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In 1975, one of us (B.G.) gave a series of informal lectures at the University of 
Washington on two examples of “lost mathematics”: tiling theory and the theory 
of rigidity. At that time, both subjects were indeed lost: they did not even exist as 
far as “mainstream” mathematics was concerned. But thanks in part to the inter- 
est generated by widely circulated mimeographed versions of these lectures, both 
subjects have been rediscovered and today are fields of active research. See, for 
example, Grunbaum and Shephard, [1980, 19831, Engel [1986], Crapo [1979], 
Connelly [1980], and Whitely [1984]. 

Independently of this renaissance, and evidently unaware of it, Erhard Scholz 
has undertaken the history of nineteenth-century developments in two subjects 
closely related to tilings and to rigidity: the refinement of the concept of symmetry 
in crystallography (and its impact on the development of group theory), and the 
application of projective geometry to graphical statics. 

That pure mathematics was indeed influenced by these developments is well 
known to mathematicians working in these fields, but it is not appreciated by the 
larger mathematical community. At a time when mathematics is again becoming 
receptive to problems and methods of other fields, after a long period of self- 
involvement, Scholz’s work is most welcome. Many mathematicians will be sur- 
prised to learn, in particular, that Camille Jordan’s highly influential 1868 
M&moire sur les groupes des mouvements was inspired, at least in part, by the 
1850 crystallographic work of August Bravais. 

The first, “crystallographic,” part of the book can be divided into three parts: 
before Bravais, Bravais, and after Bravais. In the first part, Scholz discusses two 
major schools of thought on the issue of crystal symmetry, the “atomistic” and 
the “dynamistic.” Since Scholz restricts himself to the nineteenth century, the 
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former is largely associated with the work of Haiiy, but the atomistic view in 
crystallography can be traced to the work of Kepler, Hooke, and Steno in the 
seventeenth century. The dynamistic point of view is associated with the German 
school of dialectical natural philosophy, represented, for example, by Hessel and 
Weiss. Obviously, both schools reflected contemporary thinking about the struc- 
ture of matter. 

The atomists held that crystal growth and form can be explained on the assump- 
tion that a crystal is a modular structure; in the early nineteenth century, this 
hypothesis was further developed by Hauy and soon evolved into the theory of 
“regular systems of points.” The dynamist school, as Scholz explains elsewhere 
[Scholz 19891, saw “the visible forms and laws of physics, chemistry, and crystal- 
lography as a result of dynamic patterns of forces in space” (p. 113); for them, 
crystal symmetry was a result of directional forces. In a sense, Bravais achieved a 
synthesis of the two viewpoints, placing the regular systems of points in a rela- 
tively abstract setting and giving a satisfactory classification of three-dimensional 
lattices. After Bravais, symmetry was linked with group theory through the work 
of Jordan, Schoenflies, and other mathematicians; eventually their work influ- 
enced Klein and Lie. 

Scholz’s aim, as we have already noted, is to show the impact of this work on 
the development of group theory in the nineteenth century. To do this, he treats 
the work of the crystallographers selectively. From his point of view, the dynami- 
cist school, with its emphasis on the classification of crystals by symmetry, was 
the more influential of the two. Since it was Bravais who influenced the mathema- 
ticians, the question becomes which school had the greater influence on Bravais. 
Scholz evidently believes that it was the dynamicists. (In papers published after 
the book appeared, Scholz argues that Bravais was well acquainted with the work 
of the dynamicist crystallographers and appreciated it.) Thus, one is led by transi- 
tivity to the conclusion that German dynamicists influenced the development of 
group theory. Perhaps they did, but the influence of crystallographic ideas on 
mathematics was much richer than this. 

It is an old story in the history of science that atomistic and dynamistic theories 
have different strengths, and one chooses between them partly on the basis of 
their ability to explain what one deems to be the crucial facts. In the case of 
crystals, one crucial fact is that crystals belong to only a small number of symme- 
try classes. Scholz seems to regard it as a telling argument against Hatiy that Hatiy 
could not explain the origin of crystal symmetry (he invoked an a priori law for 
this purpose). But Hatiy could and did explain why the symmetries that they do 
have are so restricted. For the dynamicists, symmetry per se was not ad hoc, but 
it was necessary to invoke an ad hoc “principle of rationality” in order to explain 
the restriction. It is not so clear which theory is the more fundamental for the 
study of classification. 

More importantly, classification by symmetry is not and never was the only goal 
of a mathematical theory of crystals. As Bravais showed, one also wants to 
explain growth and form. The atomist school, with its emphasis on modularity, 
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played a major role in stimulating the theory of tilings in the plane and in space of 
any dimension. Today, with theoretical crystallography broadening its scope to 
include crystals which do not obey the classical restriction, the atomic view is 
more important than ever before. 

Another drawback of a selective reading of the past is the temptation to recast 
the past in the language of the present. The reader of Scholz’s book would be 
justified in concluding that nineteenth-century crystallographers thought of crystal 
structure in terms of exact sequences! But even the mathematicians of that time 
would have been bewildered by the framework in which their work is presented 
here. Recasting is fraught with danger: there is always the possibility that our 
contemporary language does not convey what the writer intended. Worse, the 
recasting may be inappropriate and even incorrect. Two examples will illustrate 
this point. Reporting on Sohncke’s (1867) investigation of “unbounded regular 
systems of points in the plane,” Scholz faults Sohncke (a crystallographer and 
physicist) for letting one see only those “symmetry systems” that can appear as 
the “complete symmetry group of a point pattern.” However, Sohncke was not 
concerned with groups at all. He aimed at and was very successful in classifying 
point patterns and nothing else; groups are not even mentioned in his paper. While 
one might argue that groups were implicit in his classification scheme, this would 
miss the crucial point that, historically, group concepts were formulated to de- 
scribe symmetry, not vice versa. 

Even more misleading is the treatment of Fedorov, the late-nineteenth-century 
crystallographer of the atomist school who discovered the five parallelohedra 
(combinatorial types of convex polyhedra each of which can fill space by copies 
placed face-to-face in parallel positions). Scholz attributes to Fedorov the follow- 
ing theorem: “Es gibt genau 5 affine Klassen konvexer Paralleloeder . . .” (p. 
117). (“There are precisely five affine classes of convex parallelohedra.“) This is 
not what Fedorov proved, stated, or even mentioned: “combinatorial type” is not 
the same as “affine Klasse”; in fact, Scholz’s assertion is wrong, since the num- 
ber of affine classes of parallelohedra is &finite. 

The second part of the book deals with the rigidity of frameworks, and, in 
particular, with the application of methods of projective geometry to graphical 
statics. Besides engineers (such as Culmann and Rankine), many well-known 
mathematicians -Cremona, Maxwell, and others-contributed to this field during 
the second half of the nineteenth century. Scholz gives a detailed account of many 
(but by no means all) of the developments and interactions in the mathematical 
and engineering directions. However, he does not overcome-or even face-a 
basic difficulty inherent in any presentation of this material: the absence, in the 
original literature, of precise and explicit statements of what is actually being 
established and discussed. 

The authors whose work Scholz discusses operated very cavalierly with con- 
cepts such as polyhedra and duality, unaware of or unconcerned about the fact 
that their assertions had only limited validity. This vagueness led to, among other 
things, widespread confusion between rigidity and infinitesimal rigidity, a confu- 
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sion that persisted well into the present century and permeated the literature from 
the simplest engineering texts to the prestigious Encyklopiidie der mathemati- 
schen Wissenschaften. Scholz does not report on these difficulties, some of which 
are rooted in the fact that projective duality (in the three-dimensional case), 
interchanges points and planes, and not vertices and faces of general polyhedra- 
as the authors under consideration unhesitatingly professed. In fact, Scholz ap- 
pears to be unaware of this kind of problem, which is inherent in his topic. It is 
unfortunate that he is unaware of the work of Crapo and others, mentioned above, 
which is aimed at developing Maxwell’s ideas on a firm basis. 

The third, brief, part of the book is devoted to a general discussion of the 
interactions between mathematical theories and their utilization in other fields. In 
particular, Scholz stresses the differences he perceives in the relation of crystal- 
lography to the theory of groups on the one hand, and the relation of graphical 
statics to projective geometry on the other. In the latter case, he finds that a body 
of preexisting mathematics formed the core of the applied development. In con- 
trast, a large part of the geometric development in crystallography occurred 
within crystallography (and outside of mathematics); Scholz finds that this applied 
science, in fact, led later to the development and acceptance of group-theoretic 
approaches to geometry. But in fact the contrast is due in part to Scholz’s selec- 
tive reading of the past; in some cases, crystallographers, too, utilized preexisting 
mathematics. For example, Fedorov exploited Euler’s relation F - E + V = 2 to 
derive the combinatorial types of parallelohedra; he appears to have been the first 
to use combinatorial methods in crystallography. 

To conclude, while Symmetrie- Gruppe-Dualitiit presents a large amount of 
information that is otherwise not easily accessible, it is flawed in the ways that we 
have discussed. Still, it is an interesting case study in problems of mathematical 
historiography. 
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