(t+3)\left|W_{j}\right| \leq \sum_{w \in W_{j}} d(w)+\left|S_{j}\right|\left|W_{j}\right| \leq\left|W_{j}\right|\left(\left|W_{j}\right|+2\left|S_{j}\right|-1\right) \leq\left|W_{j}\right|\left(\left|W_{j}\right|+17\right)
$$

and hence $\left|W_{j}\right| \geq t-14$. Thus, if at most two vertices of G_{j} have degree greater than $t-12$, then

$$
\begin{aligned}
(t+3)\left|W_{j}\right| & \leq \sum_{w \in W_{j} \cup S_{j}} d_{G_{j}}(w) \leq 2\left(\left|W_{j}\right|+\left|S_{j}\right|-1\right)+(t-12)\left(\left|W_{j}\right|+\left|S_{j}\right|-2\right) \\
& \leq(t-10)\left|W_{j}\right|+16+7(t-12)
\end{aligned}
$$

It follows that $13\left|W_{j}\right| \leq 7(t-12)+16$, a contradiction to $\left|W_{j}\right| \geq t-14$. So, G_{j} contains some three vertices $v_{1, j}$, $v_{2, j}$ and $v_{3, j}$ of degree at least $t-11$ in G_{j}.

By (p4), there are three vertex-disjoint S_{1}, S_{2}-paths P_{1}, P_{2}, and P_{3}. We may assume that for $i=1,2,3$ and $j=1,2$, the only common vertex of P_{i} and S_{j} is $p_{i, j}$. We also may assume that if $p_{i, j} \in\left\{v_{1, j}, v_{2, j}, v_{3, j}\right\}$, then $p_{i, j}=v_{i, j}$. Let $F_{j}=$ $\left\{v_{1, j}, v_{2, j}, v_{3, j}, p_{1, j}, p_{2, j}, p_{3, j}\right\}$ for $j=1,2$. If $p_{i, j} \neq v_{i, j}$ and $p_{i, j} v_{i, j} \notin E\left(G_{j}\right)$, then $p_{i, j}$ and $v_{i, j}$ have at least

$$
d_{G_{j}}\left(p_{i, j}\right)+d_{G_{j}}\left(v_{i, j}\right)-\left|V\left(G_{j}\right)\right| \geq \frac{t+3}{2}+(t-11)-(t+38 \ln t)>10
$$

common neighbors. Thus, we can choose distinct vertices $q_{1, j}, q_{2, j}, q_{3, j} \in V\left(G_{j}\right)-F_{j}$ so that $q_{i, j}$ is a common neighbor of $p_{i, j}$ and $v_{i, j}$ if $p_{i, j} \neq v_{i, j}$ and $p_{i, j} v_{i, j} \notin E\left(G_{j}\right)$. For $j=1,2$, let $F_{j}^{\prime}=F_{j} \cup\left\{q_{1, j}, q_{2, j}, q_{3, j}\right\}$ and let M_{j} be the set of common neighbors of $v_{1, j}, v_{2, j}$ and $v_{3, j}$ in $V\left(G_{j}\right)-F_{j}^{\prime}$. By definition, for $t \geq 6000$,

$$
\left|M_{j}\right| \geq \sum_{i=1}^{3} d_{G_{1}}\left(v_{i, j}\right)-2\left|V\left(G_{j}\right)\right|-\left|F_{j}^{\prime}\right| \geq 3(t-11)-2(t+38 \ln t)-9=t-76 \ln t-42>7 t / 8
$$

For $i=1,2$, 3, let $B_{i}=V\left(P_{i}\right) \cup\left\{v_{i, 1}, v_{i, 2}, q_{i, 1}, q_{i, 2}\right\}$. Then $G_{0}\left[B_{i}\right]$ is connected and contracting each B_{i} into a vertex, we get a $K_{3,7 t / 4}$-minor of G_{0}, where the pre-images of the remaining vertices are the vertices in $M_{1} \cup M_{2}$. Since $K_{3, t+2}$ has a $K_{3, t}^{*}$-minor, this finishes the proof of the theorem.

7. Case $n_{0}=t+5$

In this section we deliver the postponed proof of Lemma 19 that $n_{0} \neq t+5$. We assume that $n_{0}=t+5$ and will eventually get a contradiction. As was noted, in this case it is easier to consider the complement, H_{0}, of our counter-example G_{0} than G_{0} itself. By (q1),

$$
\begin{equation*}
e\left(H_{0}\right)<1.5 n_{0}-3 \tag{26}
\end{equation*}
$$

Lemma 26. H_{0} is connected.
Proof. Suppose first that each component of H_{0} has at least three vertices. Let x be a vertex of degree at most 2 in H_{0}. Contracting in G_{0} the neighbors of x in H_{0} with vertices in other components of H_{0}, we find a $K_{3, n-5}$-minor. Similarly, if H_{0} has a K_{2}-component C with $V(C)=\left\{y_{1}, y_{2}\right\}$, then it has another vertex x of degree at most 2 in $H_{0}-C$. If $N_{H_{0}}(x) \subseteq\left\{z_{1}, z_{2}\right\}$, then we contract in G_{0} the edges $y_{1} z_{1}$ and $y_{2} z_{2}$. Suppose finally that H_{0} has an isolated vertex x. Let $H_{1}=H_{0}-x$ and $n_{1}=\left|V\left(H_{1}\right)\right|=n_{0}-1$. Since $e\left(H_{1}\right)=e\left(H_{0}\right)<1.5\left(n_{1}-1\right)$, by Lemma $15, H_{1}$ contains two disjoint pairs $\left(y_{1}, y_{2}\right)$ and $\left(z_{1}, z_{2}\right)$ of vertices at distance at least 3 . Thus, contracting in G_{0} edges $y_{1} y_{2}$ and $z_{1} z_{2}$, we get a graph containing $K_{3, t}^{*}$.

Lemma 27. If a vertex of H_{0} is adjacent to two degree-1 vertices, then there are no other degree-1 vertices in H_{0}.

Fig. 3. Some kinds of tiny components.
Proof. Suppose that a vertex $x \in V\left(H_{0}\right)$ is adjacent to degree- 1 vertices v_{1} and v_{2}, and that there is another degree- 1 vertex v_{3} adjacent to a vertex y (possibly, $y=x$). Then v_{1}, v_{2} and v_{3} are isolated in $H_{0}-x-y$, i.e. G_{0} contains $K_{3, t}^{*}$.

For $A \subset V\left(H_{0}\right)$, a component C of $H_{0}-A$ is tiny if $|V(C)| \leq 2$ and $e(C, A) \leq 2$.
We need a couple of statements on tiny components. For this, let us first give names to some of these components. We will say that a tiny component C of $H_{0}-A$ is:
(c1) a V-component if $|V(C)|=1$ and $e(C, A)=2$,
(c2) a D-component if $|V(C)|=2$ and both vertices in C are adjacent to the same vertex in A,
(c3) a Y-component if $|V(C)|=2$ and two vertices in A are adjacent to the same vertex in C,
(c4) a U-component if $|V(C)|=2$ and the vertices in C are adjacent to distinct vertices in A.
(See Fig. 3.)
Lemma 28. For every $x \in V\left(H_{0}\right)$, the number of tiny components in $H_{0}-x$ is at most 2.
Proof. Suppose that $H_{0}-x$ has tiny components C_{1}, C_{2}, and C_{3}. If $\left|V\left(C_{1}\right)\right|=\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)\right|=1$, then we have $K_{3, t+1}^{*}$ in $G_{0}-x$, so suppose $V\left(C_{1}\right)=\left\{v_{1}, v_{2}\right\}$. If $\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)\right|=1$, then we have $K_{3, t}^{*}$ in $G_{0}-x-v_{1}$, so suppose $V\left(C_{2}\right)=\left\{w_{1}, w_{2}\right\}$. In this case the graph G_{0}^{\prime} obtained from $G_{0}-x$ by contracting edge $v_{1} w_{1}$ has three all-adjacent vertices: v_{2}, w_{2}, and $v_{1} * w_{1}$.

Lemma 29. For every $x_{1}, x_{2} \in V\left(H_{0}\right)$, the number of tiny components in $H_{0}-x_{1}-x_{2}$ that are not Y-components is at most 2.
Proof. Suppose that $H_{0}-x_{1}-x_{2}$ has tiny components C_{1}, C_{2}, and C_{3} that are not Y-components. For convenience, suppose that $V\left(C_{i}\right)=\left\{v_{i, 1}, \ldots, v_{\left.i, \mid V\left(C_{i}\right)\right\}}\right\}$ for $i=1,2,3$. If all of them are singletons, then G_{0} contains $K_{3, t}^{*}$. So, we may assume that $\left|V\left(C_{1}\right)\right|=2$.
Case 1: Vertex x_{i} has no neighbors in C_{1} for some $i \in\{1,2\}$. If, say, C_{3} is a singleton, then contracting in $G_{0}-x_{3-i}$ the edge $v_{1,1} x_{i}$ we get a $(3+t)$-vertex graph with three all-adjacent vertices, namely $v_{1,2}, v_{1,1} * x_{i}$, and the vertex in C_{3}. So we may assume that $\left|V\left(C_{2}\right)\right|=\left|V\left(C_{3}\right)\right|=2$. If for some $\ell \in\{2,3\}$ and $j \in\{1,2\}, v_{\ell, j} x_{i} \notin E\left(H_{0}\right)$, then contracting in $G_{0}-x_{3-i}$ the edge $v_{1,1} v_{\ell, 3-j}$ we get a $(3+t)$-vertex graph with three all-adjacent vertices: $v_{1,2}, v_{\ell, j}$, and $v_{1,1} * v_{\ell, 3-j}$. Thus both C_{2} and C_{3} are D-components in $H_{0}-x_{i}$. Switching the roles of x_{i} and x_{3-i}, we again get the same case and repeating the proof get a contradiction.
Case 2: Both x_{1} and x_{2} have neighbors in C_{1}. In other words, C_{1} is a U-component (recall that we forbid Y-components). We may assume that $x_{1} v_{1,1}, x_{2} v_{1,2} \in E\left(H_{0}\right)$.
Case 2.1: Some vertex u is at distance at least 3 from some x_{i} in H_{0}. If C_{2} and C_{3} are singletons, then contracting in $G_{0}-x_{3-i}$ the edge $x_{i} u$ we get a $(3+t)$-vertex graph with three all-adjacent vertices: $v_{2,1}, v_{3,1}$, and $x_{i} * u$. So, we may assume that $\left|V\left(C_{2}\right)\right|=2$. Then contracting in G_{0} the edges $x_{i} u$ and $v_{1,3-i} v_{2,3-i}$ we get a $(3+t)$-vertex graph with three all-adjacent vertices: $v_{1, i}, v_{2, i}$, and $x_{i} * u$.
Case 2.2: Each vertex in H_{0} is at distance at most 2 from x_{1} and from x_{2}. Let $N_{i, j}$ denote the set of vertices in H_{0} that are at distance i from x_{1} and at distance j from x_{2}. By definition, $v_{1,1} \in N_{1,2}$ and $v_{1,2} \in N_{2,1}$. We observe some properties of vertices in $N_{i, j}$.

Each $u \in N_{2,2}$ of degree at most 2 has a neighbor in $N_{1,1}$.
Indeed, suppose that $u \in N_{2,2}$ has at most two neighbors, say w_{1} and w_{2}, and that $w_{1}, w_{2} \notin N_{1,1}$. Since Case 2.1 does not hold, we may assume that $w_{1} \in N_{1,2}$ and $w_{2} \in N_{2,1}$. Then contracting in G_{0} edges $w_{1} v_{1,2}$ and $w_{2} v_{1,1}$ we get a ($3+t$)-vertex graph with three all-adjacent vertices: $u, w_{1} * v_{1,2}$, and $w_{2} * v_{1,1}$.

No two vertices $u_{1}, u_{2} \in N_{2,2}$ of degree 1 in H_{0} have a common neighbor.
Indeed, assume that w is the only neighbor of $u_{1}, u_{2} \in N_{2,2}$. Then contracting in G_{0} the vertices $w, v_{1,1}$, and $v_{1,2}$ into the new vertex z we get a $(3+t)$-vertex graph with three all-adjacent vertices: z, u_{1}, and u_{2}.

Neither of x_{1} and x_{2} has a neighbor of degree 1 .

Indeed, suppose that x_{1} has a neighbor w of degree 1. If C_{2} and C_{3} are singletons, then $G_{0}-x_{1}-x_{2}$ has all-adjacent vertices $w, v_{2,1}$, and $v_{3,1}$. So, we may assume that $\left|V\left(C_{2}\right)\right|=2$. Then contracting in $G_{0}-x_{1}$ edge $v_{1,2} v_{2,2}$ we get a ($3+t$)-vertex graph with three all-adjacent vertices: $v_{1,1}, v_{2,1}$, and w.

Now we use discharging to find a contradiction. At the beginning, each edge has charge 1 and so the total charge is $e\left(H_{0}\right)$. The edges give their charges to vertices according to the following rules.
(R1) If both ends of an edge e are in $N_{2,2}$ or both are in $N_{1,1} \cup N_{1,2} \cup N_{2,1}$, then e gives $1 / 2$ to either of its ends.
(R2) If exactly one of the ends of e is in $\left\{x_{1}, x_{2}\right\}$, then e gives 1 to the other end.
(R3) If $e=x y, x \in N_{2,2}$, and $y \in N_{1,2} \cup N_{2,1}$, then e gives $1 / 2$ to either of its ends.
(R4) If $e=x y, x \in N_{2,2}$, and $y \in N_{1,1}$, then e gives 1 to x. Moreover, if $d_{H_{0}}(x)=1$, then y forwards 0.5 from its charge of 2 received from the edges $x_{1} y$ and $x_{2} y$ by Rule (R2) to x.
We claim that the resulting charge of each vertex apart from x_{1} and x_{2} is at least $3 / 2$, so the total charge is at least $3(n-2) / 2$, a contradiction to (26). To prove the claim, consider all possible cases. If $w \in N_{2,2}$ has degree at least 3, then by (R1), (R3), and (R4), it receives at least $1 / 2$ from each incident edge. If $w \in N_{2,2}$ has degree exactly 2 , then by (27) and (R4), at least one of the incident with w edges gives 1 to w, so w gets at least $3 / 2$ in total. If $w \in N_{2,2}$ has degree 1 , then by (R4), w gets 1 from the incident edge and $1 / 2$ from the neighbor. If $w \in N_{1,1}$, then it gets 2 from the edges $x_{1} w$ and $x_{2} w$ by Rule (R2), and by (28) and Rule (R4), gives $1 / 2$ to the at most one neighbor of degree 1 in $N_{2,2}$.

Suppose that $w \in N_{1,2} \cup N_{2,1}$. Then w gets 1 from the edge connecting w with $\left\{x_{1}, x_{2}\right\}$. Moreover, by (29), w has another incident edge which gives $1 / 2$ to w either by (R1) or by (R3). This proves the claim and thus the lemma.

Lemma 30. If $n_{0} \geq 200$, then H_{0} has no dominating set with at most $\sqrt{n_{0} / 2}-2$ vertices.
Proof. Suppose that H_{0} has a dominating set S with $|S|=s \leq \sqrt{n_{0} / 2}-2$. Let $S^{\prime}=V\left(H_{0}\right)-S$ and $H_{0}^{\prime}=H_{0}\left[S^{\prime}\right]$. Let m be the number of tree components in H_{0}^{\prime}. Since S dominates S^{\prime}, it intersects at least $\left|S^{\prime}\right|$ edges. So, $e\left(H_{0}^{\prime}\right)<3 n_{0} / 2-3-\left|S^{\prime}\right|<$ $0.5 n_{0}-3+s$. It follows that $m \geq 3+0.5 n_{0}-2 s$. Let c_{i} denote the number of tree components of H_{0}^{\prime} with i vertices and $c_{i, j}$ denote the number of tree components of H_{0}^{\prime} with i vertices that are connected with S by exactly j edges.
Claim 1: $\sum_{i=1}^{n_{0}}\left((s-1) c_{i, 1}+c_{i, 2}\right) \leq 2\binom{s}{2}$.
Proof. Since S is dominating, $c_{i, 1}+c_{i, 2}=0$ for every $i \geq 3$ and so $\sum_{i=1}^{n_{0}}\left((s-1) c_{i, 1}+c_{i, 2}\right)$ counts only tiny components of $H_{0}-S$. For the same reason, $H_{0}-S$ has no Y-components. By Lemma 29 , the sum over all pairs $\left\{x_{1}, x_{2}\right\} \subseteq S$ of the number of tiny components of $H_{0}-\left\{x_{1}, x_{2}\right\}$ is at most $2\binom{s}{2}$. Furthermore, each component of $H_{0}-S$ that has only one neighbor in S is counted $(s-1)$ times in this sum. This proves the claim.

The number of edges in all components of H_{0}^{\prime} is at least $\left|V\left(H_{0}^{\prime}\right)\right|-m=n_{0}-s-m$. Thus by Claim 1, the total number of edges in H_{0} is at least

$$
e\left(H_{0}^{\prime}\right)+\sum_{i=1}^{n} \sum_{j=1}^{n^{2}} j c_{i, j} \geq\left(n_{0}-s-m\right)+3 m-\sum_{i=1}^{n_{0}}\left(2 c_{i, 1}+c_{i, 2}\right) \geq n_{0}-s+2 m-2\binom{s}{2} .
$$

Since $m \geq 3+0.5 n_{0}-s$ and $s \leq \sqrt{n_{0} / 2}-2$, for $n_{0} \geq 200$ this is at least

$$
2 n_{0}+6-4 s-s^{2} \geq 2 n_{0}+10-(s+2)^{2} \geq 2 n_{0}+10-\frac{n_{0}}{2}>\frac{3 n_{0}}{2}
$$

a contradiction.
Lemma 31. Each 2-vertex in H_{0} has a neighbor of degree greater than $\sqrt{n_{0} / 2}-4$.
Proof. Suppose that neighbors of $v \in V\left(H_{0}\right)$ are x and y of degree at most $\sqrt{n_{0} / 2}-4$. By Lemma 30, each of the sets $N(x)-v+y$ and $N(y)-v+x$ does not dominate at least three vertices. So, we can choose distinct vertices x^{\prime} not dominated by $N(x)-v+y$ and y^{\prime} not dominated by $N(y)-v+x$. By definition, $d_{H_{0}}\left(x, x^{\prime}\right) \geq 3$ and $d_{H_{0}}\left(y, y^{\prime}\right) \geq 3$. Contracting the edges $x x^{\prime}$ and $y y^{\prime}$ in G_{0} we get a $(3+t)$-vertex graph with all-adjacent vertices $v, x * x^{\prime}$, and $y * y^{\prime}$.

A 2-vertex in H_{0} is weak if at least one of its neighbors has degree at most 5.
Lemma 32. If a vertex $v \in V\left(H_{0}\right)$ has at least five neighbors that are either 1 -vertices or weak 2-vertices, then it has at least five neighbors of degree at least 3.

Proof. Suppose that $v \in V\left(H_{0}\right)$ is adjacent to $\ell 1$-vertices u_{1}, \ldots, u_{ℓ}, to s weak 2 -vertices z_{1}, \ldots, z_{s}, and to k vertices x_{1}, \ldots, x_{k} of degree at least 3 , where $\ell+s \geq 5$ and $k \leq 4$. By Lemma 27, $\ell \leq 2$. In particular, $s \geq 3$. Vertices z_{i} and z_{j} form a weak pair if they are adjacent to each other.
Claim 1: There are no weak pairs.
Proof. Suppose $\left(z_{1}, z_{2}\right)$ is a weak pair. Let y be the neighbor of z_{3} other than v. We delete v and contract in $G_{0}-v$ the edge $z_{1} y$. Now the vertices z_{2}, z_{3}, and $z_{1} * y$ are all-adjacent ones in the graph obtained.

For $1 \leq i \leq s$, let the neighbor of z_{i} that is not v be y_{i}. By Claim 1 , no y_{j} coincides with any z_{i}. Some y_{j} can coincide with some other $y_{j^{\prime}}$ and with some x_{i}. Let $X=\left\{x_{1}, \ldots, x_{k}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{s}\right\}$.
Claim 2: If $y_{j} \in Y-X$, then it has a neighbor in X.
Proof. Suppose that $y_{j^{\prime}} \in Y-X$ and has no neighbor in X. Contract in G_{0} edge $v y_{j^{\prime}}$. In the resulting graph G_{0}^{\prime}, the neighbors of the vertex $v * y_{j^{\prime}}$ are only some z_{j}, and these z_{j} have no other non-neighbors in G_{0}^{\prime}. If there are at least three such z_{j}, then $G_{0}^{\prime}-v * y_{j^{\prime}}$ has at least three all-adjacent vertices. If there are exactly two of them, then contracting in G_{0}^{\prime} vertex $v * y_{j^{\prime}}$ with any vertex distinct from these two, we again get three all-adjacent vertices. Suppose that only $z_{j^{\prime}}$ is a non-neighbor of $v * y_{j^{\prime}}$ in G_{0}^{\prime}. Then, since $s \geq 3$, there is some other $y_{j^{\prime \prime}}$. Contracting in G_{0}^{\prime} vertex $v * y_{j^{\prime}}$ with $y_{j^{\prime \prime}}$, we again get three all-adjacent vertices.

Claim 3: Every vertex in H_{0} is at distance at most 2 from v.
Proof. Suppose that $d_{H_{0}}(w, v) \geq 3$. Contract the edge $v w$ in G_{0}. If $\ell \geq 1$ or $y_{j}=y_{j^{\prime}}$ for distinct j and j^{\prime}, then delete y_{j} and get a $K_{3, t}^{*}$. Suppose now that $\ell=0$ and all y_{j} are distinct. Then $s \geq 5$. Since z_{1}, \ldots, z_{s} are weak, each of y_{j} has at most four neighbors in $H_{0}-z_{j}$. Moreover, if $y_{j} \in X$, then $y_{j} v \in E\left(H_{0}\right)$ and if $y_{j} \notin X$, then y_{j} is adjacent to a vertex in X. So, some y_{j} has at most three neighbors in Y, and we may assume that $y_{1} y_{2} \notin E\left(H_{0}\right)$. In this case, contract in G_{0} edges $v w$ and $y_{1} y_{2}$, and vertices $v * w, z_{1}$ and z_{2} become all-adjacent ones in the graph obtained.

Claims 1,2 and 3 together imply that the set $X+v$ of size at most 5 is dominating in H_{0}, a contradiction to Lemma 30 .
Lemma 33. If a vertex $v \in V\left(H_{0}\right)$ of degree at most $\sqrt{n_{0} / 2}-4$ is adjacent to a vertex of degree 1 , then there are no other vertices of degree 1 in H_{0}.

Proof. Suppose that a vertex x of degree at most $\sqrt{n_{0} / 2}-4$ in H_{0} is adjacent to vertex y of degree 1 , and that z is another vertex of degree 1 in H_{0}. By Lemma 30, there are at least three vertices at distance at least 3 from x. Identify x with such a vertex u distinct from z and the neighbor of z and delete the neighbor of z.

Consider the following discharging on the set of vertices of H_{0}. The initial charge $\phi(v)$ is the degree of v in H_{0}, and hence $\sum_{v \in V\left(H_{0}\right)} \phi(v) \leq 3 n_{0}-7$. The rules are:
(R1) If $d(v)>\sqrt{n_{0} / 2}-4$ and v has neighbors of degree 1 , it gives 2 to one of them and nothing to the other neighbors of degree 1 (by Lemma 27, there could be only one "other neighbor" and only for one vertex v). If a vertex of degree 1 is adjacent to a vertex of degree at most $\sqrt{n_{0} / 2}-4$, it gets nothing. (By Lemma 33, in this case there are no other vertices of degree 1.)
(R2) If v is a weak 2-vertex, then it gets 1 from the neighbor of the larger degree.
(R3) If v is a non-weak 2-vertex, then it gets $1 / 2$ from each neighbor.
We claim that the new charge is at least 3 for all vertices, apart from at most one vertex of degree 1 . That would imply that $e\left(H_{0}\right) \geq\left(3 n_{0}-2\right) / 2$, a contradiction to (26). To prove this, consider vertices of all possible degrees.
Case 1: $d(v)=1$. By Lemmas 27 and 33 , only one vertex of degree 1 may not receive the extra charge 2 .
Case 2: $d(v)=2$. By Rule (R1), v gives away nothing. By Rules (R2) and (R3), it gets 1 from the neighbors.
Case 3: $3 \leq d(v) \leq 5$. By Rules (R1) and (R2), v gives away nothing.
Case 4: $6 \leq d(v) \leq \sqrt{n_{0} / 2}-4$. By the rules, v gives away at most $d(v) / 2$. So, it keeps at least $d(v) / 2 \geq 3$.
Case 5: $d(v)>\sqrt{n_{0} / 2}-4$. If v has fewer than five adjacent weak 2-vertices, then it gives away at most $d(v) / 2+4 / 2+1$ and hence retains at least $d(v) / 2-3$. For $n_{0}>800$,

$$
\frac{d(v)}{2}-3 \geq \frac{\sqrt{n_{0}}}{2 \sqrt{2}}-7 \geq 3
$$

If v has at least five adjacent weak 2 -vertices, then by Lemma 32 , it gives away at most $1+(d(v)-5)=d(v)-4$. This contradicts (26).

8. Concluding remarks

1. By elaborating Lemma 25 , one can push the restriction $t \geq 6300$ in Theorem 4 down to about $t \geq 3000$. In the course of some proofs, we pointed out how large t needed to be for the proofs to go through. If the bounds on t were less than 500, then we did not try to obtain the best bounds.
2. It was shown in Section 2 that for infinitely many t, graphs $M(r, 4, t)$ and $M(r, 5, t)$ are not extremal for the existence of $K_{4, t}^{*}$-minors and $K_{5, t}^{*}$-minors, respectively. However, we do not know whether $M(r, 4, t)$ and $M(r, 5, t)$ are extremal for the existence of $K_{4, t}$-minors and $K_{5, t}$-minors, respectively.
3. It is annoying that the case $n_{0}=t+5$ took so much effort and space. We believe that if one could handle for $s=4$ the cases $n_{0}=t+6$ and $n_{0}=t+7$, then we would be able to handle the remaining proof for $s=4$ and large t using the technique of the present paper.

Acknowledgements

We thank the referees for helpful comments. The research of the first author is supported in part by NSF grant DMS-0650784 and by grant 06-01-00694 of the Russian Foundation for Basic Research.

References

[1] M. Chudnovsky, B. Reed, P. Seymour, The edge density for $K_{2, t}$ minors (submitted for publication).
[2] P. Erdős, A. Rényi, V.T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966) 215-235.
[3] A.V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982) $37-58$.
[4] A.V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984) 307-316.
[5] A.V. Kostochka, N. Prince, On $K_{s, t}$-minors in graphs with given average degree, Discrete Math. 308 (2008) 4435-4445.
[6] D. Kühn, D. Osthus, Forcing complete unbalanced bipartite minors, Euro. J. Comb. 26 (2005) 75-81.
[7] W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967) 265-268.
[8] W.H. Mills, Covering designs. I. Coverings by a small number of subsets, Ars Combin. 8 (1979) 199-315.
[9] J.S. Myers, Graphs without large complete minors are quasi-random, Combin. Probab. Comput. 11 (2002) 571-585.
[10] J.S. Myers, Extremal theory of graph minors and directed graphs, Ph.D. Dissertation, University of Cambridge, 2003.
[11] J.S. Myers, The extremal function for unbalanced bipartite minors, Discrete Math. 271 (2003) 209-222.
[12] J.S. Myers, A. Thomason, The extremal function for noncomplete minors, Combinatorica 25 (2005) 725-753.
[13] N. Sauer, On the existence of regular n-graphs with given girth, J. Combin. Theory B 9 (1970) 144-147.
[14] J. Schönheim, On coverings, Pacific J. Math. 14 (1964) 1405-1411.
[15] P. Seymour, Oral communication.
[16] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984) 261-265.
[17] A. Thomason, The extremal function for complete minors, J. Combin. Theory B 81 (2001) 318-338.
[18] D.R. Woodall, List colourings of graphs, in: Surveys in combinatorics, 2001 (Sussex), in: London Math. Soc. Lecture Note Ser., vol. 288, Cambridge Univ. Press, Cambridge, 2001, pp. 269-301.

[^0]: * Corresponding author at: Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA.

 E-mail addresses: kostochk@math.uiuc.edu (A.V. Kostochka), nprince@imsa.edu (N. Prince).

