JOURNAL OF COMBINATORIAL THEORY, Series A 25, /6 (19/8)

Note

An Inequality for Pseudo-Subplanes of Sets of Orthogonal Latin Squares

E. T. PARKER

Department of Mathematics, University of Illinois, Urbana, Illinois 61801 Communicated by Marshall Hall, Jr.

Received December 28, 1976

Let L_1 , L_2 ,..., L_t be a given set of t mutually orthogonal order-n latin squares defined on a symbol set S, |S| = n. The squares are equivalent to a (t + 2)---net N of order n which has n^2 points corresponding to the n^2 cells of the squares. A line of the net N defined by the latin square L_i comprises the n points of the net which are specified by a set of n cells of L_i all of which contain the same symbol x of S. If we pick out a particular $r \times r$ block B of cells, a line which contains points corresponding to r of the cells of B will be called an r-cell line. If there exist r(r - 1) such lines among the tn lines of N, we shall say that they form a *pseudo-subplane* of order r--the "pseudo" means that these lines need not belong to only r - 1 of the latin squares. The purpose of the present note is to prove that the hypothesis that such a pseudo-plane exists in N implies that $r^3 - (t + 2)r^2 + r + nt \ge 0$.

The author thanks the referee for clarifying this abstract.

The definition, hypothesis, and conclusion are in the above abstract, and need not be repeated. For the $r \times r$ block of interest, let the nonnegative integer x_i , $0 \le i \le r$, be the number of lines from the latin squares incident with *i* cells. Under the hypothesis, each pair of these cells, on neither a common row or column, is joined by an *r*-cell line. Thus $x_i = 0$ for all *i* with $2 \le i \le r - 1$. Counting the lines, $x_r + x_1 + x_0 = nt$. Summing the incidence numbers in the block, $rx_r + x_1 = r^2t$. Substituting $x_r = r(r-1)$, solving the latter of these equations for x_1 , and in turn the former for x_0 , which cannot be negative, the inequality of the conclusion follows.

If t is chosen to be n - 1, corresponding to an affine plane of order n with a pseudo-subplane of order r, then either r = n (an uninteresting case) or $n \ge r^2 - r + 1$. It would be interesting to know whether a plane can actually have a proper pseudo-subplane exceeding the square-root of its order—this cannot occur for a subplane; the question is probably difficult.