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Note
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Let L,, L, ,..., L, be a given set of + mutually orthogonal order-# latin squares
defined on a symbol set S, | §| = n The squares are equivalent to a (¢ + 2)—
net N of order n which has »? points corresponding to the »? cells of the squares.
A line of the net N defined by the latin square L, comprises the n points of the
net which are specified by a set of n cells of L, all of which contain the same
symbol x of S. If we pick out a particular » X r block B of cells, a line which
contains points corresponding to r of the cells of B will be called an r-cell line.
If there exist r(r — 1) such lines among the ¢n lines of N, we shall say that they
form a pseudo-subplane of order r—the ‘“‘pseudo” means that these lines need
not belong to only r — 1 of the latin squares. The purpose of the present note is
to prove that the hypothesis that such a pseudo-plane exists in N implies that
P — @+ 2rr+r + nr>"0.

The author thanks the referee for clarifying this abstract.

The definition, hypothesis, and conclusion are in the above abstract, and
need not be repeated. For the r x r block of interest, let the nonnegative
integer x; , 0 < i < r, be the number of lines from the latin squares incident
with 7 cells. Under the hypothesis, each pair of these cells, on neither a
common row or column, is joined by an r-cell line. Thus x; = O for all 7
with 2 <i < r — 1. Counting the lines, x, + x; + x, = n¢. Summing the
incidence numbers in the block, rx, + x; = r2. Substituting x, = r(r — 1),
solving the latter of these equations for x; , and in turn the former for x,,
which cannot be negative, the inequality of the conclusion follows.

If ¢ is chosen to be #n — 1, corresponding to an affine plane of order » with
a pseudo-subplane of order r, then either r = n (an uninteresting case) or
n >r? — r + 1. It would be interesting to know whether a plane can actually
have a proper pseudo-subplane exceeding the square-root of its order—this
cannot occur for a subplane; the question is probably difficult.
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