Contents lists available at ScienceDirect

# **Discrete Mathematics**

journal homepage: www.elsevier.com/locate/disc

# Dense graphs have $K_{3,t}$ minors

# A.V. Kostochka<sup>a,b,\*</sup>, N. Prince<sup>c</sup>

<sup>a</sup> Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA

<sup>b</sup> Sobolev Institute of Mathematics, Novosibirsk, Russia

<sup>c</sup> Illinois Mathematics and Science Academy, Aurora, IL, 60506, USA

#### ARTICLE INFO

Article history: Received 1 December 2008 Accepted 25 March 2010 Available online 21 April 2010

*Keywords:* Bipartite minors Dense graphs

# ABSTRACT

Let  $K_{3,t}^*$  denote the graph obtained from  $K_{3,t}$  by adding all edges between the three vertices of degree *t* in it. We prove that for each  $t \ge 6300$  and  $n \ge t + 3$ , each *n*-vertex graph *G* with  $e(G) > \frac{1}{2}(t+3)(n-2) + 1$  has a  $K_{3,t}^*$ -minor. The bound is sharp in the sense that for every *t*, there are infinitely many graphs *G* with  $e(G) = \frac{1}{2}(t+3)(|V(G)|-2) + 1$  that have no  $K_{3,t}$ -minor. The result confirms a partial case of the conjecture by Woodall and Seymour that every (s + t)-chromatic graph has a  $K_{s,t}$ -minor.

© 2010 Elsevier B.V. All rights reserved.

# 1. Introduction

*Graphs* in this paper are undirected simple graphs. For a graph *G*, *V*(*G*) is the set of its vertices, *E*(*G*) is the set of its edges, e(G) = |E(G)|, and *G* is the complement of *G*. By *G*[*X*] we denote the subgraph of *G* induced by the vertex set *X*. By  $e_G(X, Y)$ we denote the number of edges connecting disjoint sets *X* and *Y*. We let  $N_G(v)$  denote the set of neighbors of *v* in *G* and  $N_G[v] = N_G(v) \cup \{v\}$ . Similarly, for  $X \subseteq V(G)$ , we define  $N(X) := \bigcup_{x \in X} N(x)$  and  $N[X] := \bigcup_{x \in X} N[x]$ . Contraction of edge xy in *G* is the operation of replacing the vertices *x* and *y* with a new vertex, denoted as x \* y, that is adjacent to all neighbors of *x*, all neighbors of *y*, and to no other vertices. A *minor* of a graph *G* is a graph *H* that can be obtained from *G* by a sequence of vertex and edge deletions and edge contractions. A subgraph *F* of *G* is an *H*-minor in *G* if *H* can be obtained from *F* by a sequence of edge contractions and deletions.

A famous open problem concerning graph minors is the Hadwiger Conjecture.

**Conjecture 1** (Hadwiger). Every k-chromatic graph has a K<sub>k</sub>-minor.

The Conjecture is known to be true for  $k \le 6$  but remains open for all larger values of k. In order to stimulate attacks on the conjecture, Woodall [18] and independently Seymour [15] suggested proving the following weaker statement.

**Conjecture 2.** Every (s + t)-chromatic graph has a  $K_{s,t}$ -minor.

Another way to approach Hadwiger's Conjecture is to search for sufficient conditions other than k-chromaticity that force a graph to contain a  $K_k$ -minor. Mader [7] proved that for each positive integer k, there exists a function D(k) such that every

graph with average degree at least D(k) has a  $K_k$ -minor by demonstrating that  $D(k) \le 2^{\binom{k}{2}+1}$ . Later, Kostochka [3,4] and Thomason [16] determined that  $D(k) = \Theta(k\sqrt{\log k})$ . More recently, Thomason [17] determined that

 $D(k) = (\alpha + o(1))k\sqrt{\log k},$ 

where  $\alpha = 0.6381726...$  is given explicitly.



<sup>\*</sup> Corresponding author at: Department of Mathematics, University of Illinois, Urbana, IL, 61801, USA. *E-mail addresses:* kostochk@math.uiuc.edu (A.V. Kostochka), nprince@imsa.edu (N. Prince).

<sup>0012-365</sup>X/\$ – see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2010.03.026



**Fig. 1.** Graph *M*(2, 3, 4) has no *K*<sub>3,4</sub>-minor.

Myers and Thomason extended the function D above to general graphs H, that is, they defined

 $D(H) = \inf\{d \mid 2e(G)/n(G) \ge d \text{ implies that } G \text{ has an } H\text{-minor}\}.$ 

They determined [12,9] D(H) for almost every H, showing, in particular, that for almost all H, the extremal graphs not containing H are quasi-random (built deterministically from randomly generated subcomponents). However, their methods work well only for *dense* graphs, i.e. for graphs H with average degree comparable with |V(H)|.

An example of a *sparse* H is  $K_{s,t}$ , where s is fixed and t is large with respect to s. For this reason, Myers [10,11] studied  $D(K_{s,t})$  when s is fixed and t is large. Let M(r, s, t) be the graph obtained by taking r copies of  $K_{s+t-1}$  arranged so that each two copies share the same fixed s-1 vertices (Fig. 1 shows M(2, 3, 4)). Myers [11] observed that M(r, s, t) has no  $K_{s,t}$ -minor and that

$$e(M(r,s,t)) = \frac{1}{2}(t+2s-3)(n-s+1) + \binom{s-1}{2},$$
(1)

where n = |V(M(r, s, t))| = rt + s - 1. He proved the following.

**Theorem 1** ([11]). Let  $t > 10^{29}$  be a positive integer. Let *G* be a graph with  $n \ge 3$  vertices such that

$$e(G) > \frac{1}{2}(t+1)(n-1).$$
 (2)

Then G has a  $K_{2,t}$ -minor.

The graphs M(r, 2, t) witness that this bound is sharp when  $|V(G)| \equiv 1 \pmod{t}$ .

In connection with Conjecture 2, recently, Chudnovsky et al. [1] proved that Theorem 1 in fact holds for all t. They used this result to prove that Conjecture 2 holds for s = 2 and each t.

Myers conjectured that a similar, more general statement is true for  $K_{s,t}$ -minors.

**Conjecture 3.** Let *s* be a positive integer. Then there exists a constant C(s) such that, for all positive integers *t*, if *G* has average degree at least  $C(s) \cdot t$ , then *G* has a  $K_{s,t}$ -minor.

Let  $K_{s,t}^* = K_{s+t} - E(K_t)$ . In other words,  $K_{s,t}^*$  is the graph obtained from  $K_{s,t}$  by adding all  $\binom{s}{2}$  possible edges into the *s*-vertex partite set. Myers noted that the average degree that forces *G* to contain a  $K_{s,t}$ -minor also likely forces a  $K_{s,t}^*$ -minor, that is,  $D(K_{s,t}) = D(K_{s,t}^*)$  when *s* is fixed and *t* is large.

Myers' Conjecture was proved independently in [5,6] using different methods. Kühn and Osthus [6] showed the following.

**Theorem 2** ([6]). For every  $\epsilon > 0$  and every positive integer s, there exists a number  $t_0 = t_0(s, \epsilon)$  such that for all  $t \ge t_0$ , every graph of average degree at least  $(1 + \epsilon)t$  contains  $K_{s,t}^*$  as a minor.

In [5], the following fact was proved.

Theorem 3. Let s and t be positive integers with

$$t > (240s \log_2 s)^{8s \log_2 s+1}$$
.

Let G be a graph such that  $e(G) \ge \frac{t+3s}{2}(n(G) - s + 1)$ . Then G has a  $K_{s,t}^*$ -minor. Furthermore, for n large, there exists a graph G of order n and size at least  $\frac{t+3s-5\sqrt{s}}{2}(n-s+1)$  that has no  $K_{s,t}$ -minor.

From Theorem 3 we have that for huge *t*,

 $t + 3s - 5\sqrt{s} \le D(K_{s,t}) \le D(K_{s,t}^*) \le t + 3s.$ 

Hence, Myers' insight that  $D(K_{s,t})$  is the same as  $D(K_{s,t}^*)$  is true asymptotically in s.

The second half of Theorem 3 shows that for s > 100, Myers' construction of M(r, s, t) is not optimal. In Section 2, we provide another construction with fewer edges that shows that M(r, s, t) is not optimal for  $s \ge 6$ . Note that while

Theorem 2 does not provide the dependence of  $D(K_{s,t})$  on s, it applies for a much wider range of s than Theorem 3, namely for  $s \leq C \cdot t / \log t$ .

The goal of the present paper is to determine  $D(K_{3,t})$  for t > 6300 exactly. We prove the slightly stronger version with  $K_{3,t}^*$  in place of  $K_{3,t}$ .

**Theorem 4.** Let t > 6300. Let G be a graph of order n > 3 with

$$e(G) > \frac{1}{2}(t+3)(n-2) + 1.$$
 (3)

Then G has a  $K_{3,t}^*$ -minor.

The graphs M(r, 3, t) demonstrate the sharpness of Theorem 4 for the existence of minors for both  $K_{3,t}^*$  and  $K_{3,t}$ .

**Remark.** If  $t \ge 6300$  and for some  $n \ge 3$ , an *n*-vertex graph *G* satisfies (2), then adding a new vertex *x* adjacent to all vertices of *G* creates a graph *G'* with n' = n + 1 vertices that satisfies the conditions of Theorem 4. By this theorem, *G'* has a  $K_{3t}^*$ -minor, and hence G = G' - x has a  $K_{2t}^*$ -minor. This implies Theorem 1 and the corresponding result of Chudnovsky et al. [1], restricted to  $t \ge 6300$ , in a slightly stronger form, namely, with the  $K_{2,t}^*$ -minor in place of the  $K_{2,t}$ -minor.

Seymour showed that Theorem 4 implies the validity of Conjecture 2 for s = 3 and  $t \ge 6300$ . With his kind permission, we present this proof here.

**Corollary 5** (Seymour). Let  $t \ge 6300$ . Then every (3 + t)-chromatic graph has a  $K_{3,t}^*$ -minor.

**Proof.** Let *G* be a counter-example to this corollary with the smallest total number of edges and vertices. Then *G* is (3 + t)critical, and hence  $\delta(G) \ge t + 2$ . If  $\delta(G) \ge t + 3$ , then  $e(G) \ge \frac{t+3}{2}|V(G)|$ , and so by Theorem 4, *G* has a  $K_{3,t}^*$ -minor. Thus, *G* has a vertex *v* with  $d_G(v) = t + 2$ . If  $G[N(v)] = K_{t+2}$ , then *G* contains  $K_{t+3}$  which contains  $K_{3,t}^*$ . So, N(v) contains some non-adjacent vertices *x* and *y*.

Let G' be obtained from G by contracting the edges vx and vy. Since G' is a minor of G, it does not have a  $K_{3,t}^*$ -minor. Therefore, by the minimality of G, G' is (t + 2)-colorable. Let f' be a proper (t + 2)-coloring of G'. It naturally yields a proper (t + 2)-coloring f of G - v in which f(x) = f(y). But then one of the t + 2 colors is not used on N(v), and we can use this color to color v, a contradiction to the definition of G.  $\Box$ 

We also show that Theorem 4 cannot be extended to  $s \ge 6$ . Namely, we prove the following two results.

**Theorem 6.** Let s and t be integers satisfying  $s \ge 6$  and  $t > (2s)^{2s-1}$  such that s + t is odd. Then for infinitely many n > s + t, there exists a graph G(n, s, t) of order n with

$$e(G(n, s, t)) > \frac{1}{2}(t + 2s - 3 + 3^{-s-1})(n - s + 1) + \binom{s-1}{2}$$

that has no K<sub>s,t</sub>-minor.

The bound of this theorem is getting weaker when s grows. For larger s, the bound of the second part of Theorem 3 is better.

**Theorem 7.** Let s and t be integers satisfying  $t \ge s \ge 4$  such that s + t is odd. Then for infinitely many n > s + t, there exists a graph G(n, s, t) of order n with

$$e(G(n, s, t)) > \frac{1}{2}\left(t + 2s - 2 - \frac{2s}{t}\right)(n - s + 1) + {\binom{s-1}{2}}$$

that has no  $K_{s,t}^*$ -minor.

The proof of our main theorem elaborates and refines the ideas of [5] and uses discharging to handle the most difficult case: the case of n = t + 5.

The structure of the paper is the following. In the next section we prove Theorems 6 and 7. The subsequent five sections are devoted to the proof of Theorem 4. In Section 3 we cite and prove several auxiliary statements. In Sections 4–7, we consider several cases depending on how large the number  $n_0$  of vertices of a minimum counter-example to our statement is. In Section 4, we set up the proof and handle the case  $n_0 < 1.1t$ ,  $n_0 \neq t + 5$ . In Sections 5 and 6 we consider the case  $n_0 > 1.1t$ . The singular case  $n_0 = t + 5$  is postponed to the last section. We conclude the paper with a couple of comments.

)

#### 2. A lower bound for s > 6

For this section, it will be convenient to use the following definition of a  $K_{s,t}$ -minor of G. We say that G has a  $K_{s,t}$ -minor if there are a set  $V_0 \in V(G)$  and a function  $f: (V(G) - V_0) \rightarrow V(K_{s,t})$  such that  $f^{-1}(v)$  induces a connected subgraph of G for all  $v \in V(K_{s,t})$  and such that, for all  $v_1v_2 \in E(K_{s,t})$ , there is an  $x_i \in f^{-1}(v_i)$  (i = 1, 2) such that  $x_1x_2 \in E(G)$ .

We will need the following old result of Sauer [13]:

**Theorem 8** ([13]). Let  $g \ge 5$  and  $m \ge 4$ . Then, for every even  $n \ge 2(m-1)^{g-2}$ , there exists an n-vertex m-regular graph of girth at least g.

**Lemma 9.** Let s and t be integers satisfying s > 6 and  $t > (2s)^{2s-1}$  such that s + t is odd. Then there exists a graph G = G(s, t)of order n = t + s + 3 with

$$e(G) \ge \frac{1}{2}(t+s+3)\left(t+s-2+\frac{1}{3^s}\right)$$

that contains no  $K_{s,t}$ -minor.

**Proof.** Under the conditions of the lemma, the numbers n = s + t + 3, g = s + 7, and m = 4 satisfy the conditions of Theorem 8. Hence, there exists an *n*-vertex 4-regular graph H = H(s, t) with girth at least s + 7. Since the number of vertices at distance at most j from a given edge in H is less than  $4 \cdot 3^{j}$ , we can greedily find a set A of at least  $\frac{n}{2 \cdot 3^{5}}$  edges in H at distance at least *s* from each other. Let H' = H'(s, t) = H - A. Let us prove that

$$|N_{H'}(U) - U| \ge 7 \quad \text{for every } U \subset V(H') \text{ with } s - 3 \le |U| \le s.$$

$$\tag{4}$$

Indeed, let u satisfy  $s - 3 \le u \le s$  and U be a set of u vertices in H'. Let  $W = N_{H'}(U) - U$ . Since the girth of H' is greater than s, H'[U] has no cycles. So, if H'[U] has x edges, k components, and  $\ell$  vertices of degree 3, then x + k = u and  $e_{H'}(U, W) = 4u - \ell - 2x$ . Furthermore, since vertices of degree 3 are at distance at least s > u from each other, each component of H'[U] has at most one such vertex, and hence  $\ell \le k = u - x$ . Suppose  $|W| \le 6$ . Then  $|U \cup W| \le s + 6$  and hence  $H'[U \cup W]$  has no cycles. Therefore,  $e(H'[U \cup W]) < |U \cup W| - 1 < u + 5$ . On the other hand, by the above,

$$e(H'[U \cup W]) \ge x + (4u - \ell - 2x) = 3u + (u - \ell - x) \ge 3u.$$

So,  $3u \le u + 5$  and  $u \le 2$ . It follows that  $s \le u + 3 \le 5$ . This contradiction implies (4).

Let  $G = \overline{H'}$ . Suppose that G has a  $K_{s,t}$ -minor. Let  $S \subset V(G)$  be the set of vertices in the pre-image of the smaller partite set of this minor, and let  $S' \subseteq S$  be the vertices that are not deleted or contracted with a neighbor to get the minor. By (4) with U = S', there must be at least seven vertices with a non-neighbor in S', and at least one of these vertices x is the entire pre-image of a vertex of the larger partite set in the minor. This contradicts the fact that every vertex of S' is adjacent to x. Therefore *G* has no *K*<sub>s,t</sub>-minor.

Since  $\Delta(H') = 4$  and at least  $\frac{n}{25}$  vertices of H' have degree 3,

$$2e(G) \ge n(n-5) + \frac{n}{3^s} = (t+s+3)\left(t+s-2+\frac{1}{3^s}\right).$$

Now we are ready to prove Theorem 6

**Proof.** Consider G(s, t) and H'(s, t) from the proof of Lemma 9. Since  $\Delta(H'(s, t)) = 4$  and s + t + 3 > 5s, H'(s, t) has an independent set I of size s - 1. Then I induces an (s - 1)-clique in G(s, t). Let G'(r, s, t) be obtained from r copies of G(s, t)by arranging them so that each two copies share the set I and nothing else. This is an analog of M(r, s, t); only the bricks are different. By construction,

$$|V(G'(r,s,t))| = (s-1) + r(s+t+3-(s-1)) = (s-1) + r(t+4)$$
(5)

and

$$e(G'(r, s, t)) = r \cdot e(G(s, t)) - (r - 1) {\binom{s - 1}{2}} = r \left( e(G(s, t)) - {\binom{s - 1}{2}} \right) + {\binom{s - 1}{2}}.$$
(6)

Since for s > 6 and  $t > (2s)^{2s-1}$ ,

$$e(G(s,t)) \geq \frac{(t+s+3)\left(t+s-2+\frac{1}{3^{s}}\right)}{2} > (t+4)\frac{t+2s-3+3^{-s-1}}{2} + \binom{s-1}{2},$$

we get by (6) and (5) for n = |V(G'(r, s, t))| that

$$e(G'(r,s,t)) > r(t+4)\frac{t+2s-3+3^{-s-1}}{2} + \binom{s-1}{2} = (n-s+1)\frac{t+2s-3+3^{-s-1}}{2} + \binom{s-1}{2}$$





Suppose that G'(r, s, t) has a  $K_{s,t}$ -minor with partite sets  $X_s$  and  $X_t$  and  $f: (V(G) - V_0) \rightarrow V(K_{s,t})$  is the corresponding function. Since |I| < s, the pre-image of some vertex in  $X_s$  avoids I and is contained in some copy  $C_1$  of G(s, t). Then the pre-image of each vertex in  $X_t$  has a vertex in  $C_1$  and hence at least t - s + 1 pre-images of vertices in  $X_t$  are contained in  $C_1 - I$ . It follows that the pre-image of each vertex of our  $K_{s,t}$  has a vertex in  $C_1$ . Since these pre-images induce connected subgraphs of G'(r, s, t), each of the pre-images that is not completely in  $C_1 - I$  contains a vertex in I. Since I induces a complete subgraph of G'(r, s, t),  $f^{-1}(v) \cap V(C_1)$  induces a connected subgraph for every  $v \in V(K_{s,t})$ . For the same reason, if the pre-images of some two vertices of  $K_{s,t}$  are connected by an edge in G'(r, s, t), then their intersections with  $V(C_1)$  are also connected by an edge. It follows that  $C_1$  also has a  $K_{s,t}$ -minor, a contradiction to Lemma 9.

Thus, for every *n* of the form n = (s - 1) + r(t + 4), the graph G(n, s, t) = G'(r, s, t) satisfies the statement of the theorem. Note that the difference between e(G(n, s, t)) and the right-hand side of (1) is linear in n.  $\Box$ 

The proof of Theorem 7 below essentially repeats that of Theorem 6; only the starting brick is different.

**Proof of Theorem 7.** Let G(s, t) be the graph on s + t + 1 vertices whose complement is a perfect matching. Clearly, contracting an edge in G(s, t) creates at most three all-adjacent vertices. Thus G(s, t) has no  $K_{s,t}^*$ -minor and

$$e(G(s,t)) = \frac{(s+t+1)(s+t-1)}{2} > \frac{t+2}{2}\left(t+2s-2-\frac{2s}{t}\right) + \binom{s-1}{2}.$$

Fix the vertex set *I* of an (s - 1)-clique in G(s, t) and let G'(r, s, t) be obtained from *r* copies of G(s, t) by arranging them so that each two copies share the set *I* and no other vertices. Repeating the proof of Theorem 6 (with slightly different calculations) we obtain that G'(r, s, t) has no  $K_{s,t}^*$ -minor and that for n = |V(G'(r, s, t))|,

$$e(G'(r,s,t)) > r(t+2)\frac{t+2s-2-\frac{2s}{t}}{2} + \binom{s-1}{2} = (n-s+1)\frac{t+2s-2-\frac{2s}{t}}{2} + \binom{s-1}{2}.$$

#### 3. Lemmas on connectivity and domination

If *H* is a graph and  $X \subset V(H)$ , we say that *X* is *k*-separable if  $N[X] \neq V(H)$  and  $|N(X) - X| \leq k$ .

**Lemma 10.** Let k be a positive integer and H be a graph such that each edge of H belongs to at least 3k/2 triangles. If X is an inclusion-minimal k-separable set in H and S = N(X) - X, then  $H[X \cup S]$  is  $(1 + \lceil k/2 \rceil)$ -connected.

**Proof.** Assume that there is a separating set D of  $H[X \cup S]$  with  $|D| \leq \lceil k/2 \rceil$ . Let  $H_1$  be a component of  $H[X \cup S] - D$  that has minimum size of intersection with S, and let  $H_2 = H[X \cup S] - D - H_1$ . Then the set  $S_1 = D \cup (S \cap V(H_1))$  has at most  $|D| + |S|/2 \leq k$  vertices. If  $H_1 - S_1 \neq \emptyset$ , then  $S_1$  separates  $H_1 - S_1$  from the rest of the graph (see Fig. 2), and  $H_1 - S_1$  is properly contained in X, contradicting the minimality of X. Therefore  $V(H_1) \subseteq S$ . Let  $y \in V(H_1)$ . By the definition of S, y has some neighbor  $x \in X$ . Since xy belongs to at least 3k/2 triangles, y is adjacent to at least 3k/2 + 1 vertices in  $X \cup S$ . Since  $|S| \leq k$  and  $y \in S$ , y has at least k/2 + 2 neighbors in X. It follows that y has a neighbor in X - D, a contradiction to  $V(H_1) \subseteq S$ .  $\Box$ 

Let  $U_1$ ,  $U_2$ , and  $U_3$  be disjoint sets of vertices in a graph *G*. Then a path *P* is a  $(U_1, U_2)$ -*path* if one end of *P* is in  $U_1$  and the other is in  $U_2$ . Similarly *P* is a strict  $((U_1, U_2) - U_3)$ -*path* if one end of *P* is in  $U_1$ , the other is in  $U_2$  and no internal vertex of *P* is in  $U_1 \cup U_2 \cup U_3$ . Furthermore, a pair  $(P_1, P_2)$  of paths is  $(U_1, U_2, U_3)$ -*connecting* if for some  $i \in \{1, 2, 3\}$ , one of the paths is a strict  $((U_i, U_{i+1}) - U_{i+2})$ -path and the other is a strict  $((U_{i-1}, U_i) - U_{i+1})$ -path (indices sum modulo 3). Note that the paths in a  $(U_1, U_2, U_3)$ -connecting pair may share an end (in the set  $U_i$ ) and also internal vertices (outside of  $U_1 \cup U_2 \cup U_3$ ).

**Lemma 11.** Let *G* be a graph and let  $U_1$ ,  $U_2$ , and  $U_3$  be disjoint sets of vertices in *G*. If *G* contains a  $U_1$ ,  $U_2$ -path  $P_1$  and a  $U_1$ ,  $U_3$ -path  $P_2$  which is vertex-disjoint from  $P_1$ , then  $P_1 \cup P_2$  contains a  $(U_1, U_2, U_3)$ -connecting pair of paths.

**Proof.** For i = 1, 2, let  $P'_i$  be a shortest subpath of  $P_i$  that starts at  $U_1$  and finishes at  $U_{1+i}$ . If neither of the  $P'_i$  intersects  $U_{4-i}$ , then the pair  $(P'_1, P'_2)$  is  $(U_1, U_2, U_3)$ -connecting. Suppose that  $P'_1$  meets  $U_3$ . Let  $Q_1$  be the subpath of  $P'_1$  from  $U_1$  to the first vertex in  $U_3 \cap V(P_1)$  and  $Q_2$  be the subpath of  $P'_1$  from the last vertex in  $U_3 \cap V(P_1)$  to  $U_2$ . Then the pair  $(Q_1, Q_2)$  is  $(U_1, U_2, U_3)$ -connecting.  $\Box$ 

For a graph *G*, a set  $T \subseteq V(G)$  is totally dominating if every vertex of *G* has a neighbor in *T*. We say that a set  $T \subseteq V(G)$  is connected if *G*[*T*] is connected.

**Lemma 12.** Let *G* be an *n*-vertex connected graph with minimum degree  $k \ge 1$ . Then:

(a) *G* contains a totally dominating set *T* with  $|T| \leq \lfloor \log_{n/(n-k)} n \rfloor + 1$ ; and

(b) *G* contains a connected totally dominating set T' with  $|T'| \le 2 \log_{n/(n-k)} n$ .

**Proof.** Let  $A \subseteq V(G)$ . The total number of neighbors of vertices in *A* counted with multiplicities is at least k|A|. Hence

there exists  $v_A \in V(G)$  that is adjacent to at least k|A|/n vertices in A.

(7)

(8)

Consider the sequence  $A_0, A_1, \ldots$ , where  $A_0 = V(G)$  and for  $i \ge 1$ ,  $A_i = A_{i-1} - N(v_{A_{i-1}})$ . By (7), for every  $i \ge 1$ ,  $|A_i| \le \frac{n-k}{n} |A_{i-1}|$ . It follows that for  $i_0 = \lfloor \log_{n/(n-k)} n \rfloor + 1$ ,

$$|A_{i_0}| \leq n \left(\frac{n-k}{n}\right)^{i_0} < n \left(\frac{n-k}{n}\right)^{\log_{n/(n-k)}n} = 1$$

and so  $A_{i_0} = \emptyset$ . Hence  $T = \{v_{A_0}, v_{A_1}, \dots, v_{A_{i_0-1}}\}$  is totally dominating. This proves (a).

Let  $C_1, \ldots, C_m$  be the vertex sets of the components of G[T]. Since T is totally dominating, each  $C_j$  has at least two vertices. It follows that  $m \le i_0/2$ . Let T' = T and  $C_0 = C_1$ . We do the following iteration for  $C_0$ : If  $C_0$  dominates V(G), then stop. Otherwise, choose any vertex w at distance exactly 2 from  $C_0$ . Let w' be the intermediate vertex on a shortest path from  $C_0$ to w. By the choice of T, w has a neighbor  $z \in T - C_0$ . By definition, z belongs to some  $C_j$ . Add to T' vertices w and w' and let the new  $C_0$  be the component of the new T' that contains  $C_0 \cup C_j \cup \{w, w'\}$ . This increases |T'| by 2 and decreases the number of components in G[T'] by at least 1.

After at most m - 1 iterations, we obtain a connected totally dominating set T'. By construction,  $|T'| \le |T| + 2(m - 1) \le i_0 + 2(i_0/2 - 1) = 2i_0 - 2 \le 2\log_{n/(n-k)} n$ .  $\Box$ 

Applying Lemma 12 s times, we have the following corollary.

**Lemma 13.** Let *s*, *k*, and *n* be positive integers. Suppose  $n > k \ge 1$ . Let *H* be a graph of order *n* with  $\delta(H) \ge k + 2$ (*s* - 1)  $\log_{n/(n-k)} n$  and connectivity greater than  $2(s - 1) \log_{n/(n-k)} n$ . Then V(H) contains *s* disjoint subsets  $A_1, \ldots, A_s$  such that, for every  $i = 1, \ldots, s$ ,

- (i)  $H[A_i]$  is connected,
- (ii)  $|A_i| \le 2 \log_{n/(n-k)} n$ ,
- (iii)  $A_i$  dominates  $H \bigcup_{i=1}^{i-1} A_i$ .

Schönheim [14], Mills [8] and others, for  $m \ge k \ge l$ , studied the minimum number  $C(m, k, \ell)$  of k-element subsets of an *m*-element set *S* that cover all  $\ell$ -tuples of elements of *S*. We will use the following bounds on  $C(m, k, \ell)$  due to Schönheim and Mills.

**Lemma 14** ([14,8]). (a) For all  $m \ge k \ge \ell \ge 1$ ,

$$C(m,k,\ell) \ge \left\lceil \frac{m}{k}C(m-1,k-1,\ell-1) \right\rceil;$$

(b) if m/k > 9/5, then  $C(m, k, 2) \ge 6$ ;

(c) if m/k > 7/3, then  $C(m, k, 2) \ge 8$ .

Erdős et al. [2] proved a result whose partial case is the following.

**Lemma 15** ([2]). If  $0 \le k < (5n - 3)/9$  and H is an *n*-vertex graph with maximum degree k and diameter 2, then  $e(H) \ge 4n - 2k - 11$ . In particular, if  $k \le 0.5n + \alpha$  and  $\alpha \ge 0$ , then  $e(H) \ge 3n - 11 - 2\alpha$ .

#### 4. Preliminaries and graphs of small order

We will prove Theorem 4 by contradiction. Suppose that the theorem is false. Then there exists a counter-example  $G_0$  which is minimum with respect to |V(G)| + |E(G)|. Suppose that  $n_0 = |V(G_0)|$ . Our starting point is the following lemma concerning properties of such minimum counter-examples.

**Lemma 16.** Let  $t \ge 3$ . Let  $G_0$  be a graph minimum with respect to |V(G)| + |E(G)| satisfying (3) such that  $n_0 = |V(G_0)| \ge 3$  and  $G_0$  has no  $K_{3t}^*$ -minor. Then:

(p0)  $n_0 \ge t + 4$ ; (p1)  $\frac{1}{2}(t+3)(n_0-2) + 1 < e(G_0) \le \frac{1}{2}(t+3)(n_0-2) + 2$ ; (p2) each edge of  $G_0$  belongs to at least (t+2)/2 triangles; (p3)  $\delta(G_0) \ge (4+t)/2$ ; (p4)  $G_0$  is 3-connected.

**Proof.** Since no *n*-vertex graph can have more than  $\binom{n}{2}$  edges, (3) yields

$$\frac{1}{2}(t+3)(n_0-2)+1 < \frac{n_0(n_0-1)}{2}.$$

For  $n_0 \ge 3$  this is equivalent to  $t+3 < n_0+1$ , i.e.  $n_0 \ge t+3$ . Suppose that  $n_0 = t+3$ . Then (3) gives  $2e(G_0) > n_0(n_0-2)+2$ . It follows that at least three vertices have degree  $n_0 - 1$ , i.e., are all-adjacent ones in  $G_0$ . So,  $G_0$  contains  $K_{3,t}^*$ . This proves (p0).

Property (p1) holds by (3) and the minimality of  $G_0$ . If an edge e of  $G_0$  belongs to at most (t + 1)/2 triangles, then after contracting e we obtain from  $G_0$  a graph  $G'_0$  with one vertex fewer and no more than 1 + (t + 1)/2 = (t + 3)/2 fewer edges. So if  $G_0$  satisfies (3), then  $G'_0$  also satisfies (3) and by (p0) has at least t + 4 - 1 vertices. This contradicts the minimality of  $G_0$ . So, (p2) holds, and (p3) follows from (p2).

Let us prove (p4). Suppose otherwise. Then there is  $S \subset V(G_0)$  such that  $|S| \leq 2$  and  $G_0 - S$  is disconnected. Then there are  $V_1, V_2 \subset V(G_0)$  such that  $V_1 - S, V_2 - S \neq \emptyset, V_1 \cup V_2 = V(G_0), V_1 \cap V_2 = S$ , and  $V_1 - S$  has no neighbors in  $V_2 - S$ . Let  $n_i = |V_i|$  for i = 1, 2 and  $n_1 \geq n_2$ . By (p3),  $\delta(G_0) \geq \lceil (4+t)/2 \rceil \geq 4$ . Hence  $n_2 + |S| \geq 1 + \delta(G_0) \geq 5$ , and so  $n_2 \geq 3$ . **Case 1:**  $|S| \leq 1$ . By the minimality of  $G_0$  and the fact that  $n_1, n_2 \geq 3$ , we have  $e(G_0[V_i]) \leq \frac{1}{2}(t+3)(n_i-2) + 1$ . So,

$$e(G_0) = e(G_0[V_1]) + e(G_0[V_2]) \le \frac{(t+3)(n_1+n_2-4)}{2} + 2 \le \frac{(t+3)(n_0-3)}{2} + 2,$$

a contradiction to (3).

**Case 2:** |S| = 2. Let  $S = \{x, y\}$ . For i = 1, 2, let  $G_i$  be obtained from  $G_0[V_i]$  by adding edge xy, if it does not belong to  $G_0$ . Since Case 1 does not hold, each of  $G_0[V_1]$  and  $G_0[V_2]$  contains an x, y-path and so  $G_i$  is a minor of  $G_0$  for i = 1, 2. Again by the minimality of  $G_0$  and the fact that  $n_1, n_2 \ge 3$ , we have  $e(G_i) \le \frac{1}{2}(t+3)(n_i-2)+1$ . Furthermore,  $e(G_0) \le e(G_1) + e(G_2) - 1$ , since either we count edge xy twice or have added extra edges. Therefore,

$$e(G_0) \le e(G_1) + e(G_2) - 1 \le \frac{(t+3)(n_1+n_2-4)}{2} + 1 \le \frac{(t+3)(n_0-2)}{2} + 1,$$

a contradiction to (3), again.

In the course of our proof, we will increase the lower bound on  $n_0$ . For small  $n_0$ , the complement of  $G_0$  has far fewer edges than  $G_0$  and it is easier to understand its structure. Let  $H_0 = \overline{G_0}$ . Then phrasing (p1) and (p3) in terms of  $H_0$ , we get the following.

**Lemma 17.** Let  $t \ge 3$ . Let  $G_0$  be a minimum with respect to |V(G)| + |E(G)| graph satisfying (3) such that  $n_0 = |V(G_0)| \ge 3$  and  $G_0$  has no  $K_{3,t}^*$ -minor. Let  $d = n_0 - t$  and  $H_0 = \overline{G_0}$ . Then:

(q1)  $\frac{1}{2}(d-2)(n_0-2) - 1 \le e(H_0) < \frac{1}{2}(d-2)(n_0-2);$ (q2)  $\Delta(H_0) \le \frac{n_0+d}{2} - 3.$ 

**Lemma 18.**  $n_0 \neq t + 4$ .

**Proof.** Suppose  $n_0 = t + 4$ . By (q1) in Lemma 17,  $e(H_0) < n_0 - 2$ . Hence  $H_0$  has at least three tree components, say  $C_1$ ,  $C_2$ , and  $C_3$ . If all three are singletons, then  $G_0$  contains  $K_{3,t+1}^*$ . If  $C_2$  and  $C_3$  are singletons and  $C_1$  is not, then deleting the neighbor, say x, of a leaf in  $C_1$  we will have three isolated vertices in  $H_0 - x$ , which correspond to three all-adjacent vertices in  $G_0 - x$ . Finally suppose that  $C_1$  and  $C_2$  are not singletons. For i = 1, 2, let  $y_i$  be a leaf in  $C_i$  and  $x_i$  be the neighbor of  $y_i$  in  $C_i$ . Then contracting in  $G_0$  the edge  $x_1x_2$  creates a (t + 3)-vertex graph with all-adjacent vertices  $y_1, y_2$ , and  $x_1 * x_2$ .

The next statement has quite a long proof which we postpone to the last section.

### **Lemma 19.** $n_0 \neq t + 5$ .

For the time being, we continue our proof assuming that Lemma 19 holds. To handle the cases  $t + 6 \le n_0 \le t + 23$ , we need a couple of auxiliary facts.

**Lemma 20.** Let  $t \ge 162$ . Let G be a graph of order  $n \ge t + 6$  such that  $e(\overline{G}) < 17n/6 - 2$  and  $\Delta(\overline{G}) \le (n+3)/2$ . Then G has a  $K_{3,t}^*$ -minor.

**Proof.** For  $n \ge t + 6 \ge 168$ , (n + 3)/2 < (5n - 3)/9 and  $17n/6 - 2 \le 3n - 11 - 2(3/2)$ , so by Lemma 15,  $\overline{G}$  has two vertices  $x_1$  and  $x_2$  at distance at least 3. Note that  $X = \{x_1, x_2\}$  is a connected dominating set in *G*. Let  $G_1 = G - X$  and  $n_1 = |V(G_1)| = n - 2$ . Again, for  $n \ge 168$ ,  $(n + 3)/2 = (n_1 + 5)/2 < (5n_1 - 3)/9$  and  $17n/6 - 2 \le 3n_1 - 11 - 2(5/2)$ , so by Lemma 15,  $\overline{G}_1$  has two vertices  $y_1$  and  $y_2$  at distance at least 3. Again,  $Y = \{y_1, y_2\}$  is a connected dominating set in *G*. Let  $G_2 = G_1 - Y$  and  $n_2 = |V(G_2)| = n - 4$ . Since  $n_0 \ge 168$ ,  $(n + 3)/2 = (n_2 + 7)/2 < (5n_2 - 3)/9$  and  $17n/6 - 2 \le 3n_2 - 11 - 2(7/2)$ , so by Lemma 15,  $\overline{G}_2$  has two vertices  $z_1$  and  $z_2$  at distance at least 3. Contracting in *G* edges  $x_1x_2$ ,  $y_1y_2$  and  $z_1z_2$ , we get a graph containing  $K_{3,n-6}^* \supseteq K_{3,t}^*$ .

Here is another fact in a similar spirit.

**Lemma 21.** Let  $k \ge 3$  and  $n \ge 4(k^2 + 3k + 6)$ . Let H be an n-vertex graph with maximum degree at most n/2 + k and  $e(H) \le (k + 1.5)n/2 - k$ . If at most two vertices of H have degree less than k, then H contains three disjoint pairs  $(x_i, y_i)$  of vertices such that  $d_H(x_i, y_i) \ge 3$  for i = 1, 2, 3.

**Proof.** The total number of pairs of distinct vertices at distance at most 2 in *H* is at most e(H) plus the number of paths of length 2 in *H*. Denoting this value by F(H), we have

$$F(H) \le e(H) + \sum_{v \in V(H)} {d_H(v) \choose 2} = \frac{1}{2} \sum_{v \in V(H)} d_H(v) + \frac{1}{2} \sum_{v \in V(H)} d_H(v)(d_H(v) - 1) = \frac{1}{2} \sum_{v \in V(H)} d_H^2(v).$$

Under the conditions of the lemma, the maximum of the last sum is attained when two vertices have degree 0 and all other vertices apart from at most one have degree either k + n/2 or k. Recall that  $\sum_{v \in V(H)} (d_H(v) - k) \le 1.5n - 2k$ . In this situation, the sum of the squares of the degrees of the vertices with degree greater than k is at most  $3(k + n/2)^2$ . Thus,

$$F(H) \le \frac{1}{2} \left[ 3(k+n/2)^2 + (n-5)k^2 \right] = \frac{1}{2} \left[ \frac{3n^2}{4} + n(3k+k^2) - 2k^2 \right] < \frac{n^2}{2} - 3n$$

It follows that *H* has at least  $\binom{n}{2} - F(H) \ge 3n - n/2 = 2.5n$  pairs of vertices at distance at least 3. Hence some three of these pairs are disjoint.  $\Box$ 

The next fact is based on Lemma 14.

**Lemma 22.** Let  $t \ge 231$ . Let G be a graph of order  $n \ge t + 9$  such that  $e(\overline{G}) \le 3.75n - 6$  and  $\Delta(\overline{G}) \le n/2 + 6$ . Then G has a  $K_{3,t}^*$ -minor.

**Proof.** Let *G* satisfy the conditions of the lemma. Order the vertices  $x_1, x_2, \ldots, x_n$  of  $\overline{G}$  so that  $d_{\overline{G}}(x_1) \leq d_{\overline{G}}(x_2) \leq \cdots \leq d_{\overline{G}}(x_n)$ . For  $i = 1, \ldots, n$ , let  $N_i = N_{\overline{G}}(x_i)$ .

**Case 1:**  $d_{\overline{G}}(x_3) \leq 5$ . Each of the neighbors of  $x_1$  in  $\overline{G}$  has at most  $\Delta(\overline{G}) - 1 \leq n/2 + 5 < 5(n - 8)/9$  neighbors in  $V(G) - N_1 - \{x_1, x_2, x_3\}$ . So, by Lemma 14(b) for m = n - 8 and  $k = \Delta(\overline{G}) - 1$ ,  $V(G) - N_1 - \{x_1, x_2, x_3\}$  contains a pair  $(y_1, z_1)$  of vertices such that no vertex in  $\overline{G}$  is adjacent to all of  $x_1, y_1$  and  $z_1$ . This means that  $\{x_1, y_1, z_1\}$  is a connected dominating set in *G*. Similarly, each of the neighbors of  $x_2$  has at most  $\Delta(\overline{G}) - 1 \leq n/2 + 5 < 5(n - 10)/9$  neighbors in  $V(G) - N_2 - \{x_1, x_2, x_3, y_1, z_1\}$ . Again, by Lemma 14(b),  $V(G) - N_2 - \{x_1, x_2, x_3, y_1, z_1\}$  contains a pair  $(y_2, z_2)$  of vertices such that  $\{x_2, y_2, z_2\}$  is a connected dominating set in *G*. Finally, since  $\Delta(\overline{G}) - 1 \leq n/2 + 5 < 5(n - 12)/9$ , by Lemma 14(b),  $V(G) - N_3 - \{x_1, x_2, x_3, y_1, z_1, y_2, z_2\}$  contains a pair  $(y_3, z_3)$  of vertices such that  $\{x_3, y_3, z_3\}$  is a connected dominating set in *G*. Contracting these three sets in *G*, we find a  $K_{3,t}^*$ -minor of *G*.

**Case 2:**  $d_{\overline{G}}(x_3) \ge 6$ . Then *n* and  $H = \overline{G}$  satisfy conditions of Lemma 21 with k = 6. Thus by this lemma,  $\overline{G}$  has three disjoint pairs of vertices at distance at least 3. Contracting the corresponding edges in *G*, we find a  $K_{3,n=6}^{*}$ -minor of *G*.  $\Box$ 

Now we are ready to say more about our minimum counter-example  $G_0$  to Theorem 4 and about its complement  $H_0$ .

**Lemma 23.** Let  $t \ge 432$ . Then  $n_0 \notin \{t + 6, t + 7, \dots, t + 22\}$ .

**Proof.** Recall that  $H_0$  satisfies (q1) and (q2). Let  $d = n_0 - t$ .

**Case 1:**  $6 \le d \le 7$ . By (q1) and (q2),  $e(H_0) < 5(n_0 - 2)/2$  and  $\Delta(H_0) \le (n_0 + 1)/2$ . So, we are done by Lemma 20. **Case 2:** d = 8. By (q1) and (q2),  $e(H_0) < 3(n_0 - 2)$  and  $\Delta(H_0) \le n_0/2 + 1$ . If  $\Delta(H_0) \ge n_0/6 - 1$ , consider  $G'_0 = G_0 - v$ , where v has maximum degree in  $H_0$ . Then  $e(\overline{G}'_0) < 17n'_0/6 - 2$  and  $\Delta(\overline{G}'_0) \le (n'_0 + 3)/2$ , where  $n'_0 = |V(G'_0)| = n_0 - 1$ , and so  $G'_0$  satisfies the conditions of Lemma 20. This yields our statement.

Suppose now that  $\Delta(H_0) < n_0/6 - 1$ . By (q1),  $H_0$  has three vertices, x, y, z, of degree at most d - 3 = 5. Then each of x, y, z has fewer than  $5(n_0/6 - 1)$  vertices at distance 1 or 2 from it. Hence, we can choose for each of them a vertex at distance at least 3 in  $H_0$  so that all chosen vertices are distinct. Contracting the corresponding edges in  $G_0$ , we get  $K_{3n_0-6}^*$ .

**Case 3:** d = 9. By (q1) and (q2),  $e(H_0) < 3.5(n_0 - 2)$  and  $\Delta(H_0) \le n_0/2 + 1.5$ . Since  $t \ge 231$ , Lemma 22 yields the result.

**Case 4:** d = 10. By (q1) and (q2),  $e(H_0) \le 4(n_0 - 2) - 1$  and  $\Delta(H_0) \le n_0/2 + 2$ . If  $H_0$  has a vertex v of degree at least  $(n_0 + 3)/4$ , then applying Lemma 22 to  $H_0 - v$  we are done. Suppose that  $\Delta(H_0) \le (n_0 + 2)/4$ . Since  $e(H_0) < 4(n_0 - 2)$ ,  $H_0$  has three vertices,  $x_1, x_2$  and  $x_3$  of degree at most 7. Let  $N_i = N_{H_0}(x_i)$ , i = 1, 2, 3. Since  $\Delta(H_0) \le (n_0 + 2)/4$ , for  $i \in \{1, 2, 3\}$ , the number of pairs of vertices in  $V(H_0) - N_i - \{x_1, x_2, x_3\}$  that have a common neighbor in  $N_i$  is at most 7  $\binom{(n_0+2)/4-1}{2}$ .

Since this is much less than  $\binom{n_0-10}{2}$ , we can choose for  $i \in \{1, 2, 3\}$ , a pair  $\{y_i, z_i\} \subset V(H_0) - N_i - \{x_1, x_2, x_3\}$  so that all there chosen pairs are disjoint and  $y_i$  and  $z_i$  have no common neighbor in  $N_i$ . Contracting in  $G_0$  for  $i \in \{1, 2, 3\}$ ,  $x_i$  with  $y_i$  and  $z_i$ , we obtain a  $K_{3,n_0-9}^*$ -minor of  $G_0$ .

**Case 5:** d = 11. By (q1) and (q2),  $e(H_0) < 4.5(n_0 - 2)$  and  $\Delta(H_0) \le n_0/2 + 2.5$ . If at most two vertices in  $H_0$  have degree less than 8, then we are done by Lemma 21 for k = 8. Suppose now that  $H_0$  has three vertices,  $x_1$ ,  $x_2$  and  $x_3$  of degree at most 7. Let  $N_i = N_{H_0}(x_i)$ , i = 1, 2, 3.

If  $H_0$  has two vertices,  $v_1$  and  $v_2$ , of degree at least  $3(n_0 - 15)/7$ , then  $H_0 - v_1 - v_2$  has less than  $4.5n_0 - 10 - 6(n_0 - 15)/7 + 1 < 3.75(n_0 - 2) - 6$  edges and satisfies the conditions of Lemma 22 with  $n_0 - 2$  in place of  $n_0$ . So, in this case by Lemma 22,  $G_0 - v_1 - v_2$  has a  $K_{3,t}^*$ -minor. Thus, we may assume that for some  $v \in V(H_0)$ ,  $\Delta(H_0 - v) < 3(n_0 - 15)/7$ . By Lemma 14(c), some pair  $\{y_1, z_1\}$  of vertices in  $V(H_0) - \{x_1, x_2, x_3, v\} - N_1$  has no common neighbor in  $N_1$ . Similarly, some pair  $\{y_2, z_2\}$  of vertices in  $V(H_0) - \{x_1, x_2, x_3, v, y_1, z_1\} - N_2$  has no common neighbor in  $N_2$ , and some pair  $\{y_3, z_3\}$  of vertices in  $V(H_0) - \{x_1, x_2, x_3, v, y_1, z_1\} - N_2$  has no common neighbor in  $N_2$ , and some pair  $\{y_3, z_3\}$  of vertices in  $V(H_0) - \{x_1, x_2, x_3, v, y_1, z_1\} - N_2$  has no common neighbor in  $N_3$ . Thus contracting in  $G_0 - v$  vertices  $x_i$ ,  $y_i$  and  $z_i$  for i = 1, 2, 3, we find a  $K_{3,n_0-10}^*$ -minor of  $G_0$ .

**Case 6:**  $12 \le d \le 14$ . By (q1) and (q2),  $e(H_0) < 6(n_0 - 2)$  and  $\Delta(H_0) \le n_0/2 + 4$ . If at most two vertices in  $H_0$  have degree less than 11, then we are done by Lemma 21 for k = 11. Suppose now that  $H_0$  has three vertices,  $x_1, x_2$  and  $x_3$ , of degree at most 10. Let  $N_i = N_{\overline{C_0}}(x_i)$ , i = 1, 2, 3.

By Lemma 14(a) and (b), if  $m \ge 9k/5$ , then m - 1 > 9(k - 1)/5 and

$$C(m,k,3) \ge \left\lceil \frac{m}{k}C(m-1,k-1,2) \right\rceil \ge \left\lceil \frac{9}{5}6 \right\rceil = 11.$$
(9)

Thus, since  $|N_1| \leq 10$  and

$$|V(H_0) - \{x_1, x_2, x_3\} - N_1| \ge n_0 - 13 \ge \frac{9}{5} \left(\frac{n_0}{2} + 3\right) \ge \frac{9}{5} (\Delta(H_0) - 1),$$

the set  $V(H_0) - \{x_1, x_2, x_3\} - N_1$  contains a triple  $\{y_1, z_1, u_1\}$  that has no common neighbors of all three of these vertices in  $N_1$ . Similarly, the set  $V(H_0) - \{x_1, x_2, x_3, y_1, z_1, u_1\} - N_2$  contains a triple  $\{y_2, z_2, u_2\}$  that has no common neighbors in  $N_2$  and the set  $V(H_0) - \{x_1, x_2, x_3, y_1, z_1, u_1\} - N_2$  contains a triple  $\{y_3, z_3, u_3\}$  that has no common neighbors in  $N_3$ . For this we need  $n_0 - 19 \ge \frac{9}{5}(\frac{n_0}{2} + 3)$  which holds for  $n_0 \ge 244$ . Now contracting in  $G_0$  the three quadruples  $\{x_i, y_i, z_i, u_i\}$ , we find a  $K_{3,n_0-12}^*$ -minor of  $G_0$ .

**Case 7:**  $15 \le d \le 22$ . By (q1) and (q2),  $e(H_0) < 10(n_0 - 2)$  and  $\Delta(H_0) \le n_0/2 + 8$ . Since  $e(H_0) < 10(n_0 - 2)$ ,  $H_0$  has three vertices,  $x_1, x_2$  and  $x_3$  of degree at most 19. Let  $N_i = N_{\overline{G_0}}(x_i)$ , i = 1, 2, 3. By Lemma 14(a) and by (9), if  $m \ge 9k/5$ , then m - 1 > 9(k - 1)/5 and

$$C(m,k,4) \ge \left\lceil \frac{m}{k}C(m-1,k-1,3) \right\rceil \ge \left\lceil \frac{9}{5}11 \right\rceil = 20.$$

$$(10)$$

Now we repeat the second part of the proof of Case 6 with quadruples in place of triples and 5-tuples in place of quadruples. We will find a  $K_{3,n_0-15}^*$ -minor of  $G_0$  if  $n_0 - (19 + 3 + 4 + 4) \ge \frac{9}{5}(\frac{n_0}{2} + 8)$  which holds for  $n_0 \ge 444$ .  $\Box$ 

**Lemma 24.** *Let*  $t \ge 432$ . *Then*  $n_0 \ge 1.1t$ .

**Proof.** Suppose that  $d := n_0 - t \le 0.1t$ . If  $d \le 22$  then we are done by the previous lemma. So suppose that  $d \ge 23$ . By (q1),  $H_0$  has three vertices,  $v_1$ ,  $v_2$ ,  $v_3$ , with degree at most d - 3. So, the degrees of  $v_1$ ,  $v_2$ ,  $v_3$  in  $G_0$  are at least t + 2. We will construct disjoint connected dominating sets  $D_1$ ,  $D_2$ ,  $D_3$  as follows.

STEP 0: For j = 1, 2, 3, let  $D_{1,j} = \{v_j\}$  and  $Q_{1,j} = V(G_0) - N_{G_0}(v_j) - v_j$ .

STEP *i*,  $i \ge 1$ : Consecutively, for j = 1, 2, 3, if  $Q_{i,j} = \emptyset$ , then let  $D_j := D_{i+1,j} := D_{i,j}$ . When all  $D_j$  are defined, then stop. If  $Q_{i,j} \ne \emptyset$ , then let  $F_{i,j} := Q_{i,j} \cup \bigcup_{\ell=1}^{j-1} D_{i+1,\ell} \cup \bigcup_{\ell=j}^{3} D_{i,\ell}$ , then choose in  $V(G_0) - F_{i,j}$  a vertex  $v_{i,j}$  that has the most neighbors in  $Q_{i,j}$  and let  $D_{i+1,j} := D_{i,j} \cup \{v_{i,j}\}$  and  $Q_{i+1,j} := Q_{i,j} - N_{G_0}(v_{i,j}) - v_{i,j}$ . By definition, for all *i* and *j*,  $Q_{i,j}$  is exactly the set of vertices of  $G_0$  not dominated by  $D_{i,j}$ . Since we always choose  $v_{i,j} \notin Q_{i,j}$ ,

By definition, for all *i* and *j*,  $Q_{i,j}$  is exactly the set of vertices of  $G_0$  not dominated by  $D_{i,j}$ . Since we always choose  $v_{i,j} \notin Q_{i,j}$ ,  $G_0[D_{i,j}]$  is a connected subgraph of  $G_0$  for all *i* and *j*. Also,  $D_{i,j}$  and  $D_{i,j'}$  are disjoint if  $j' \neq j$ . We now show by induction on *i* that for each  $j \in \{1, 2, 3\}$ , if  $Q_{i,j} \neq \emptyset$ , then for each  $x \in Q_{i,j}$ ,

$$\frac{|V(G_0) - F_{i,j}|}{|N_{G_0}(x) - F_{i,j}|} < \frac{5}{2}.$$
(11)

It will be easier to prove a slightly stronger inequality

$$\frac{n_0 - |N_{G_0}(x)|}{|N_{G_0}(x) - F_{i,j}|} < \frac{3}{2}.$$
(12)

By (p3), since  $n_0 < 1.1t$ , we have  $n_0 - |N_{G_0}(x)| < 1.1t - t/2 - 2 = 0.6t - 2$ . By the definition of  $Q_{i,j}$ , for each  $x \in Q_{i,j}$ ,  $N_{G_0}(x) - F_{i,j} = N_{G_0}(x) - (F_{i,j} - D_{i,j})$ . Since

$$|F_{i,j} - D_{i,j}| \le 2i + |Q_{i,j}|,\tag{13}$$

we will estimate  $|Q_{i,j}|$ .

By the choice of  $v_1$ ,  $v_2$ , and  $v_3$ ,  $|Q_{1,j}| \le d - 3$  and hence  $|F_{1,j} - D_{1,j}| \le d - 1 < 0.1t - 1$ . So,

$$|N_{G_0}(x) - F_{1,j}| \ge 0.5t + 2 - (0.1t - 1) \ge 0.4t + 1,$$

and (since  $n_0 - |N_{G_0}(x)| < 0.6t - 2$ ) (12) (and hence (11), as well) holds for i = 1. Observe that

if (11) holds for a pair (i, j), then  $v_{i+1,j}$  has more than  $2|Q_{i,j}|/5$  neighbors in  $Q_{i,j}$ .

Thus if (11) holds for a pair (i, j) and  $|Q_{i,j}| \ge 3$ , then by (14),

$$|F_{i+1,j} - D_{i+1,j}| \le |F_{i,j} - D_{i,j}| + 2 - (|Q_{i,j}| - |Q_{i+1,j}|) \le |F_{i,j} - D_{i,j}| + 2 - \lceil 2|Q_{i,j}|/5 \rceil \le |F_{i,j} - D_{i,j}|.$$

It follows that the inequality

$$|F_{i,i} - D_{i,i}| \le 0.1t - 1 \tag{15}$$

(14)

holds if  $|Q_{i-1,j}| \ge 3$  and  $|F_{i-1,j} - D_{i-1,j}| \le 0.1t - 1$ . Let  $i_0$  be the smallest  $i \ge 2$  such that  $|Q_{i-1,j}| \le 2$ . If  $Q_{i_0,j} = \emptyset$ , then (12) is proved for all i. Suppose that  $|Q_{i_0,j}| \ge 1$ . Then inequalities (15) and (12) hold for  $i = i_0 - 1$ . This implies that  $|Q_{i_0,j}| = 1$  and that

$$|F_{i_0,j} - D_{i_0,j}| \le |F_{i_0-1,j} - D_{i_0-1,j}| + 2 - (|Q_{i_0,j}| - |Q_{i_0-1,j}|) \le (0.1t - 1) + 2 - 1 = 0.1t$$

So, if  $Q_{i_0,j} = \{x_j\}, |N(x_j) - F_{i_0,j}| > 0.4t$  and hence  $Q_{i_0+1,j} = \emptyset$ . Thus in all cases (12) holds.

By (11) and (14), if  $Q_{i,j} \neq \emptyset$ , then

$$|Q_{i+1,j}| < \frac{3}{5} |Q_{i,j}|.$$
(16)

Let  $k = \lceil \log_{5/3}(d-3) \rceil$ . By (16) applied k times,

$$|Q_{k+1,j}| < |Q_{1,j}| \left(\frac{3}{5}\right)^k \le (d-3) \left(\frac{3}{5}\right)^{\log_{5/3}(d-3)} = 1$$

Hence  $Q_{k+1,j} = \emptyset$  for each  $j \in \{1, 2, 3\}$  and so our algorithm constructs by the end of Step k disjoint connected dominating sets  $D_1, D_2$ , and  $D_3$ . In particular, this means that  $G_0$  has a  $K^*_{3,n_0-3(k+1)}$ -minor.

It is left to show that  $3(k + 1) \le d$ , i.e., that  $3\lceil \log_{5/3}(d - 3) \rceil \le d - 3$ . Since  $d - 3 \ge 20$ , it is enough to show that for integer  $x \ge 20$ ,  $\log_{5/3} x \le \lfloor x/3 \rfloor$ , which is true. For example,  $\log_{5/3} 20 < 5.87$ .  $\Box$ 

#### 5. Graphs with a dense subgraph of moderate order

**Lemma 25.** Let  $2 \le s \le 3$ ,  $t \ge 500$ , and let G be a 2s-connected graph that contains a vertex subset U with

$$t + 19(s - 1)\ln t \le |U| \le 2t + 20(s - 1)\ln t$$

such that  $\delta(G[U]) \ge 2t/5+36(s-1) \ln t$ . Then G has a  $K_{s,t}^s$ -minor such that the pre-image of each vertex of the minor intersects U.

**Proof.** Let u = |U|. Perform the following procedure on G[U]. Let i = 1 and  $G_1 = G[U]$ . Step *i*: If every component of  $G_i$  has connectivity greater than  $10(s - 1) \ln t$  and the number of components in  $G_i$  is exactly *i*, then stop. Otherwise, choose a set  $S_i$  with  $|S_i| = \lfloor 10(s - 1) \ln t \rfloor$  so that  $G_i - S_i$  has more than *i* components and let  $G_{i+1} = G_i - S_i$ .

Let *G* be the resulting graph. Let  $H_1, H_2, \ldots, H_\ell$  be the components of the graph *G* and let  $U_i = V(H_i)$  and  $u_i = |U_i|$  for  $i = 1, \ldots, \ell$ . We may assume that  $u_1 \ge \cdots \ge u_\ell$ . First, we show that

$$\ell \leq 4.$$

Suppose that (17) does not hold. Consider  $G_4$ . By construction,  $G_4$  has at least four components. Since  $\delta(G_4) \ge \delta(G) - 30$ (s - 1) ln  $t \ge 0.4t + 6(s - 1) \ln t$ , each component of  $G_4$  has more than  $0.4t + 6(s - 1) \ln t$  vertices. So, if  $G_4$  has at least five components, then  $|V(G_4)| > 5(0.4t + 6(s - 1) \ln t) = 2t + 30(s - 1) \ln t$ , a contradiction. Moreover, each component of  $G_4$  that is not  $10(s - 1) \ln t$ -connected has more than  $2\delta(G_4) - 10(s - 1) \ln t \ge 0.8t + 2(s - 1) \ln t$  vertices. So, if there is such a component, then  $|V(G_4)| > 0.8t + 2(s - 1) \ln t + 3(0.4t + 6(s - 1) \ln t) = 2t + 20(s - 1) \ln t$ , a contradiction. This proves (17).

**Case 1:**  $\ell = 1$ . This means that  $H_1 = G[U]$ ,  $u_1 = u$ , and the connectivity of  $H_1$  is greater than  $10(s - 1) \ln t$ . Let us check that  $H_1$  satisfies the conditions of Lemma 13 with  $k = \lfloor 0.4t + 4(s - 1) \ln t \rfloor$  and n = u. Indeed, in this case  $u \le 5k$ ; hence  $u/(u - k) \ge 5/4$ , and so for  $t \ge 500$ ,

$$2(s-1)\log_{u/(u-k)} u \le 2(s-1)\log_{5/4} u < 9(s-1)\ln(u).$$

Hence by this lemma, *U* contains *s* disjoint subsets  $A_1, \ldots, A_s$  such that, for every  $i = 1, \ldots, s$ , (i)  $G[A_i]$  is connected, (ii)  $|A_i| \le 2 \log_{u/(u-k)} u$ , and (iii)  $A_i$  dominates  $H_1 - \bigcup_{j=1}^{i-1} A_j$ .

Contracting each of  $A_1, \ldots, A_s$  into a vertex, we find a  $K^*_{s,u-2s\log_{u/(u-k)}u}$ -minor of G. We want to prove that  $u - 2s\log_{u/(u-k)}u \ge t$ , i.e. that for  $0.4t \le k < t$ ,

$$f(u,k) = u \ln \frac{u}{u-k} - 2s \ln u - t \ln \frac{u}{u-k} \ge 0.$$
 (18)

For this we show first that  $f'_u(u, k) \ge 0$  when  $0.4t \le k < t$  and  $u \ge t$ . Indeed,

$$f'_u(u,k) = \ln \frac{u}{u-k} + \frac{u}{u} - \frac{u}{u-k} - \frac{2s}{u} - t\left(\frac{1}{u} - \frac{1}{u-k}\right) = \ln \frac{u}{u-k} - \frac{k(u-t)}{u(u-k)} - \frac{2s}{u}$$

Hence,

$$(uf'_u(u,k))'_u = \ln \frac{u}{u-k} - \frac{k}{u-k} - \frac{k(t-k)}{(u-k)^2}$$

Since  $\ln(1 + x) < x$  for  $x = \frac{k}{u-k}$ , function uf'(u) decreases for u > t. So, to check the inequality  $f'_u(u, k) \ge 0$  for  $u \in (t, 2t]$ , it is enough to check it for u = 2t. For u = 2t,

$$(f'_u(u,k))'_k = \frac{1}{u-k} - \frac{u-t}{u} \frac{u}{(u-k)^2} = \frac{t-k}{(u-k)^2} > 0$$

So,

$$f'_u(2t,k) \ge f'_u(2t,0.4t) = \ln \frac{2t}{1.6t} - \frac{0.4t \cdot t}{1.6t \cdot 2t} - \frac{2s}{2t} = \ln \frac{5}{4} - \frac{1}{8} - \frac{s}{t}.$$

Since  $\ln 1.25 > 0.22$ ,  $s \le 3$  and t > 200,  $f'_u(2t, k) > 0$  and f(u, k) grows with u on (t, 2t]. Let  $u_0 = t + \lceil 2s \log_{3/2} 1.2t \rceil$ . Since  $s \le 3$  and  $t \ge 500$ ,  $u_0 \le 1.2t$ . Hence  $\frac{u_0}{u_0 - k} \ge 3/2$  and

 $u_0 - 2s \log_{u_0/(u_0-k)} u_0 \ge t + 2s \log_{3/2} 1.2t - 2s \log_{3/2} u_0 \ge t.$ 

Since  $\log_{3/2} 1.2t \le 2.6 \ln t$  for  $t \ge 500$ , this proves Case 1 for  $u \le 2t$ . If  $u \in [2t, 2t + 20(s - 1) \ln t]$ , then it is enough to show that  $f_1(u) = u - 2s \log_{5/4} u \ge t$ . Since for  $u \ge 2t \ge 1000$ ,  $f'_1(u) = 1 - \frac{2s}{u \ln 5/4} > 1 - \frac{9s}{u} > 0$ , we have for such u

$$f_1(u) \ge f_1(2t) > 2t - 9s \ln 2t \ge 2t - 27 \ln 2t > t.$$

This finishes Case 1.

**Case 2:**  $\ell = 2$ . Then  $\delta(G') \ge \delta(G[U]) - 10(s - 1) \ln t \ge 0.4t + 26(s - 1) \ln t$ . For j = 1, 2, let  $u_j = |V(H_j)|$ . If  $u_1 > t + 6(s - 1) \ln t$ , then we simply repeat the proof of Case 1 for  $H_1$ . The only difference would be the lower bound on  $\delta(G')$ , but the new bound is sufficient for the argument. Suppose that  $u_2 \le u_1 \le t + 6(s - 1) \ln t$ . Since *G* is 2*s*-connected, there are *s* pairwise disjoint paths  $P_1, \ldots, P_s$  connecting  $V(H_1)$  with  $V(H_2)$ . We may assume that for  $i = 1, \ldots, s$  and  $j = 1, 2, V(P_i) \cap V(H_j) = \{x_{i,j}\}$ . Let  $H'_j = H_j - \{x_{1,j}, \ldots, x_{s,j}\}$ . Then for  $j = 1, 2, \delta(H'_j) \ge \delta(G') - s > 0.4t + 25(s - 1) \ln t$ . So each of  $H'_i$  satisfies the conditions of Lemma 13 with  $k = \lceil 0.4t + 3(s - 1) \ln t \rceil$  and  $n_j = u'_i = u_j - s$ . Hence

(17)

 $V(H'_1) \cup V(H'_2)$  contains disjoint subsets  $A_{1,1}, A_{2,1}, \dots, A_{s,2}$  such that for every  $i = 1, \dots, s$  and j = 1, 2, (i)  $G[A_{i,j}]$  is connected, (ii)  $|A_{i,j}| \leq 2 \log_{u_j/(u_j-k)} u_j$ , and (iii)  $A_{i,j}$  dominates  $H'_j - \bigcup_{q=1}^{i-1} A_{q,j}$ .

Since  $u_j \leq 2.5k$ , by (ii),

$$\sum_{j=1}^{2} \sum_{i=1}^{s} |A_{i,j}| \le 4s \log_{5/3} t + 6(s-1) \ln t < 4s \cdot 2 \ln t + 6(s-1) \ln t < 8.5s \ln t.$$
(19)

For j = 1, 2, choose in  $V(H'_j) - \bigcup_{i=1}^{s} A_{i,j}$  vertices  $y_{1,j}, \ldots, y_{s,j}$  so that  $x_{i,j}y_{i,j} \in E(G')$  for  $i = 1, \ldots, s$ . We can do this because each  $x_{i,j}$  has at least  $0.4t + 26(s-1) \ln t$  neighbors in  $H_j$ . For  $i = 1, \ldots, s$ , let  $B_i = A_{i,1} \cup A_{i,2} \cup V(P_i) \cup \{y_{i,1}, y_{i,2}\}$ . By the dominating properties of  $A_{i,j}, y_{i,j}$  has a neighbor in  $A_{i,j}$ . Hence each of  $B_1, \ldots, B_s$  induces a connected subgraph in G and dominates the set  $X = V(H'_1) \cup V(H'_2) - \bigcup_{i=1}^2 \bigcup_{i=1}^s (A_{i,j} \cup \{y_{i,j}\})$ . Under the assumptions of the case, by (19),

$$|X| \ge |U| - |S_1| - 2s - \sum_{j=1}^{2} \sum_{i=1}^{s} |A_{i,j}| - 2s \ge |U| - 10(s-1)\ln t - 8.5s\ln t - 4s \ge |U| - 18s\ln t$$

So, if  $|U| \ge t + 18s \ln t$ , then the case is proved. Suppose  $|U| < t + 18s \ln t$ . Then  $u_1 < |U| - \delta(G') \le t + 18s \ln t - (2t/5 + 36(s-1) \ln t) \le 0.6t$  and  $u_2 \le u_1$ . So, repeating the above argument, instead of (19), we get

$$\sum_{j=1}^{2} \sum_{i=1}^{s} |A_{i,j}| \le 4s \log_3 0.6t < 4s(\ln t + \ln 0.6) < 4s \ln t - 2s.$$
(20)

Hence

$$|X| \ge |U| - 10(s-1)\ln t - (4s\ln t - 2s) - 4s \ge |U| - 18(s-1)\ln t - 2s \ge t$$

**Case 3:**  $\ell = 3$ . Since  $\delta(G') \ge 0.4t + 16(s - 1) \ln t$ ,  $u_1 \ge u_2 \ge u_3 \ge 1 + 0.4t + 16(s - 1) \ln t$ . For j = 1, 2, 3, choose  $F_j \subset U_j$  with  $|F_1| = 2s$  and  $|F_2| = |F_3| = s$ . Since *G* is 2*s*-connected, *G* contains 2*s* vertex-disjoint paths  $P_1, \ldots, P_{2s}$  from  $F_1$  to  $F_2 \cup F_3$ . By Lemma 11,  $P_1 \cup \ldots \cup P_{2s}$  contains *s* vertex-disjoint  $(U_1, U_2, U_3)$ -connecting pairs of paths  $(Q_{i,1}, Q_{i,2})$ ,  $i = 1, \ldots, s$ . Let  $Q = \bigcup_{i=1}^s \bigcup_{j=1}^2 V(Q_{i,j})$ . For j = 1, 2, 3, let  $H'_j = H_j - Q$  and  $u'_j = |V(H'_j)|$ . Then for j = 1, 2, 3,  $\delta(H'_i) \ge \delta(G') - 2s > 0.4t + 15(s - 1) \ln t$  and hence  $u'_i > 1 + 0.4t + 15(s - 1) \ln t$ .

As in Case 2,  $u_1 \le t + 6s \ln t$ . Moreover,  $u_2 \le (|U| - 20(s-1) \ln t - u_3)/2 \le 0.8t$  and  $u_3 \le (|U| - 20(s-1) \ln t)/3 \le 2t/3$ . So, each of  $H'_j$  (j = 1, 2, 3) satisfies the conditions of Lemma 13 with  $k_1 = [0.4t + 2.5s \ln t]$ ,  $u'_1/(u'_1 - k_1) \ge 5/3$ ,  $k_2 = k_3 = [0.4t]$ ,  $u'_2/(u'_2 - k_2) \ge 2$  and  $u'_3/(u'_3 - k_3) \ge 5/2$ . Hence  $V(H'_1) \cup V(H'_2) \cup V(H'_3)$  contains disjoint subsets  $A_{1,1}, A_{2,1}, \ldots, A_{s,3}$  such that, for every  $i = 1, \ldots, s$  and j = 1, 2, 3, (i)  $G[A_{i,j}]$  is connected, (ii)  $|A_{i,j}| \le 2\log_{u'_j/(u'_j - k_j)} u'_j$ , and  $u''_3 = 1, \ldots, s$  and  $j = 1, 2, 3, (i) G[A_{i,j}]$  is connected.

(iii)  $A_{i,j}$  dominates  $V(H'_j) - \bigcup_{q=1}^{i-1} A_{q,j}$ . By construction,  $\sum_{j=1}^{3} \sum_{i=1}^{s} |A_{i,j}| < 2s(\log_{5/3} u_1 + \log_2 u_2 + \log_{5/2} u_3)$ . Since  $u_1 \le 1.2t$  (cf. Case 1) and  $u_3 \le u_2 < t$ ,

$$\log_{5/3} u_1' + \log_2 u_2' + \log_{5/2} u_3' \le \ln t \left( \frac{1 + \ln 1.2 / \ln t}{\ln 5/3} + \frac{1}{\ln 2} + \frac{1}{\ln 5/2} \right),$$

so for  $t \ge 500$  we have

2

$$\sum_{j=1}^{5} \sum_{i=1}^{3} |A_{i,j}| < 2s \cdot 4.6 \ln t = 9.2s \ln t.$$
(21)

By the definition of  $(U_1, U_2, U_3)$ -connecting pairs, for j = 1, 2, 3 and i = 1, ..., s,  $(Q_{i,1} \cup Q_{i,2}) \cap U_j \neq \emptyset$ . Let  $x_{i,j} \in (Q_{i,1} \cup Q_{i,2}) \cap U_j$ . Since each  $x_{i,j}$  has at least  $0.4t + 16(s-1) \ln t$  neighbors in  $H_j$ , for j = 1, 2, 3 we can choose in  $V(H'_j) - \bigcup_{i=1}^s A_{i,j}$ 

vertices  $y_{1,j}, \ldots, y_{s,j}$  so that  $x_{i,j}y_{i,j} \in E(G')$  for  $i = 1, \ldots, s$ . For  $i = 1, \ldots, s$ , let  $B_i = V(Q_{i,1} \cup Q_{i,2}) \cup \bigcup_{j=1}^3 (A_{i,1} \cup \{y_{i,j}\})$ . By the dominating properties of  $A_{i,j}$  and the choice of  $y_{i,j}$ , each of  $B_1, \ldots, B_s$  induces a connected subgraph in G and dominates the set

$$X = V(H'_1) \cup V(H'_2) \cup V(H'_3) - \bigcup_{j=1}^{3} \bigcup_{i=1}^{s} (A_{i,j} \cup \{y_{i,j}\}).$$

Furthermore, by (21),

$$\begin{aligned} X| &\geq 3(1+0.4t+15(s-1)\ln t) - |Q \cap (U_1 \cup U_2 \cup U_3)| - \sum_{j=1}^3 \sum_{i=1}^s |A_{i,j} \cup \{y_{i,j}\}| \\ &\geq 3+1.2t+45(s-1)\ln t - 12 - 9.2s\ln t - 3s = 1.2t+35.8(s-1)\ln t - 9 - 3s > t \end{aligned}$$

**Case 4:**  $\ell = 4$ . Since  $\delta(G') \ge 0.4t + 6(s-1) \ln t$ ,  $u_1 \ge \cdots \ge u_4 \ge 1 + 0.4t + 6(s-1) \ln t$ . Hence  $u_2 \le (|U| - 30(s-1) \ln t - u_3 - u_4)/2 < 0.6t$  and  $u_4 \le u_3 \le u_2$ . We can now repeat the proof for Case 3 with  $H_2$ ,  $H_3$  and  $H_4$  in place of  $H_1$ ,  $H_2$  and  $H_3$  and with  $k_2 = k_3 = k_4 = 0.4t$ . The disadvantage is a slightly smaller minimum degree, but the advantage is that  $\frac{u_j}{u_j - 0.4t} \ge \frac{0.6t}{0.6t - 0.4t} = 3$ , and so instead of (21) we will have

$$\sum_{j=2}^{4} \sum_{i=1}^{s} |A_{i,j}| < 2s \cdot 3 \ln u_j' < 6s \ln t.$$

This finishes the proof of the lemma.  $\Box$ 

#### 6. The final argument

We are now ready to prove Theorem 4. Recall that  $G_0$  is our smallest counter-example to the theorem.

Case 1: G<sub>0</sub> is 6-connected.

**Case 1.1:**  $G_0$  has a vertex v with  $t + 19 \ln t \le d(v) \le 2t + 20 \ln t$ . Then  $G_0 - v$  is 5-connected and by (p2),  $\delta(G_0[N(v)]) > t/2$ . Since  $t \ge 3000$ ,  $2t/5 + 36 \ln t \le t/2$ , so  $G_0 - v$  with U = N(v) satisfies the conditions of Lemma 25 for s = 2. Hence by this lemma,  $G_0 - v$  has a  $K_{2,t}^*$ -minor such that the pre-image of each vertex of the minor intersects N(v). Adding v, we will get a  $K_{3,t}^*$ -minor.

**Case 1.2:**  $G_0$  has no vertices v with  $t + 19 \ln t \le d(v) \le 2t + 20 \ln t$ . Let  $V_{sm}$  be the set of vertices of degree less than  $t + 19 \ln t$ . We first show that

$$|V_{\rm sm}| \le t + 38 \ln t.$$
 (22)

Assume that  $|V_{sm}| = \ell > t + 38 \ln t$ . Order  $v_1, \ldots, v_\ell$ , the vertices in  $V_{sm}$ , so that for all  $1 \le i < j \le \ell$ ,

$$\left| \bigcup_{q=1}^{i} N[v_q] \right| \ge \left| \bigcup_{q=1}^{i-1} N[v_q] \right| \cup N[v_j].$$
(23)

In other words, having already defined  $v_1, \ldots, v_{i-1}$ , we choose as  $v_i$  a vertex v with maximum  $|N[v] - \bigcup_{q=1}^{i-1} N[v_q]|$ . If (22) does not hold, then  $|\bigcup_{q=1}^{\ell} N[v_q]| > t + 38 \ln t$ . Let  $i_0$  be the largest i such that  $|\bigcup_{q=1}^{i} N[v_q]| \le t + 38 \ln t$ . Let us check that

$$\left| \bigcup_{q=1}^{i_0+1} N[v_q] \right| \le 2t + 20 \ln t.$$
(24)

By the definition of  $V_{\text{sm}}$ ,  $i_0 \ge 1$ , and if  $i_0 = 1$ , then (24) holds. So, let  $i_0 \ge 2$ . If (24) does not hold, then by the definition of  $i_0$ ,  $|N[v_{i_0+1}] - \bigcup_{q=1}^{i_0} N[v_q]| > t - 18 \ln t$ . But then by the ordering of  $v_1, \ldots, v_{i_1}, |N[v_{i_0}] - \bigcup_{q=1}^{i_0-1} N[v_q]| > t - 18 \ln t$  and  $|N[v_{i_0-1}] - \bigcup_{q=1}^{i_0-2} N[v_q]| > t - 18 \ln t$ , so  $|\bigcup_{q=1}^{i_0} N[v_q]| > 2t - 36 \ln t$ . But for  $t \ge 6300$ ,  $2t - 36 \ln t > t + 38 \ln t$ , a contradiction to the definition of  $i_0$ . Thus (24) holds. Then  $G_0$  and  $U = \bigcup_{q=1}^{i_0+1} N[v_q]$  satisfy the conditions of Lemma 25 for s = 3, since  $t \ge 6300$ . This proves (22).

Since every vertex not in  $V_{sm}$  has degree at least  $2t + 20 \ln t$ , by (p1),

$$\frac{t|V_{\rm sm}|}{2} + 2t(n_0 - |V_{\rm sm}|) \le \sum_{v \in V(G_0)} d_{G_0}(v) \le (t+3)(n_0-2) + 4 < (t+3)n_0$$

It follows that  $n_0 - \frac{3n_0}{t} < \frac{3|V_{\rm sm}|}{2}$  and hence by (22),

$$n_0 < \frac{3t|V_{\rm sm}|}{2(t-3)} \le 2t \frac{3(t+38\ln t)}{4(t-3)} < 2t$$

Thus if  $n_0 \ge t + 38 \ln t$ , then we apply Lemma 25 for s = 3 to  $G_0$  and  $U = V(G_0)$ . If  $n_0 < t + 38 \ln t$ , then, since  $t \ge 6300$ ,  $n_0 < t + 0.1t$ , and by Lemma 24, the theorem holds for  $G_0$ .

**Case 2:**  $G_0$  is not 6-connected. Let X be a separating set in  $G_0$  with  $|X| \le 5$ . Let  $V_1$  and  $V_2$  be vertex sets of some two connected components of  $G_0 - X$ . By definition, each of  $V_1$  and  $V_2$  is 5-separable, and hence 9-separable. For j = 1, 2, let  $W_j$  be an inclusion-minimal 9-separable subset of  $V_j$ , let  $S_j = N(W_j) - W_j$ , and let  $G_j = G_0[W_j \cup S_j]$ . By (p2), for j = 1, 2,  $\delta(G_j) > t/2$  and by Lemma 10 for k = 9, graph  $G_j$  is 6-connected.

**Case 2.1:**  $|V(G_1)| \ge t + 38 \ln t$ . If  $|V(G_1)| \le 2t$ , then  $G_1$  with  $U = V(G_1)$  satisfies the conditions of Lemma 25 for s = 3. So, we may assume that

$$|V(G_1)| > 2t.$$

(25)

If  $W_1$  contains a vertex v with  $t + 19 \ln t \le d(v) \le 2t + 40 \ln t$ , then we simply repeat the argument of Cases 1.1 and 1.2 with  $G_1$  in place of  $G_0$ . If not, we let  $V_{sm}$  be the set of vertices in  $W_1$  of degree less than  $t + 19 \ln t$ . Note that we do not include vertices of  $S_1$  into  $V_{sm}$ . Repeating the proof of (22) word by word, we get that it holds for our new definition of  $V_{sm}$ . By the minimality of  $G_0$ ,  $e(G_1) \le \frac{t+3}{2}(|W_1| + |S_1| - 2) + 1$ . So, since every vertex in  $W_1 - V_{sm}$  has degree at least  $2t + 40 \ln t$ ,

$$\frac{(t+3)(|V_{\rm sm}|+|S_1|)}{2} + 2t(|W_1 - V_{\rm sm}|) \le \sum_{w \in S_1 \cup W_1} d_{G_1}(w) < (t+3)(|W_1|+|S_1|).$$

Since  $|S_1| \le 9$ , this and (22) yield for t > 2000

$$|W_1| \le \frac{3t(|V_{\rm sm}|+3+9/t)}{2(t-3)} < \frac{3t(t+38\ln t+3+9/t)}{2(t-3)} < \frac{3t(1.2t-5)}{2(t-3)} < 1.8t < 2t-9.$$

Hence  $|W_1| + |S_1| < 2t$ , a contradiction to (25). This proves Case 2.1.

**Case 2.2:** For  $j = 1, 2, |V(G_j)| \le t + 38 \ln t$ . For each  $w \in W_j, d(w) \le |W_j| + |S_j| - 1$ . On the other hand, by the minimality of  $G_0, e(G_0) - e(G_0 - W_j) \ge (t + 3)|W_j|/2$ . Thus, since  $|S_j| \le 9$ ,

$$(t+3)|W_j| \le \sum_{w \in W_j} d(w) + |S_j||W_j| \le |W_j|(|W_j| + 2|S_j| - 1) \le |W_j|(|W_j| + 17),$$

and hence  $|W_i| \ge t - 14$ . Thus, if at most two vertices of  $G_i$  have degree greater than t - 12, then

$$\begin{aligned} (t+3)|W_j| &\leq \sum_{w \in W_j \cup S_j} d_{G_j}(w) \leq 2(|W_j| + |S_j| - 1) + (t-12)(|W_j| + |S_j| - 2) \\ &\leq (t-10)|W_j| + 16 + 7(t-12). \end{aligned}$$

It follows that  $13|W_j| \le 7(t-12) + 16$ , a contradiction to  $|W_j| \ge t - 14$ . So,  $G_j$  contains some three vertices  $v_{1,j}$ ,  $v_{2,j}$  and  $v_{3,j}$  of degree at least t - 11 in  $G_j$ .

By (p4), there are three vertex-disjoint  $S_1$ ,  $S_2$ -paths  $P_1$ ,  $P_2$ , and  $P_3$ . We may assume that for i = 1, 2, 3 and j = 1, 2, the only common vertex of  $P_i$  and  $S_j$  is  $p_{i,j}$ . We also may assume that if  $p_{i,j} \in \{v_{1,j}, v_{2,j}, v_{3,j}\}$ , then  $p_{i,j} = v_{i,j}$ . Let  $F_j = \{v_{1,j}, v_{2,j}, v_{3,j}, p_{1,j}, p_{2,j}, p_{3,j}\}$  for j = 1, 2. If  $p_{i,j} \neq v_{i,j}$  and  $p_{i,j}v_{i,j} \notin E(G_j)$ , then  $p_{i,j}$  and  $v_{i,j}$  have at least

$$d_{G_j}(p_{i,j}) + d_{G_j}(v_{i,j}) - |V(G_j)| \ge \frac{t+3}{2} + (t-11) - (t+38\ln t) > 10$$

common neighbors. Thus, we can choose distinct vertices  $q_{1,j}, q_{2,j}, q_{3,j} \in V(G_j) - F_j$  so that  $q_{i,j}$  is a common neighbor of  $p_{i,j}$ and  $v_{i,j}$  if  $p_{i,j} \neq v_{i,j}$  and  $p_{i,j}v_{i,j} \notin E(G_j)$ . For j = 1, 2, let  $F'_j = F_j \cup \{q_{1,j}, q_{2,j}, q_{3,j}\}$  and let  $M_j$  be the set of common neighbors of  $v_{1,j}, v_{2,j}$  and  $v_{3,j}$  in  $V(G_j) - F'_i$ . By definition, for  $t \ge 6000$ ,

$$|M_j| \ge \sum_{i=1}^{5} d_{G_1}(v_{i,j}) - 2|V(G_j)| - |F_j'| \ge 3(t-11) - 2(t+38\ln t) - 9 = t - 76\ln t - 42 > 7t/8.$$

For i = 1, 2, 3, let  $B_i = V(P_i) \cup \{v_{i,1}, v_{i,2}, q_{i,1}, q_{i,2}\}$ . Then  $G_0[B_i]$  is connected and contracting each  $B_i$  into a vertex, we get a  $K_{3,7t/4}$ -minor of  $G_0$ , where the pre-images of the remaining vertices are the vertices in  $M_1 \cup M_2$ . Since  $K_{3,t+2}$  has a  $K_{3,t}^*$ -minor, this finishes the proof of the theorem.  $\Box$ 

#### 7. Case $n_0 = t + 5$

In this section we deliver the postponed proof of Lemma 19 that  $n_0 \neq t + 5$ . We assume that  $n_0 = t + 5$  and will eventually get a contradiction. As was noted, in this case it is easier to consider the complement,  $H_0$ , of our counter-example  $G_0$  than  $G_0$  itself. By (q1),

$$e(H_0) < 1.5n_0 - 3. \tag{26}$$

#### **Lemma 26.** *H*<sup>0</sup> *is connected.*

**Proof.** Suppose first that each component of  $H_0$  has at least three vertices. Let x be a vertex of degree at most 2 in  $H_0$ . Contracting in  $G_0$  the neighbors of x in  $H_0$  with vertices in other components of  $H_0$ , we find a  $K_{3,n-5}$ -minor. Similarly, if  $H_0$  has a  $K_2$ -component C with  $V(C) = \{y_1, y_2\}$ , then it has another vertex x of degree at most 2 in  $H_0 - C$ . If  $N_{H_0}(x) \subseteq \{z_1, z_2\}$ , then we contract in  $G_0$  the edges  $y_1z_1$  and  $y_2z_2$ . Suppose finally that  $H_0$  has an isolated vertex x. Let  $H_1 = H_0 - x$  and  $n_1 = |V(H_1)| = n_0 - 1$ . Since  $e(H_1) = e(H_0) < 1.5(n_1 - 1)$ , by Lemma 15,  $H_1$  contains two disjoint pairs  $(y_1, y_2)$  and  $(z_1, z_2)$  of vertices at distance at least 3. Thus, contracting in  $G_0$  edges  $y_1y_2$  and  $z_1z_2$ , we get a graph containing  $K_{3,r}^*$ .

**Lemma 27.** If a vertex of  $H_0$  is adjacent to two degree-1 vertices, then there are no other degree-1 vertices in  $H_0$ .



V-component D-component Y-component U-component

#### Fig. 3. Some kinds of tiny components.

**Proof.** Suppose that a vertex  $x \in V(H_0)$  is adjacent to degree-1 vertices  $v_1$  and  $v_2$ , and that there is another degree-1 vertex  $v_3$  adjacent to a vertex y (possibly, y = x). Then  $v_1$ ,  $v_2$  and  $v_3$  are isolated in  $H_0 - x - y$ , i.e.  $G_0$  contains  $K_{3,t}^*$ .  $\Box$ 

For  $A \subset V(H_0)$ , a component *C* of  $H_0 - A$  is *tiny* if  $|V(C)| \le 2$  and  $e(C, A) \le 2$ .

We need a couple of statements on tiny components. For this, let us first give names to some of these components. We will say that a tiny component C of  $H_0 - A$  is:

(c1) a *V*-component if |V(C)| = 1 and e(C, A) = 2,

(c2) a *D*-component if |V(C)| = 2 and both vertices in *C* are adjacent to the same vertex in *A*,

(c3) a Y-component if |V(C)| = 2 and two vertices in A are adjacent to the same vertex in C,

(c4) a *U*-component if |V(C)| = 2 and the vertices in *C* are adjacent to distinct vertices in *A*.

(See Fig. 3.)

**Lemma 28.** For every  $x \in V(H_0)$ , the number of tiny components in  $H_0 - x$  is at most 2.

**Proof.** Suppose that  $H_0 - x$  has tiny components  $C_1$ ,  $C_2$ , and  $C_3$ . If  $|V(C_1)| = |V(C_2)| = |V(C_3)| = 1$ , then we have  $K_{3,t+1}^*$  in  $G_0 - x$ , so suppose  $V(C_1) = \{v_1, v_2\}$ . If  $|V(C_2)| = |V(C_3)| = 1$ , then we have  $K_{3,t}^*$  in  $G_0 - x - v_1$ , so suppose  $V(C_2) = \{w_1, w_2\}$ . In this case the graph  $G'_0$  obtained from  $G_0 - x$  by contracting edge  $v_1 w_1$  has three all-adjacent vertices:  $v_2$ ,  $w_2$ , and  $v_1 * w_1$ .  $\Box$ 

**Lemma 29.** For every  $x_1, x_2 \in V(H_0)$ , the number of tiny components in  $H_0 - x_1 - x_2$  that are not Y-components is at most 2.

**Proof.** Suppose that  $H_0 - x_1 - x_2$  has tiny components  $C_1$ ,  $C_2$ , and  $C_3$  that are not Y-components. For convenience, suppose that  $V(C_i) = \{v_{i,1}, \ldots, v_{i,|V(C_i)|}\}$  for i = 1, 2, 3. If all of them are singletons, then  $G_0$  contains  $K_{3,t}^*$ . So, we may assume that  $|V(C_1)| = 2$ .

**Case 1**: Vertex  $x_i$  has no neighbors in  $C_1$  for some  $i \in \{1, 2\}$ . If, say,  $C_3$  is a singleton, then contracting in  $G_0 - x_{3-i}$  the edge  $v_{1,1}x_i$  we get a (3 + t)-vertex graph with three all-adjacent vertices, namely  $v_{1,2}$ ,  $v_{1,1} * x_i$ , and the vertex in  $C_3$ . So we may assume that  $|V(C_2)| = |V(C_3)| = 2$ . If for some  $\ell \in \{2, 3\}$  and  $j \in \{1, 2\}$ ,  $v_{\ell,j}x_i \notin E(H_0)$ , then contracting in  $G_0 - x_{3-i}$  the edge  $v_{1,1}v_{\ell,3-j}$  we get a (3 + t)-vertex graph with three all-adjacent vertices:  $v_{1,2}$ ,  $v_{\ell,j}$ , and  $v_{1,1} * v_{\ell,3-j}$ . Thus both  $C_2$  and  $C_3$  are D-components in  $H_0 - x_i$ . Switching the roles of  $x_i$  and  $x_{3-i}$ , we again get the same case and repeating the proof get a contradiction.

**Case 2**: Both  $x_1$  and  $x_2$  have neighbors in  $C_1$ . In other words,  $C_1$  is a *U*-component (recall that we forbid *Y*-components). We may assume that  $x_1v_{1,1}, x_2v_{1,2} \in E(H_0)$ .

**Case 2.1**: Some vertex *u* is at distance at least 3 from some  $x_i$  in  $H_0$ . If  $C_2$  and  $C_3$  are singletons, then contracting in  $G_0 - x_{3-i}$  the edge  $x_i u$  we get a (3 + t)-vertex graph with three all-adjacent vertices:  $v_{2,1}$ ,  $v_{3,1}$ , and  $x_i * u$ . So, we may assume that  $|V(C_2)| = 2$ . Then contracting in  $G_0$  the edges  $x_i u$  and  $v_{1,3-i}v_{2,3-i}$  we get a (3 + t)-vertex graph with three all-adjacent vertices:  $v_{1,i}$ ,  $v_{2,i}$ , and  $x_i * u$ .

**Case 2.2**: Each vertex in  $H_0$  is at distance at most 2 from  $x_1$  and from  $x_2$ . Let  $N_{i,j}$  denote the set of vertices in  $H_0$  that are at distance *i* from  $x_1$  and at distance *j* from  $x_2$ . By definition,  $v_{1,1} \in N_{1,2}$  and  $v_{1,2} \in N_{2,1}$ . We observe some properties of vertices in  $N_{i,j}$ .

Each 
$$u \in N_{2,2}$$
 of degree at most 2 has a neighbor in  $N_{1,1}$ . (27)

Indeed, suppose that  $u \in N_{2,2}$  has at most two neighbors, say  $w_1$  and  $w_2$ , and that  $w_1, w_2 \notin N_{1,1}$ . Since Case 2.1 does not hold, we may assume that  $w_1 \in N_{1,2}$  and  $w_2 \in N_{2,1}$ . Then contracting in  $G_0$  edges  $w_1v_{1,2}$  and  $w_2v_{1,1}$  we get a (3 + t)-vertex graph with three all-adjacent vertices:  $u, w_1 * v_{1,2}$ , and  $w_2 * v_{1,1}$ .

No two vertices  $u_1, u_2 \in N_{2,2}$  of degree 1 in  $H_0$  have a common neighbor. (28)

Indeed, assume that w is the only neighbor of  $u_1, u_2 \in N_{2,2}$ . Then contracting in  $G_0$  the vertices  $w, v_{1,1}$ , and  $v_{1,2}$  into the new vertex z we get a (3 + t)-vertex graph with three all-adjacent vertices:  $z, u_1$ , and  $u_2$ .

Neither of  $x_1$  and  $x_2$  has a neighbor of degree 1.

(29)

Indeed, suppose that  $x_1$  has a neighbor w of degree 1. If  $C_2$  and  $C_3$  are singletons, then  $G_0 - x_1 - x_2$  has all-adjacent vertices w,  $v_{2,1}$ , and  $v_{3,1}$ . So, we may assume that  $|V(C_2)| = 2$ . Then contracting in  $G_0 - x_1$  edge  $v_{1,2}v_{2,2}$  we get a (3 + t)-vertex graph with three all-adjacent vertices:  $v_{1,1}$ ,  $v_{2,1}$ , and w.

Now we use discharging to find a contradiction. At the beginning, each edge has charge 1 and so the total charge is  $e(H_0)$ . The edges give their charges to vertices according to the following rules.

- (R1) If both ends of an edge *e* are in  $N_{2,2}$  or both are in  $N_{1,1} \cup N_{1,2} \cup N_{2,1}$ , then *e* gives 1/2 to either of its ends.
- (R2) If exactly one of the ends of *e* is in  $\{x_1, x_2\}$ , then *e* gives 1 to the other end.
- (R3) If e = xy,  $x \in N_{2,2}$ , and  $y \in N_{1,2} \cup N_{2,1}$ , then e gives 1/2 to either of its ends.
- (R4) If e = xy,  $x \in N_{2,2}$ , and  $y \in N_{1,1}$ , then e gives 1 to x. Moreover, if  $d_{H_0}(x) = 1$ , then y forwards 0.5 from its charge of 2 received from the edges  $x_1y$  and  $x_2y$  by Rule (R2) to x.

We claim that the resulting charge of each vertex apart from  $x_1$  and  $x_2$  is at least 3/2, so the total charge is at least 3(n-2)/2, a contradiction to (26). To prove the claim, consider all possible cases. If  $w \in N_{2,2}$  has degree at least 3, then by (R1), (R3), and (R4), it receives at least 1/2 from each incident edge. If  $w \in N_{2,2}$  has degree exactly 2, then by (27) and (R4), at least one of the incident with w edges gives 1 to w, so w gets at least 3/2 in total. If  $w \in N_{2,2}$  has degree 1, then by (R4), w gets 1 from the incident edge and 1/2 from the neighbor. If  $w \in N_{1,1}$ , then it gets 2 from the edges  $x_1w$  and  $x_2w$  by Rule (R2), and by (28) and Rule (R4), gives 1/2 to the at most one neighbor of degree 1 in  $N_{2,2}$ .

Suppose that  $w \in N_{1,2} \cup N_{2,1}$ . Then w gets 1 from the edge connecting w with  $\{x_1, x_2\}$ . Moreover, by (29), w has another incident edge which gives 1/2 to w either by (R1) or by (R3). This proves the claim and thus the lemma.  $\Box$ 

# **Lemma 30.** If $n_0 \ge 200$ , then $H_0$ has no dominating set with at most $\sqrt{n_0/2} - 2$ vertices.

**Proof.** Suppose that  $H_0$  has a dominating set S with  $|S| = s \le \sqrt{n_0/2} - 2$ . Let  $S' = V(H_0) - S$  and  $H'_0 = H_0[S']$ . Let m be the number of tree components in  $H'_0$ . Since S dominates S', it intersects at least |S'| edges. So,  $e(H'_0) < 3n_0/2 - 3 - |S'| < 0.5n_0 - 3 + s$ . It follows that  $m \ge 3 + 0.5n_0 - 2s$ . Let  $c_i$  denote the number of tree components of  $H'_0$  with i vertices and  $c_{i,j}$  denote the number of tree components of  $H'_0$  with i vertices that are connected with S by exactly j edges.

Claim 1: 
$$\sum_{i=1}^{n_0} ((s-1)c_{i,1} + c_{i,2}) \le 2\binom{s}{2}$$

*Proof.* Since *S* is dominating,  $c_{i,1} + c_{i,2} = 0$  for every  $i \ge 3$  and so  $\sum_{i=1}^{n_0} ((s-1)c_{i,1} + c_{i,2})$  counts only tiny components of  $H_0 - S$ . For the same reason,  $H_0 - S$  has no Y-components. By Lemma 29, the sum over all pairs  $\{x_1, x_2\} \subseteq S$  of the number of tiny components of  $H_0 - \{x_1, x_2\}$  is at most  $2\binom{s}{2}$ . Furthermore, each component of  $H_0 - S$  that has only one neighbor in *S* is counted (s-1) times in this sum. This proves the claim.

The number of edges in all components of  $H'_0$  is at least  $|V(H'_0)| - m = n_0 - s - m$ . Thus by Claim 1, the total number of edges in  $H_0$  is at least

$$e(H'_0) + \sum_{i=1}^n \sum_{j=1}^{n^2} jc_{i,j} \ge (n_0 - s - m) + 3m - \sum_{i=1}^{n_0} (2c_{i,1} + c_{i,2}) \ge n_0 - s + 2m - 2\binom{s}{2}.$$

Since  $m \ge 3 + 0.5n_0 - s$  and  $s \le \sqrt{n_0/2} - 2$ , for  $n_0 \ge 200$  this is at least

$$2n_0 + 6 - 4s - s^2 \ge 2n_0 + 10 - (s+2)^2 \ge 2n_0 + 10 - \frac{n_0}{2} > \frac{3n_0}{2},$$

a contradiction.  $\Box$ 

**Lemma 31.** Each 2-vertex in H<sub>0</sub> has a neighbor of degree greater than  $\sqrt{n_0/2} - 4$ .

**Proof.** Suppose that neighbors of  $v \in V(H_0)$  are *x* and *y* of degree at most  $\sqrt{n_0/2} - 4$ . By Lemma 30, each of the sets N(x) - v + y and N(y) - v + x does not dominate at least three vertices. So, we can choose distinct vertices *x'* not dominated by N(x) - v + y and *y'* not dominated by N(y) - v + x. By definition,  $d_{H_0}(x, x') \ge 3$  and  $d_{H_0}(y, y') \ge 3$ . Contracting the edges *xx'* and *yy'* in  $G_0$  we get a (3 + t)-vertex graph with all-adjacent vertices v, x \* x', and y \* y'.  $\Box$ 

A 2-vertex in  $H_0$  is weak if at least one of its neighbors has degree at most 5.

**Lemma 32.** If a vertex  $v \in V(H_0)$  has at least five neighbors that are either 1 -vertices or weak 2-vertices, then it has at least five neighbors of degree at least 3.

**Proof.** Suppose that  $v \in V(H_0)$  is adjacent to  $\ell$  1-vertices  $u_1, \ldots, u_\ell$ , to s weak 2-vertices  $z_1, \ldots, z_s$ , and to k vertices  $x_1, \ldots, x_k$  of degree at least 3, where  $\ell + s \ge 5$  and  $k \le 4$ . By Lemma 27,  $\ell \le 2$ . In particular,  $s \ge 3$ . Vertices  $z_i$  and  $z_j$  form a *weak pair* if they are adjacent to each other.

Claim 1: There are no weak pairs.

*Proof.* Suppose  $(z_1, z_2)$  is a weak pair. Let *y* be the neighbor of  $z_3$  other than *v*. We delete *v* and contract in  $G_0 - v$  the edge  $z_1y$ . Now the vertices  $z_2, z_3$ , and  $z_1 * y$  are all-adjacent ones in the graph obtained.

For  $1 \le i \le s$ , let the neighbor of  $z_i$  that is not v be  $y_i$ . By Claim 1, no  $y_j$  coincides with any  $z_i$ . Some  $y_j$  can coincide with some other  $y_{j'}$  and with some  $x_i$ . Let  $X = \{x_1, \ldots, x_k\}$  and  $Y = \{y_1, \ldots, y_s\}$ .

*Claim* 2: If  $y_i \in Y - X$ , then it has a neighbor in *X*.

Proof. Suppose that  $y_{j'} \in Y - X$  and has no neighbor in X. Contract in  $G_0$  edge  $vy_{j'}$ . In the resulting graph  $G'_0$ , the neighbors of the vertex  $v * y_{j'}$  are only some  $z_j$ , and these  $z_j$  have no other non-neighbors in  $G'_0$ . If there are at least three such  $z_j$ , then  $G'_0 - v * y_{j'}$  has at least three all-adjacent vertices. If there are exactly two of them, then contracting in  $G'_0$  vertex  $v * y_{j'}$  with any vertex distinct from these two, we again get three all-adjacent vertices. Suppose that only  $z_{j'}$  is a non-neighbor of  $v * y_{j'}$  in  $G'_0$ . Then, since  $s \ge 3$ , there is some other  $y_{j''}$ . Contracting in  $G'_0$  vertex  $v * y_{j'}$  with  $y_{j''}$ , we again get three all-adjacent vertices.

*Claim* 3: Every vertex in  $H_0$  is at distance at most 2 from v.

*Proof.* Suppose that  $d_{H_0}(w, v) \ge 3$ . Contract the edge vw in  $G_0$ . If  $\ell \ge 1$  or  $y_j = y_{j'}$  for distinct j and j', then delete  $y_j$  and get a  $K_{3,t}^*$ . Suppose now that  $\ell = 0$  and all  $y_j$  are distinct. Then  $s \ge 5$ . Since  $z_1, \ldots, z_s$  are weak, each of  $y_j$  has at most four neighbors in  $H_0 - z_j$ . Moreover, if  $y_j \in X$ , then  $y_j v \in E(H_0)$  and if  $y_j \notin X$ , then  $y_j$  is adjacent to a vertex in X. So, some  $y_j$  has at most three neighbors in Y, and we may assume that  $y_1y_2 \notin E(H_0)$ . In this case, contract in  $G_0$  edges vw and  $y_1y_2$ , and vertices  $v * w, z_1$  and  $z_2$  become all-adjacent ones in the graph obtained.

Claims 1, 2 and 3 together imply that the set X + v of size at most 5 is dominating in  $H_0$ , a contradiction to Lemma 30.

**Lemma 33.** If a vertex  $v \in V(H_0)$  of degree at most  $\sqrt{n_0/2} - 4$  is adjacent to a vertex of degree 1, then there are no other vertices of degree 1 in  $H_0$ .

**Proof.** Suppose that a vertex *x* of degree at most  $\sqrt{n_0/2} - 4$  in  $H_0$  is adjacent to vertex *y* of degree 1, and that *z* is another vertex of degree 1 in  $H_0$ . By Lemma 30, there are at least three vertices at distance at least 3 from *x*. Identify *x* with such a vertex *u* distinct from *z* and the neighbor of *z* and delete the neighbor of *z*.

Consider the following discharging on the set of vertices of  $H_0$ . The initial charge  $\phi(v)$  is the degree of v in  $H_0$ , and hence  $\sum_{v \in V(H_0)} \phi(v) \le 3n_0 - 7$ . The rules are:

(R1) If  $d(v) > \sqrt{n_0/2} - 4$  and v has neighbors of degree 1, it gives 2 to one of them and nothing to the other neighbors of degree 1 (by Lemma 27, there could be only one "other neighbor" and only for one vertex v). If a vertex of degree 1 is adjacent to a vertex of degree at most  $\sqrt{n_0/2} - 4$ , it gets nothing. (By Lemma 33, in this case there are no other vertices of degree 1.)

(R2) If v is a weak 2-vertex, then it gets 1 from the neighbor of the larger degree.

(R3) If v is a non-weak 2-vertex, then it gets 1/2 from each neighbor.

We claim that the new charge is at least 3 for all vertices, apart from at most one vertex of degree 1. That would imply that  $e(H_0) \ge (3n_0 - 2)/2$ , a contradiction to (26). To prove this, consider vertices of all possible degrees.

Case 1: d(v) = 1. By Lemmas 27 and 33, only one vertex of degree 1 may not receive the extra charge 2.

Case 2: d(v) = 2. By Rule (R1), v gives away nothing. By Rules (R2) and (R3), it gets 1 from the neighbors.

Case 3:  $3 \le d(v) \le 5$ . By Rules (R1) and (R2), v gives away nothing.

Case 4:  $6 \le d(v) \le \sqrt{n_0/2} - 4$ . By the rules, v gives away at most d(v)/2. So, it keeps at least  $d(v)/2 \ge 3$ .

Case 5:  $d(v) > \sqrt{n_0/2} - 4$ . If v has fewer than five adjacent weak 2-vertices, then it gives away at most d(v)/2 + 4/2 + 1 and hence retains at least d(v)/2 - 3. For  $n_0 > 800$ ,

$$\frac{d(v)}{2} - 3 \ge \frac{\sqrt{n_0}}{2\sqrt{2}} - 7 \ge 3.$$

If v has at least five adjacent weak 2-vertices, then by Lemma 32, it gives away at most 1 + (d(v) - 5) = d(v) - 4. This contradicts (26).

### 8. Concluding remarks

- 1. By elaborating Lemma 25, one can push the restriction  $t \ge 6300$  in Theorem 4 down to about  $t \ge 3000$ . In the course of some proofs, we pointed out how large *t* needed to be for the proofs to go through. If the bounds on *t* were less than 500, then we did not try to obtain the best bounds.
- 2. It was shown in Section 2 that for infinitely many t, graphs M(r, 4, t) and M(r, 5, t) are not extremal for the existence of  $K_{4,t}^*$ -minors and  $K_{5,t}^*$ -minors, respectively. However, we do not know whether M(r, 4, t) and M(r, 5, t) are extremal for the existence of  $K_{4,t}$ -minors and  $K_{5,t}$ -minors, respectively.
- 3. It is annoying that the case  $n_0 = t + 5$  took so much effort and space. We believe that if one could handle for s = 4 the cases  $n_0 = t + 6$  and  $n_0 = t + 7$ , then we would be able to handle the remaining proof for s = 4 and large t using the technique of the present paper.

#### Acknowledgements

We thank the referees for helpful comments. The research of the first author is supported in part by NSF grant DMS-06-50784 and by grant 06-01-00694 of the Russian Foundation for Basic Research.

#### References

- [1] M. Chudnovsky, B. Reed, P. Seymour, The edge density for K<sub>2,t</sub> minors (submitted for publication).
- [2] P. Erdős, A. Rényi, V.T. Sós, On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966) 215–235.
- [3] A.V. Kostochka, The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982) 37-58.
- [4] A.V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (1984) 307–316.
- [5] A.V. Kostochka, N. Prince, On  $K_{s,t}$ -minors in graphs with given average degree, Discrete Math. 308 (2008) 4435–4445.
- [6] D. Kühn, D. Osthus, Forcing complete unbalanced bipartite minors, Euro. J. Comb. 26 (2005) 75-81.
- W. Mader, Homomorphieeigenschaften und mittlere Kantendichte von Graphen, Math. Annalen 174 (1967) 265-268. [7]
- W.H. Mills, Covering designs. I. Coverings by a small number of subsets, Ars Combin. 8 (1979) 199-315. [8]
- [9] J.S. Myers, Graphs without large complete minors are quasi-random, Combin. Probab. Comput. 11 (2002) 571–585.
- [10] J.S. Myers, Extremal theory of graph minors and directed graphs, Ph.D. Dissertation, University of Cambridge, 2003.
- [11] J.S. Myers, The extremal function for unbalanced bipartite minors, Discrete Math. 271 (2003) 209–222.
- [12] J.S. Myers, A. Thomason, The extremal function for noncomplete minors, Combinatorica 25 (2005) 725–753.
- [13] N. Sauer, On the existence of regular *n*-graphs with given girth, J. Combin. Theory B 9 (1970) 144–147.
   [14] J. Schönheim, On coverings, Pacific J. Math. 14 (1964) 1405–1411.
- [15] P. Seymour, Oral communication.
- 16] A. Thomason, An extremal function for contractions of graphs, Math. Proc. Cambridge Philos. Soc. 95 (1984) 261–265.
- [17] A. Thomason, The extremal function for complete minors, J. Combin. Theory B 81 (2001) 318-338.
- [18] D.R. Woodall, List colourings of graphs, in: Surveys in combinatorics, 2001 (Sussex), in: London Math. Soc. Lecture Note Ser., vol. 288, Cambridge Univ. Press, Cambridge, 2001, pp. 269-301.