Note

An Inequality for Pseudo-Subplanes of Sets of Orthogonal Latin Squares

E. T. Parker
Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Communicated by Marshall Hall, Jr.

Received December 28, 1976

Abstract

Let $L_{1}, L_{2}, \ldots, L_{t}$ be a given set of t mutually orthogonal order- n latin squares defined on a symbol set $S,|S|=n$. The squares are equivalent to a $(t+2)$ net N of order n which has n^{2} points corresponding to the n^{2} cells of the squares. A line of the net N defined by the latin square L_{i} comprises the n points of the net which are specified by a set of n cells of L_{i} all of which contain the same symbol x of S. If we pick out a particular $r \times r$ block B of cells, a line which contains points corresponding to r of the cells of B will be called an r-cell line. If there exist $r(r-1)$ such lines among the $t n$ lines of N, we shall say that they form a pseudo-subplane of order r-the "pseudo" means that these lines need not belong to only $r-1$ of the latin squares. The purpose of the present note is to prove that the hypothesis that such a pseudo-plane exists in N implies that $r^{3}-(t+2) r^{2}+r+n t \geqslant 0$.

The author thanks the referee for clarifying this abstract.
The definition, hypothesis, and conclusion are in the above abstract, and need not be repeated. For the $r \times r$ block of interest, let the nonnegative integer $x_{i}, 0 \leqslant i \leqslant r$, be the number of lines from the latin squares incident with i cells. Under the hypothesis, each pair of these cells, on neither a common row or column, is joined by an r-cell line. Thus $x_{i}=0$ for all i with $2 \leqslant i \leqslant r-1$. Counting the lines, $x_{r}+x_{1}+x_{0}=n t$. Summing the incidence numbers in the block, $r x_{r}+x_{1}=r^{2} t$. Substituting $x_{r}=r(r-1)$, solving the latter of these equations for x_{1}, and in turn the former for x_{0}, which cannot be negative, the inequality of the conclusion follows.
If t is chosen to be $n-1$, corresponding to an affine plane of order n with a pseudo-subplane of order r, then either $r=n$ (an uninteresting case) or $n \geqslant r^{2}-r+1$. It would be interesting to know whether a plane can actually have a proper pseudo-subplane exceeding the square-root of its order-this cannot occur for a subplane; the question is probably difficult.

