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A B S T R A C T

Androgen deprivation therapy (ADT) is considered as the standard therapy for men with de novo or re-
current metastatic prostate cancer. ADT commonly leads to initial biochemical and clinical responses.
However, several months after the beginning of treatment, tumors become castration-resistant and vir-
tually all patients show disease progression. At this stage, tumors are no longer curable and cancer treatment
options are only palliative.

In this review, we describe molecular alterations in tumor cells during ADT, which lead to deregu-
lation of different signaling pathways and castration-resistance, and how they might interfere with the
clinical outcome of different second-line therapeutics. A recent breakthrough finding that early chemo-
therapy is associated with a significant survival benefit in metastatic hormone-sensitive disease highlights
the fact that there is time for a fundamental paradigm shift in the treatment of advanced prostate cancer.
Therapeutic intervention seems to be indicated before a castration-resistant stage is reached to improve
therapeutic outcome and to reduce undesirable side effects.

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Prostate cancer is the most common cancer among men in in-
dustrialized countries and represents one of the third most leading
causes of cancer deaths [1,2]. Whereas early stages of the disease
can be successfully treated with surgery or radiation therapy, no
curative treatment exists for advanced stages.

More than seventy years ago Huggins and Hodges recognized
that prostate cancer (PCa) is an androgen-sensitive disease. There-
fore, they established the bilateral orchiectomy as the earliest method
to decrease the testosterone serum levels in an effort to slow down
the tumor growth [3].

Today, androgen deprivation therapy (ADT) is considered as the stan-
dard therapy for men with de novo or recurrent metastatic disease [4].
It usually includes the chronic administration of gonadotropin-
releasing hormone analogs, anti-androgens or their combination, also
described as maximal androgen blockade. ADT commonly leads to an
initial response with suppression of prostate specific antigen (PSA) levels
in 80–90% of patients and objective responses in soft tissue and bone

metastases. It also prolongs overall survival and is able to alleviate bone
pain [5].

Adverse effects of ADT include notable impairment of the quality
of life, including sexual dysfunction, muscle atrophy, osteoporosis,
hot flashes, fatigue, gynecomastia or anemia [6–8]. Moreover, in some
patients ADT is associated with depression or cognitive dysfunc-
tion, pneumonia, acute kidney injury, increased incidence of diabetes,
and cardiovascular morbidity and mortality [9–12]. Therefore, pre-
disposing factors of patients, such as a history of diabetes or
cardiovascular events, have to be regarded before ADT initiation. The
fundamental problem, however, is that virtually all patients show
disease progression at a median of 18–24 months after the begin-
ning of treatment despite maintenance of castrate testosterone serum
levels of less than 20 ng/dl [13]. This recurrent form of PCa has been
termed castration-resistant prostate cancer (CRPC). The expected sur-
vival time after progression is only 16–18 months [14], and only 5–10%
of patients remain alive 10 years after initiating ADT [15].

For a long time, treatment options that improved survival in this
setting were limited to docetaxel-based regimens [16,17]. However, only
about half of men with CRPC respond to docetaxel chemotherapy, and
all of them eventually discontinue this treatment because of toxicity
or disease progression [18]. Recent major advances have resulted in reg-
ulatory approval of enzalutamide (MDV1300) and abiraterone acetate
(AA). Enzalutamide suppresses the androgenic action in prostate cancer
cells by inhibiting the nuclear translocation, chromatin binding, and
coregulator binding of the androgen receptor (AR) [19]. AA is a CYP17

Abbreviations: ADT, androgen deprivation therapy; AR, androgen receptor; CRPC,
castration resistant prostate cancer; PCa, prostate cancer; PSA, prostate specific antigen.
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enzyme inhibitor blocking the androgen production in testes, adrenal
glands, and tumor microenvironment [20]. Clinical studies showed that
further AR suppression by these drugs can extend patient’s survival.
Unfortunately, overall survival after chemotherapy is only modest (4–5
months) and most responding patients relapse within 1–2 years with
evidence of renewed AR activity [20–23].

The leading cause for the typical course of the disease under ADT
is the formation of ADT resistant tumor cells. In this review, we de-
scribe molecular alterations of different signaling pathways during
ADT and how they may influence the therapeutic action of drugs
targeting these pathways.

Molecular alterations during ADT and their implication for
therapeutic outcome

Initially, the continuous deprivation of androgens during ADT leads
to a decrease in cell proliferation and growth as well as an increase of
apoptosis, which finds expression in biochemical and clinical response.

However, in the course of time a variety of genetic alterations
accumulate in some tumor cells and different signaling pathways
are deregulated that influence the cellular outcome. The tumor cells

can now proliferate and grow at low androgen levels or com-
pletely androgen-independently and show a very aggressive behavior.
At this stage, the anti-tumor activity of the ADT is neutralized, me-
tastases progress and any curative treatment is no longer possible.
In the past years, many of the molecular and genetic aberrations
during ADT were identified and it became clear that multiple AR-
dependent and -independent intracellular pathways are influenced
on the way to castration resistance (CR) (Fig. 1). As a consequence,
the alterations in cellular signaling during ADT can be associated
with reduced therapeutic effects of drugs targeting these pathways.

AR signaling

Generally, androgens predominantly function through their
binding to the AR, a member of the steroid hormone receptor family
of ligand-activated nuclear transcription factors. In the inactive state
the AR is bound to heat-shock proteins in the cytoplasm. After
binding of testosterone or dihydrotestosterone (DHT), which binds
in a more stable manner, the AR homodimerizes, undergoes phos-
phorylation and translocates to the nucleus. In the nucleus the AR
can bind to androgen-responsive elements (ARE) in the promoter

Fig. 1. Schematic representation of molecular alterations in castration resistant prostate cancer. (1) AR amplification, (2) binding of alternate AR ligands, (3) upregulation
of AR coactivators and downregulation of AR corepressors, (4) intratumoral steroidogenesis, (5) enhanced activation of cytokine pathways, (6) enhanced growth factor sig-
naling, (7) deregulation of pro- and anti-apoptotic proteins, (8) enhanced Wnt/β-catenin signaling. Abbreviations: AKT, akt serine/threonine kinase; AR, androgen receptor;
ARE, androgen responsive elements; β-Cat, beta-catenin; DHEA, dihydrotestosterone; DHT, dihydrotestosterone; GF, growth factor; IL-6, interleukin-6; IL-8, interleukin-8;
LRP/Fz, low-density-lipoprotein-related protein/Frizzled receptor; MAPK, mitogen-activated protein kinase; P, phosphorylated residues; PI3K, phosphoinositide-3-kinase;
PTEN, phosphate and tensin homolog; Ras, rat sarcoma protein; RTK, receptor tyrosine kinase; TCF/LEF-1, t-cell specific transcription factor/lymphoid enhancer-binding factor;
Wnt, wnt ligand; ↑, upregulation; ↓, downregulation.
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regions of target genes. Then, in interaction with coactivator or co-
repressor proteins, the AR regulates the expression of the target genes
involved in cell-cycle regulation and proliferation [24].

In a large portion of castration-resistant tumors, an enhanced
expression of the AR was detected, which can result in a reactiva-
tion of AR transcriptional activity despite low androgen levels. In
20–30% of CR prostate tumors the enhanced AR expression is based
on AR gene amplifications [25,26]. Moreover, gain of function mu-
tations in the AR gene, mostly located in the ligand binding domain,
lead to mutants, which have an increased affinity to androgens or
which can be activated by alternative steroidal molecules, like es-
trogens, progesterone or corticosteroids [27–29].

The transcriptional activity of the AR can also be altered by a de-
regulated expression of coactivator or corepressor proteins, which
enhance or reduce AR transactivation, respectively. For example, the
coactivators Tlf2, SCR1 and Tip60 are overexpressed in CRPC samples
[30,31]. In recent studies, a decreased expression of the corepres-
sors SMRT/NCoR and EBP1 was demonstrated [32,33].

An enhanced activation of AR cell signaling pathways is also pos-
sible through an intratumoral testosterone synthesis during ADT.
This may be caused by an enhanced gene expression of numerous
enzymes mediating intracellular androgen metabolism from adrenal
dehydroepiandrosterone (DHEA) or androstenedione to testoster-
one and dihydrotestosterone (DHT) [34,35]. Furthermore, proteins
involved in cholesterol homeostasis are altered in androgen-
independent growing tumor cells in a manner that appears to be
generating free cholesterol that may be used to provide precursor
to the steroidogenic pathway [36].

Ligand-independent activation of the AR is usually based on post-
translational mechanisms, especially phosphorylation, which relate
to persistent AR activity. Guo et al. suggested that the Src-induced
phosphorylation of the AR at Y534 could lead to an androgen-
independent activation of the AR [37]. Kraus and colleagues
demonstrated that the adaptor/scaffolding protein receptor for ac-
tivated C kinase 1 (RACK1) in interaction with Src modulates the
transcriptional activity of the AR by phosphorylation [38]. More-
over, tyrosine kinase Etk, a downstream effector of Scr, is upregulated
during androgen depletion, which is followed by an increased sta-
bility and enhanced activity of the AR [39].

The nuclear factor NF-κB signaling pathway regulates the ex-
pression of interleukin-6 (IL-6) and interleukin-8 (IL-8). Both
cytokines are also known to stimulate AR activity. The NF-κB pathway
was shown to be upregulated in many CRPC, and in in vitro experi-
ments, an increased NF-κB signaling resulted in an enhanced AR
activation [40].

Taken together, the activation of AR-dependent pathways in PCa
cells during ADT hinders the effective further use of anti-androgens
and contributes to restore AR activity after enzalutamide or AA treat-
ment [41]. Interestingly, evidence has suggested that taxanes also
exert their antineoplastic activity in prostate cancer partly by block-
ing AR signaling [42], so that overexpression, amplification and
mutation of the AR may also play a role in the development of a
chemoresistant state [43].

Growth factor signaling

Growth factor receptors have receptor tyrosine kinase (RTK) ac-
tivity. After ligand binding, they are able to activate signaling pathways
resulting in an activation of transcription factors and an altered ex-
pression of various genes responsible for cell growth, proliferation
and survival. Increases in autocrine and paracrine growth factor loops
were described during ADT at low or even near-zero concentra-
tions of androgens. As a consequence, essential growth and survival
pathways are deregulated. For example, the epidermal growth factor
(EGF), the transforming growth factor a (TGFa), the insulin-like growth
factor-1 (IGF-1), the keratinocyte growth factor (KGF) or the basic

fibroblast growth factor (bFGF) as well as their corresponding re-
ceptors were shown to be overexpressed in CRPC [44–48]. Moreover,
increased expression and activity of the mitogen activated protein
kinase (MAPK), a key mediator of growth factor signaling, was shown
in recurrent tumors of castrated mice [49].

Overexpression of the EGF receptor (EGFR, ErbB-1) is correlated
with the time of biochemical relapse and immunohistochemical ex-
aminations showed a statistical correlation between EGFR expression
and higher serum PSA [50,51]. Interestingly, there seems to be a
paracrine activation of EGFR on androgen-dependent tumor cells
by TGFa from the surrounding stromal cells. In contrast, in CRPC me-
tastases, the tumor cells express EGFR as well as TGFa, leading to
an autocrine regulation of the intratumoral signaling pathways [44].

The RTK Her-2/neu (ErbB-2) was also shown to be overexpressed
in androgen-independently growing cell lines as well as in sub-
lines that have been xenografted into castrated mice [52,53]. Her-
2/neu overexpression can lead to an activation of AR related genes
through the Akt pathway in the absence of androgens [54], which
results in an enhanced metastatic and angiogenetic potential of the
tumor cells [55,56]. It is suggested that the overexpression of RTKs
of the ErbB family and the autocrine activation of their related sig-
naling pathways might be the reason why studies with ErbB
inhibitors (e.g. erlotinib, gefitinib) or anti-ErbB antibodies (e.g.
trastuzumab, pertuzumab) alone or in combination with docetaxel
have not been encouraging in patients with CRPC [57–62].

Binding of the hepatocyte growth factor (HGF) from prostate
stroma to the HGF-receptor (HGFR, c-met) of prostate cancer cells
promotes proliferation, motility and invasion and is associated with
bone metastasis [63]. Normally, the expression of c-met is
downregulated by the AR [64]. However, during long-time ADT an
overexpression of c-met was observed, which is associated with a
more aggressive disease [65]. Cabozantinib, an inhibitor of c-met
and VEGFR2, was shown to improve metastatic lesions and to in-
crease progression free survival of patients with CRPC [66]. However,
preliminary results from a pivotal phase III study have failed to
produce survival benefit [67].

Apoptotic signaling

Apoptotic pathways have a profound effect on the malignant phe-
notype and oncogenic mutations disrupt apoptosis, leading to tumor
initiation, progression and metastasis. Dysregulation of apoptotic
signaling pathways is also associated with progression to CRPC, re-
flecting the consequence of blocking the programmed cell death that
would normally ensue upon ADT.

The expression of several anti-apoptotic members of the bcl-2 gene
family, including bcl-2, bcl-X, and mcl-1, is enhanced during progres-
sion of prostate tumors, a finding that seems to be relevant to the
hormone-insensitive, metastatic phenotype [68]. In immunohistologi-
cal studies, a high Bcl-2 expression was associated with higher Gleason
scores and lower biochemical-free survival in patients with advanced
PCa undergoing ADT [69]. There is evidence that Bcl-2 expression and
its pro-survival response are regulated by the TNF-a/NF-κB signaling
pathway. The addition of TNF-a to LNCaP prostate carcinoma cells caused
a 40-fold increase in bcl-2 promoter activity and an augmentation of
increased Bcl-2 levels after hormone withdrawal. This effect was abated
by the addition of NF-κB inhibitors [70].

In a recent study, the pathological role of Myb, a transcription
factor, which is known to be overexpressed in CRPC, was exam-
ined. Myb overrode androgen-deprivation induced cell cycle arrest
and apoptosis in prostate cancer cells by induction of Bcl-2 and Bcl-
xL as well as downregulation of p27 and the proapoptotic protein
Bax. As a result, prostate cancer cells developed an enhanced mo-
tility and invasion as well as an increased potential in epithelial-
mesenchymal transition (EMT), suggesting a functional role of Myb
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overexpression in the malignant and aggressive behavior of tumor
cells during ADT [71].

Bcl-2 is also known to contribute to docetaxel resistance. For this
reason, a phase II study investigated the activity of oblimersen
sodium, a bcl-2 antisense oligonucleotide, administered before
docetaxel to patients with CRPC. PSA response was observed in 46%
and 37% of patients treated with docetaxel and docetaxel-oblimersen
and partial response according to RECIST criteria was achieved in
18% and 24% of patients, respectively. However, the primary end
points of the study (confirmed PSA response >30%; major toxic event
rate <45%) could not be met [72].

The proapoptotic protein PTEN (Phosphatase and Tensin homolog)
is also frequently mutated or inactivated in CRPC [73]. PTEN is clas-
sified as a regulator of the phosphoinositide 3-kinase (PI3K)/Akt/
mTOR cell-survival pathway, which is one of the most critical in
human cancer [74]. Various growth factors, like IGF and FGF, can
induce this pathway, leading to the activation of PI3K and forma-
tion of PIP3. PIP3 phosphorylates AKT. Phosphorylated pAKT in turn
activates multiple molecules involved in cell proliferation and sur-
vival. PTEN catalyzes the dephosphorylation of PIP3 to PIP2, leading
to an inhibition of the pathway [75]. The relevance of PTEN loss to
the development of castration-resistant cell clones was empha-
sized by experiments with transgenic mice characterized by prostate-
specific inactivation of PTEN. They all developed adenocarcinoma
and some of them lymph node or lung metastases within 29 weeks.
Following castration, an immediate initial increase of apoptosis was
seen, that was gradually replaced over time by an outgrowth of PTEN
null castration-resistant proliferative cell clones [76].

Makhov and colleagues showed that a decreased PTEN expres-
sion led to sunitinib resistance in prostate cancer cells [77]. Sunitinib
is a tyrosine kinase inhibitor, which exhibits impressive activity
against advanced renal cell carcinoma. However, a phase III study
with sunitinib in combination with prednisone in patients with CRPC
after docetaxel-based chemotherapy was discontinued due to lack
of OS prolongation [78].

Wnt/β-catenin signaling

The canonical Wnt/β-catenin pathway, which is originally in-
volved in the preliminary development of the prostate, seems also
to be implicated in the development of CRPC [79]. In a study of de
la Taille, abnormal expression of β-catenin, the downstream effec-
tor of this pathway, was observed in 23% of tumor samples after
radical prostatectomy and in 38% of CPRC samples [80]. β-Catenin
leads to an upregulation of different genes, involved in tumor dis-
semination, metastasis and angiogenesis. Moreover, it is a central
component of cadherin cell adhesion complexes, which have a crit-
ical role in the development of EMT [81].

Interestingly, a crosstalk between β-catenin and AR signaling was
found. Generally, the androgen activated AR and the T-cell-specific
transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF-1)
compete for binding to β-catenin. In the presence of androgens, a
formation of AR/β-catenin complexes is driven, leading to the ex-
pression of AR related target genes. During ADT, when androgen-
bound AR is diminished or absent in the nucleus, a complex
formation between the transcription factor TCF/LEF-1 and β-catenin
is preferred. This complex leads to an enhanced expression of TCF/
LEF-1 target genes such as AR, c-myc, matrix metalloproteinase 7
(MMP7) or vascular endothelial growth factor (VEGF), which pro-
motes tumor progression and metastasis [81]. Based on these facts,
it cannot be ruled out that the enhanced VEGF expression induced
by the Wnt/β-catenin pathway is one reason why the addition of
bevacizumab, a monoclonal antibody blocking VEGF, to docetaxel
plus prednisone failed to improve the median OS of patients with
CRPC [82].

Enrichment of PCa stem cell/progenitor cells

In recent years, the characteristics of PCa stem and progenitor cells
under ADT were investigated. Interestingly, in castrated TRAMP mice,
overexpression of Bcl-2 and the stem cell-like markers Sca-1, CD133
and KIT was observed at an early stage of 10 weeks after castration,
while the expression was decreased and returned to the basal levels
after 20 weeks. This was accompanied by a temporary cessation of
tumor growth followed by a rapid tumor regrowth and increased me-
tastasis until the end of the experiment after 36 weeks [83,84]. It is
therefore suggested that immature PCa cells could undergo a pre-
ferred selection under ADT. Further studies are needed to evaluate
their role in the recurrence of tumors after treatment failure.

Conclusions and future directions

Despite innumerable studies in the past decades, in which various
modalities of ADT were tested in patients with advanced PCa, no
one was cured from the disease with this treatment option until
today. Moreover, the present second line treatments only bring slight
success in view of an enhanced quality of life (QoL) and only minimal
improvement in view of OS [16,17,20–23].

As demonstrated in the previous sections, molecular events for
altered signaling, gene expression and cellular outcome with regard
to survival, growth, proliferation, migration and invasion occur as
a response to the androgen deprivation. This promotes the selec-
tion of tumor cells, which show an aggressive behavior and an
enhanced propensity to metastasize [83,85,86]. In a clinical trial with
AA, 79% of PCa patients with CRPC showed a decline in PSA serum
level of 50% or more after 12 weeks of treatment. However, 52% of
PCa patients simultaneously showed increased signs of bone lesions
[87]. Other studies demonstrated an increased expression of ag-
gressive markers in PCa patients with CRPC, such as N-cadherin [88],
cadherin-11 [89], and nestin [90]. Interestingly, the increase of me-
tastasis in the AA study was observed at a stage when the PSA levels
of patients were significantly lowered [87]. This might contradict
the general concept that the AR-regulated PSA rise during ADT is
the early sign before PCa progresses to enhanced metastasis. Instead
of this, this confirms that AR-independent pathways are also altered
during ADT that might promote metastasis.

Causal connections can be established between molecular changes
in cellular pathways during ADT and the therapeutic failure of drugs
targeting these pathways [43,57,67,77]. Clinical testing of new drugs
in patients with CRPC can therefore not provide sufficient evi-
dence, whether these drugs could be more effective before or during
ADT. Moreover, no statement can be given whether such drugs could
be applied in a lower dosage before or in combination with ADT
with less adverse effects or even whether they could result in cure.

Recent studies show evidence that the treatment of patients with
advanced PCa can be markedly improved by therapeutic intervention
before the castration resistant stage is reached. Ganitumab, an anti-
body targeting the IGF receptor, showed enhanced antitumor activity
in combination with ADT in a mouse PCA xenograft model [91]. In a
preclinical study of Thomas and colleagues, the combination of the AKT
inhibitor AZD5363 with the antiandrogen bicalutamide enabled disease
regression that endured longer than either monotherapy [92].

Impressive results were reached in the recent phase III CHAARTED
(Chemohormonal Therapy versus Androgen Ablation Randomized Trial
for Extended Disease) study. Patients with untreated hormone-
sensitive PCa received ADT plus docetaxel (75 mg/m2 6 cycles every 3
weeks) or ADT alone (control group) [93]. The combination therapy sig-
nificantly improved the OS from 44.0 to 57.6 months (HR 0.61, 95% CI
0.47–0.80; p = 0.0003). In subgroup analyses, patients with high volume
metastatic disease (65%), as defined by the presence of visceral me-
tastasis or ≥4 bone metastases (with at least one being extra-axial), had
an even more dramatic OS improvement of 17 months with ADT plus
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docetaxel (49.2 months vs. 32.2 months, HR 0.60, 95% CI 0.45–0.81;
p = 0.0006). This is in strong contrast to the usage of docetaxel as second
line therapeutic in patients with CRPC, where only a mean OS im-
provement of 2–3 months could be achieved [16,17].

Effective treatment of advanced prostate cancer remains very chal-
lenging and much effort has to be undertaken to further understand
the mechanisms of resistance. In the future, the situation for patients
with advanced PCa could be improved further in the context of a per-
sonalized treatment [18,94]. A growing number of biomarkers, detected
in tumor cells, blood or urine, could give information about the mo-
lecular phenotype of a tumor and could provide the basis for the
decision, which agent(s) will be most effective for a given patient
[94–96]. Moreover, they would help to find the right time to initiate
the treatment and would support subsequent clinical monitoring.

Taken together, it seems to be time for a fundamental paradigm shift
in the treatment of advanced PCa. Therapeutic intervention seems to
be indicated for higher efficacy before a castration-resistant stage is
reached. A statement of C. J. Sweeney, lead investigator of the CHAARTED
study, boils it down to an essence: “Treating castration-resistant disease
is a little bit defeatist (because it is already become resistant), let us
try and start treatment early when it is more at risk of being cured –
let us go forward by moving backward” [97].
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