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a b s t r a c t

Even the most superficial glance at the vast majority of crossing-minimal geometric
drawings of Kn reveals two hard-to-miss features. First, all such drawings appear to be 3-
fold symmetric (or simply 3-symmetric). And second, they all are 3-decomposable, that is,
there is a triangle T enclosing thedrawing, and abalancedpartitionA, B, C of theunderlying
set of points P , such that the orthogonal projections of P onto the sides of T show A between
B and C on one side, B between A and C on another side, and C between A and B on the third
side. In fact, we conjecture that all optimal drawings are 3-decomposable, and that there
are 3-symmetric optimal constructions for all nmultiples of 3. In this paper, we show that
any 3-decomposable geometric drawing of Kn has at least 0.380029

( n
4

)
+Θ(n3) crossings.

On the other hand, we produce 3-symmetric and 3-decomposable drawings that improve
the general upper bound for the rectilinear crossing number of Kn to 0.380488

( n
4

)
+Θ(n3).

We also give explicit 3-symmetric and 3-decomposable constructions for n < 100 that are
at least as good as those previously known.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

For a finite set of points P in general position in the plane, let cr (P) denote the number of crossings in the complete
geometric graphwith vertex set P , that is, the complete graph whose edges are straight line segments. Since two edges cross
each other if and only if the four points that define them form a convex quadrilateral, it follows that cr(P) equals �(P), the
number of convex quadrilaterals defined by points in P . If P has n vertices, the complete geometric graphwith vertex set P is
also called a rectilinear or geometric drawing of Kn. The rectilinear crossing number of Kn, denoted by cr(Kn), is the minimum
number of crossings in a rectilinear drawing of Kn. That is, cr(Kn) = min|P|=n cr(P), where the minimum is taken over all n-
point sets P in general position in the plane. Determining cr(Kn) is a well-known problem in combinatorial geometry posed
by Erdős and Guy [13] (see also [11]).
Fig. 1(a) shows the point set of an optimal (crossing-minimal) rectilinear drawing of K18 [6]. This drawing exhibits a

natural partition of the 18 vertices into 3 clusters of 6 vertices each, with two prominent features: (i) rotating any cluster
angles of 2π/3 and 4π/3 around a suitable point, one obtains point sets highly resembling the other two clusters; and (ii)
the orthogonal projections of these clusters on the sides of an enclosing triangle, have each projected cluster separating the
other two. A similar structure is observed in every known optimal drawing of Kn, for every nmultiple of 3, perhaps after an
order-type preserving transformation (see [4,6]). Even the best available examples for n > 27, i.e., for those values of n for
which the exact value of cr(Kn) is still unknown, share this property [6].
To further explore the distinguishing features of these drawings, we introduce the concepts of 3-symmetry and 3-

decomposability. A geometric drawing of Kn is 3-symmetric if its underlying point set P is partitioned into three sets (we
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Fig. 1. (a) An optimal geometric drawing of K18 . (b) The drawing in (a) is 3-decomposable.

call them wings) of size n/3 each, with the property that rotating each wing angles of 2π/3 and 4π/3 around a suitable
point generates the other two wings. We also say that P itself is 3-symmetric. A finite point set P is 3-decomposable if it can
be partitioned into three equal-size sets A, B, and C satisfying the following: there is a triangle T enclosing P such that the
orthogonal projections of P onto the three sides of T show A between B and C on one side, B between A and C on another
side, and C between A and B on the third side.We say that a geometric drawing of Kn is 3-decomposable if its underlying point
set is 3-decomposable. We note that whenever we speak of a 3-decomposable or 3-symmetric drawing of Kn, it is implicitly
assumed that n is a multiple of 3.
In this paper, we report our recent research on 3-decomposable and 3-symmetric drawings. The rest of the paper is

organized as follows.
In Section 2 we recall basic facts about circular sequences, a tool we use throughout the paper.
Then we move on to one of the main results in this paper, namely a lower bound for the number of crossings in 3-

decomposable geometric drawings. Following [2,15], to bound the number of crossings in a drawing we bound the number
of (≤ k)-sets in the underlying point set. This is done in Section 3.We then use these bounds in Section 4 to get our improved
lower bound for the number of crossings in 3-decomposable geometric drawings.
Our other main result is the construction of 3-symmetric geometric drawings of Kn whose number of crossings is either

equal to or smaller than the best previously known (crossing-wise) drawings. The main arguments and techniques are
presented in Section 5. The basic idea is to start with a set P ofm points, the underlying point set of a geometric drawing of
Km, and to substitute some points of P by clusters of points.We then apply these results in Section 6 to the case inwhich each
point is substituted by two points. In Section 7we summarize the improved upper boundswe obtained using the arguments
and techniques from Sections 5 and 6. An important consequence of the work in Section 7 is given in Section 8, where we
establish the best known upper bound for the rectilinear crossing number constant q∗ := limn→∞ cr(Kn)/

( n
4

)
.

2. Background: circular sequences

An allowable sequence 5 is a doubly infinite sequence . . . π−1, π0, π1, . . . of permutations of n elements, where
consecutive permutations differ by a transposition of neighboring elements, and πi is the reverse permutation of πi+( n2 ).
Then any subsequence 5 of

( n
2

)
+ 1 consecutive permutations in 5 contains all necessary information to reconstruct the

entire allowable sequence.5 is called a halfperiod of5.
Our interest in allowable sequences derives from the fact that all the combinatorial information of an n-point set P can

be encoded by an allowable sequence5P on the set P , called the circular sequence associated to P . We assume from P that
any two lines joining points in P are not parallel (we can assume this without loss of generality, since it can be ensured by
sufficiently small perturbations of the points, and this will not affect the number of convex quadrilaterals or the number
of (≤ k)-sets). A halfperiod 5 of5P is obtained as follows: Start with a circle C containing P in its interior, and a directed
line ` tangent to C . By rotating `, while keeping it tangent to C , if necessary, we may guarantee that all points of P have
distinct projections over `. Project P orthogonally onto `, and record the order of the points in P on `. This will be the initial
permutation π0 of5. Now, we continuously rotate ` on C (clockwise) and keep projecting P orthogonally onto `. Right after
two points overlap in the projection, say p and q, the order of P on ` will change. This new order of P on ` will be π1. Note
that π1 is obtained from π0 by the transposition of pq. Continue doing this, rotating ` on C and recording the corresponding
permutations of P , until completing half a turn on C . At this time, the order of P on ` will be the reverse than the original.
Moreover, exactly

( n
2

)
transpositions have taken place, one per each pair of points.

It is important to note that most allowable sequence are not circular sequences. In fact, allowable sequence are in one-
to-one correspondence with generalized configurations of points. We refer the reader to the seminal work by Goodman and
Pollack [14] for further details.
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Observe that if P is 3-decomposable with partition A, B, and C , then there is a halfperiod 5 = (π0, π1, . . . , π( n2 )
)

of 5P whose points can be labeled A =
{
a1, . . . , an/3

}
, B =

{
b1, . . . , bn/3

}
, and C =

{
c1, . . . , cn/3

}
, so that π0 =

(a1, a2, . . . , an/3, b1, b2, . . . , bn/3, c1, c2, . . . , cn/3), and for some indices 0 < s < t ≤
( n
2

)
, πs+1 shows all the b-elements

followed by all the a-elements followed by all the c-elements, and πt+1 shows all b-elements followed by all the c-elements
followed by all the a-elements. An allowable sequencewith a halfperiod satisfying these properties is called 3-decomposable,
generalizing the definition of 3-decomposability from point sets to allowable sequences.
We have the following definitions and notation for allowable sequences. A transposition that occurs between elements

in sites i and i + 1 is an i-transposition. For i ≤ n/2, an i-critical transposition is either an i-transposition or an (n − i)-
transposition, and a (≤ k)-critical transposition is a transposition that is i-critical for some i ≤ k. If5 is a halfperiod, then
N≤k(5) denotes the number of (≤ k)-critical transpositions in5.

3. Bounding the number of (≤ k)-sets in 3-decomposable sets

Throughout this section, P is a set of n points in general position in the plane.
Recall that a (≤ k)-set of a point set P is a subset of P with at most k elements that can be separated from the rest of P by

a straight line. We let χ≤k(P) denote the number of (≤ k)-sets of P .
If5 = 5P is the circular sequence associated to P , then (≤ k)-critical transpositions in5 correspond to (≤ k)-sets of P .

Thus, for any halfperiod5 of5P ,
χ≤k(P) = N≤k(5). (1)

Our main result in this section is the following.

Theorem 1. Let P be a 3-decomposable set of n points, where n is a multiple of 3, and let k < n/2. Then

χ≤k(P) ≥ B (k, n) ,

where

B (k, n) := 3
(
k+ 1
2

)
+ 3

(
k+ 1− n/3

2

)
+ 3

s−1∑
j=2

j(j+ 1)
(
k+ 1− cjn

2

)
, (2)

cj := 1
2 −

1
3j(j+1) , and s := s(k, n) is the unique integer such that

( s
2

)
< n
3(n−2k−1) ≤

(
s+1
2

)
.

(In case r is not an integer, we use the formal definition
( r
2

)
=
r(r−1)
2 . Also, by convention,

( r
2

)
= 0 if r < 2.)

In view of Eq. (1), Theorem 1 is a direct consequence of the following (as it happens, more general) version for circular
sequences:

Theorem 2. Let 5 be a 3-decomposable halfperiod on n points, and let k < n/2. Let B (k, n) be as in Theorem 1. Then

N≤k(5) ≥ B (k, n) .

Proof. Throughout the proof,5 = (π0, π1, . . . , π( n2 )) is a 3-decomposable halfperiod on n points, with initial permutation
π0 = (a1, . . . , an/3, . . . , a1, b1, . . . , bn/3, c1, . . . , cn/3) and A =

{
a1, . . . , an/3

}
, B =

{
b1, . . . , bn/3

}
, and C =

{
c1, . . . , cn/3

}
.

In order to lower bound the number of (≤ k)-critical transpositions in 5, we distinguish two types of transpositions.
A transposition is monochromatic if it occurs between two a-elements, between two b-elements, or between two c-
elements; otherwise it is called bichromatic. We let Nmono

≤k (5) (respectively, Nbi
≤k(5)) denote the number of monochromatic

(respectively, bichromatic) (≤ k)-critical transpositions in5, so that

N≤k(5) = Nmono≤k (5)+ Nbi
≤k(5). (3)

We now bound Nmono
≤k (5) and Nbi

≤k(5) separately.

Claim 1. Let 5 be a 3-decomposable halfperiod on n points, and let k < n/2. Then

Nbi
≤k(5) =


3
(
k+ 1
2

)
if k ≤ n/3,

3
(
n/3+ 1
2

)
+ (k− n/3)n if n/3 < k < n/2.

Proof. Each bichromatic transposition is either an ab- or an ac- or a bc-transposition. Since 5 is 3-decomposable, A and
B ∪ C are separated in π0. Using only this fact, we compute the number of i-critical bichromatic transpositions involving A,
that is, the ab- and ac-transpositions together. This number multiplied by 3/2 is the total number of bichromatic i-critical
transpositions of5. This is because, by definition of 3-decomposable, there is a permutation πs+1 of5where B is separated
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from A ∪ C , as well as a permutation πt+1 where C is separated from A ∪ B. Thus, multiplying by 3 counts each i-critical
bichromatic transposition twice.
For x ∈ {b, c} each ax-transposition in 5 moves the involved a to the right and the involved b or c to the left. Since A

occupies the first n/3 positions in π0, then A must occupy the last n/3 positions in π( n2 ). For each i ≤ n/3, a bichromatic
i-transposition involving A, replaces one a-element occupying one of the first i positions by a b- or a c-element. This must
happen exactly i times in order for A to leave the first i positions. That is, there are exactly i bichromatic i-transpositions
involving A. Similarly, for each i ≥ 2n/3, there are exactly i bichromatic i-transpositions involving A (each of these
transpositions replaces one b- or c-element in the last i positions by an a-element). Finally, for n/3 < i < 2n/3, there
are exactly n/3 bichromatic i-transpositions involving A, since all elements of Amust leave the region formed by the first i
positions. Therefore, the number of (≤ k)-critical bichromatic transpositions is exactly

∑k
i=1 3i = 3

(
k+1
2

)
if k ≤ n/3, and∑n/3

i=1 3i+
∑k
i=n/3 n = 3

(
n/3+1
2

)
+ (k− n/3)n if n/3 < k < n/2. �

We nowmove on to establish a lower bound for Nmono
≤k (5).

A transposition between elements in positions i and i + 1 with k < i < n − k is called a (> k)-transposition. All these
transpositions are said to occur in the k-center (of 5). Our goal is to give a lower bound (see Claim 3) for Nmono

≤k (5). Each
monochromatic transposition is an aa- or bb-, or cc-transposition. Our approach is to find an upper bound for the number
of (> k)-critical aa-, bb-, and cc-transpositions, denoted by Naa>k(5), N

bb
>k(5), and N

cc
>k(5), respectively. The lower bound for

Nmono
≤k (5) follows from the observation that the number of (≤ k)-critical aa-transpositions is exactly

(
n/3
2

)
− Naa>k(5), and

similarly for bb- and cc-transpositions. Thus

Nmono
≤k (5) = 3

(
n/3
2

)
− Naa>k(5)− N

bb
>k(5)− N

cc
>k(5). (4)

Again, we boundNaa>k(5) using only the fact that there is a permutationwhere A is separated from B∪C , and thus this bound
is the same for Nbb>k(5) and N

cc
>k(5).

It is known that for k ≤ n/3, the bound N≤k(5) ≥ 3
(
k+1
2

)
is tight. Since we have shown that there are 3

(
k+1
2

)
bichromatic (≤ k)-transposition, we focus on the case n/3 < k < n/2. In this case, let Dk be the digraph with vertex
set 1, 2, . . . , n/3, and such that there is a directed edge from i to j if and only if i < j and the transposition aiaj occurs in the
k-center. Then the number of edges of Dk is exactly Naa>k(5).
We now bound the number of edges in Dk using the following essential observation. We denote the outdegree and the

indegree of a vertex v in a digraph by [v]+ and [v]−, respectively.

Claim 2. For the graph Dk,

[i]+ ≤ min{n− 2k− 1+ [i]− , n/3− i}. (5)

Proof. Clearly, [i]+ ≤ n/3 − i because there are only n/3 − i indices j > i. To show that [i]+ ≤ n − 2k − 1 + [i]−, note
that n− 2k− 1+ [i]− is the number of (> k)-transpositions in which ai moves right, and only [i]+ of these transpositions
involve two a-elements. Indeed, [i]− is the number of (> k)-transpositions involving two a-elements in which ai moves
backward. There are n − 2k − 1 forced (> k)-transpositions of ai: since ai moves from position i to position n − i + 1, for
each k < j < n− k there is at least one j-transposition in which ai moves right. Also, each of the [i]− transpositions in which
ai moves left in the k-center allows an extra transposition in the k-center in which ai moves right. �

Claim 3. If 5 is a 3-decomposable halfperiod on n points, and n/3 < k < n/2, then

Nmono
≤k (5) ≥ B (k, n)− 3

(
n/3+ 1
2

)
− (k− n/3)n.

Proof. We just need to show that Dk has at most
(
n/3
2

)
−
1
3

(
B (k, n)− 3

(
n/3+1
2

)
− (k− n/3)n

)
=
1
3 (kn− B (k, n)) edges.

We start by giving two definitions. LetDv,m be the class of all digraphs on v vertices 1, 2, . . . , v satisfying that [i]+ ≤ m+[i]−

for all 1 ≤ i ≤ v, and i < jwhenever i→ j. Let D0 (v,m) be the graph inDv,m with vertices 1, 2, . . . , v recursively defined
by
• [1]− = 0,
• [i]+ = min

{
[i]− +m, v − i

}
for each i ≥ 1, and

• for all 1 ≤ i < j ≤ v, i→ j if and only if i+ 1 ≤ j ≤ i+ [i]+.
These definitions are equivalent to those in [10] (pages 677 and 683). There, Balogh and Salazar show that the maximum

of the function 2
∑v
i=1 [i]

−
+
∑v
i=1min

{
[i]− − [i]+ +m,m+ 1

}
over all digraphs in Dv,m is attained by D0 (v,m). Their

original statement imposes some dependency between v andm, but this is only used to bound the given function applied to
D0 (v,m). And their proof, actually maximizes separately each of the two sums above. In other words, they implicitly show
that the maximum number of edges of a graph inDv,m is attained by D0 (v,m).
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Note that Dk is in Dn/3,n−2k−1, and thus its number of edges is bounded above by the number of edges of
D0 (n/3, n− 2k− 1). Thus, it suffices to bound above the number of edges of D0 (n/3, n− 2k− 1).

Claim 4. D0 (n/3, n− 2k− 1) has at most 13 (kn− B (k, n)) edges.

We observe that Claim 4 completes the proof of Claim 3. �

Proof of Claim 4. We first obtain an expression for the exact number of edges in D0(n/3, n − 2k − 1), and then we
show that this value is upper bounded by the expression in Claim 4. For brevity, in the rest of the section, we use
D0 := D0(n/3, n− 2k− 1), v := n/3 andm := n− 2k− 1.
For positive integers j ≤ i define (c.f., Definition 16 in [10]) Sj(i) as the unique nonnegative integer such that(

Sj(i)
2

)
<
i
j
≤

(
Sj(i)+ 1
2

)
; and

Tj(i) and Uj(i) as the unique integers satisfying 0 ≤ Tj(i) ≤ j− 1, 0 ≤ Uj(i) ≤ Sj(i)− 1, and

i = 1+ j
(
Sj(i)
2

)
+ Sj(i)Tj(i)+ Uj(i). (6)

The key observation is that we know the indegree of each vertex in D0. We now find a closed expression for E(k, n) :=∑v
i=1 [i]

−, the number of edges in D0. We break
∑v
i=1 [i]

− into three parts. Let v1 := m
(
Sm(v)
2

)
, v2 := Sm(v)Tm(v), and set

V1 =
v1∑
i=1

[i]− , V2 =
v1+v2∑
i=v1+1

[i]− , and V3 =
v∑

i=v1+v2+1

[i]−

so that
v∑
i=1

[i]− = V1 + V2 + V3. (7)

We calculate V1, V2, and V3 separately. If `, j are integers such that 1 ≤ j ≤ Sm(v) − 1 and 0 ≤ ` ≤ m, we define
Pj := {i : Sm(i) = j} and Qj,` := {i ∈ Pj : Tm(i) = `}.
We first calculate V1. Note that P1, P2, . . . , PSm(v)−1 is a partition of {1, 2, . . . , v1} and Qj,0,Qj,1, . . . ,Qj,m is a partition of

Pj, for each 1 ≤ j ≤ Sm(v)− 1. Also, Sm(v1 + 1) = Sm(v) and Sm(i) ≤ Sm(v)− 1 for 1 ≤ i ≤ v1. Thus V1 can be rewritten as∑Sm(v)−1
j=1

∑
i∈Pj
[i]−. By Proposition 17 in [10], for each vertex 1 ≤ i ≤ v of D0, [i]− = m (Sm(i)− 1)+ Tm(i). Therefore

V1 =
Sm(v)−1∑
j=1

m∑
i∈Pj

(Sm(i)− 1)+
∑
i∈Pj

Tm(i)


=

Sm(v)−1∑
j=1

m∑
i∈Pj

(j− 1)+
m∑
`=0

∑
i∈Qj,`

`

 .
On other hand, by definition

∣∣Qj,`∣∣ = j for 0 ≤ ` ≤ m− 1, which implies that ∣∣Pj∣∣ = mj. Therefore
V1 =

Sm(v)−1∑
j=1

(
m2j (j− 1)+

m∑
`=0

`
∣∣Qj,`∣∣) = Sm(v)−1∑

j=1

(
m2j (j− 1)+ j

m−1∑
`=1

`

)

=

Sm(v)−1∑
j=1

(
2m2

(
j
2

)
+

(m
2

)
j
)
= 2m2

(
Sm(v)
3

)
+

(m
2

)(Sm(v)
2

)
. (8)

Now, we calculate V2. Since Sm(i) = Sm(v) for each v1 + 1 ≤ i ≤ v, and [i]− = m (Sm(i)− 1) + Tm(i), then
V2 =

∑v1+v2
i=v1+1

[i]− =
∑v1+v2
i=v1+1

m (Sm(v)− 1)+ Tm(i). Therefore

V2 =
v1+v2∑
i=v1+1

m (Sm(v)− 1)+
v1+v2∑
i=v1+1

Tm(i) = m (Sm(v)− 1) Sm(v)Tm(v)+
v1+v2∑
i=v1+1

Tm(i).

Again,we have that
∣∣QSm(v),`∣∣ = Sm(v) for every 0 ≤ ` ≤ m−1. Because 0 ≤ Tm(i) ≤ Tm(v)−1 for every v1+1 ≤ i ≤ v1+v2,

and Tm(v1+v2+1) = Tm(v), it follows that QSm(v),0,QSm(v),1, . . . ,QSm(v),Tm(v)−1 is a partition of {v1+1, v1+2, . . . , v1+v2}.
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Thus
v1+v2∑
i=v1+1

Tm(i) =
Tm(v)−1∑
`=0

∑
i∈QSm(v),`

Tm(i) =
Tm(v)−1∑
`=0

`
∣∣QSm(v),`∣∣ = Tm(v)−1∑

`=1

` · Sm(v) = Sm(v)
(
Tm(v)
2

)
.

Then

V2 = 2m
(
Sm(v)
2

)
Tm(v)+ Sm(v)

(
Tm(v)
2

)
. (9)

Finally, we calculate V3. Since Sm(i) = Sm(v) and Tm(i) = Tm(v) for every v1 + v2 + 1 ≤ i ≤ v and [i]− =
m (Sm(i)− 1)+ Tm(i), it follows that

V3 =
v∑

i=v1+v2+1

[i]− =
v∑

i=v1+v2+1

m (Sm(i)− 1)+ Tm(i) =
v∑

i=v1+v2+1

m (Sm(v)− 1)+ Tm(v)

= (v − v1 − v2) (m (Sm(v)− 1)+ Tm(v))

From (6) it follows that Um(v)+ 1 = v − v1 − v2, and so

V3 = (Um(v)+ 1) (m (Sm(v)− 1)+ Tm(v)). (10)

Now from (7)–(10), it follows that

E(k, n) := 2m2
(
Sm(v)
3

)
+

(m
2

)(Sm(v)
2

)
+ 2m · Tm(v)

(
Sm(v)
2

)
+

(
Tm(v)
2

)
Sm(v)+ (Um(v)+ 1) (m(Sm(v)− 1)+ Tm(v)) . (11)

Now recall that v := n/3 andm := n− 2k− 1. If k > n/3, then v ≥ m. From (6), it follows that

Tm(v) =
v − 1−m

(
Sm(v)
2

)
− Um(v)

Sm(v)
.

Note that s = s(k, n) in the definition of B(k, n) is equal to Sm(v). We use this fact, together with the previous identity
substituted in the expression of E(k, n) in (11), to obtain the following expression for E(k, n) + (B(k, n) − kn)/3. The
next identity follows from a long, yet elementary, simplification (which can be efficiently performed in a CAS like Maxima,
Mathematica or Maple).

E(k, n)+
1
3
(B(k, n)− kn) =

4s2 − s4 − 3 (2+ 2Um(v)− s)2

24s

≤
s2
(
4− s2

)
24

≤ 0,

where the last inequality follows from the fact that s = Sm(v) ≥ 2 whenever k > n/3. Thus E(k, n) ≤ 1
3 (kn− B(k, n)), thus

completing the proof of Claim 4. �

We now complete the proof of Theorem 2. By Eq. (5), N≤k(5) = Nmono≤k (5) + Nbi
≤k(5). If k ≤ n/3, then by Claim 1,

N≤k(5) ≥ Nbi≤k(5) ≥ 3
(
k+1
2

)
= B(k, n). If n/3 < k < n/2, then by Claims 1 and 3, N≤k(5) ≥ B(k, n). �

4. Bounding the number of crossings in 3-decomposable sets

We are now ready to prove a lower bound for the crossing number for 3-decomposable sets.

Theorem 3. Let P be a 3-decomposable set of n points. Then

cr(P) ≥
2
27

(
15− π2

) (n
4

)
+Θ(n3) > 0.380029

(n
4

)
+Θ(n3).

Proof. Let P be a 3-decomposable set of n points in general position.
First we recall the following relationship between rectilinear crossing numbers and (≤ k)-sets, unveiled independently

by Ábrego and Fernández-Merchant [2] and by Lovász et al. [15]:

cr(P) =
(n−2)/2∑
k=1

(n− 2k− 1)χ≤k(P)+Θ(n3). (12)
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Now combining Theorem 1 and Eq. (12), and noting that the−1 in the factor n−2k−1 only contributes to smaller order
terms, we obtain

cr(P) ≥
(n−2)/2∑
k=1

(n− 2k) B(k, n)+Θ(n3)

= 36
(n
4

)((n−2)/2∑
k=1

1
n

(
1− 2

(
k
n

))(
k
n

)2
+

(n−2)/2∑
k=n/3

1
n

(
1− 2

(
k
n

))(
k
n
−
1
3

)2

+

(n−2)/2∑
k=1

s−1∑
j=2

j(j+ 1)
1
n

(
1− 2

(
k
n

))(
k
n
− cj

)2)
+Θ(n3),

since j ≤ s(k, n)− 1 if and only if k > cjn− 1/2, then

cr(P) ≥ 36
(n
4

)((n−2)/2∑
k=1

1
n

(
1− 2

(
k
n

))(
k
n

)2
+

(n−2)/2∑
k=n/3

1
n

(
1− 2

(
k
n

))(
k
n
−
1
3

)2

+

∞∑
j=2

j(j+ 1)
∑

cjn−1/2<k≤(n−2)/2

1
n

(
1− 2

(
k
n

))(
k
n
− cj

)2+Θ(n3).
Each of the inner sums is a Riemann Sumwhich we estimate using the corresponding integrals. Note that all the error terms
are bounded uniformly byΘ(n3).

cr(P) ≥ 36
(n
4

)(∫ 1/2

0
(1− 2x)x2dx+

∫ 1/2

1/3
(1− 2x)

(
x−

1
3

)2
dx

+

∞∑
j=2

j(j+ 1)
∫ 1/2

cj
(1− 2x)(x− cj)dx

)
+Θ(n3)

=

(n
4

)(3
8
+
1
216
+
2
27

∞∑
j=2

1
j3(j+ 1)3

)
+Θ(n3).

Since
∞∑
j=2

1
j3(j+ 1)3

=

∞∑
j=2

(
1
j3
−
3
j2
+
6
j
−

1
(j+ 1)3

−
3

(j+ 1)2
−

6
j+ 1

)
=
79
8
− π2,

then

cr(P) ≥
2
27

(
15− π2

) (n
4

)
+Θ(n3). �

5. Constructing geometric drawings from smaller ones

In this section, we describe a refinement of a method used in [3,7,12] to grow a geometric drawing Dm of Km (the base
drawing) into a geometric drawing ofKn (the augmenteddrawing) for somen > m. The goal is to produce geometric drawings
of complete graphs with as few crossings as possible. Our technique refines previous constructions by Brodsky et al. [12],
Aichholzer et al. [7], and Ábrego and Fernández-Merchant [3].
The method substitutes each point pi in the underlying point set of Dm by a cluster of points Ci. The cluster Ci is an affine

copy of a preset cluster model Si (so that the order types of Ci and Si are the same) carefully placed near pi and almost aligned
along a line `i through pi. More precisely, if C =

⋃m
j=1 Cj, then `i divides the set C \ Ci into two sets of sizes as equal as

possible, and any line spanned by two points in Ci has the same ‘‘halving’’ property as `i on C \ Ci. Such a placement helps
to minimize the number of convex quadrilaterals that involve two points in Ci and, as a consequence, the total number of
crossings in the augmented drawing.
In a nutshell, the difference between our approach and that in [7] is that, for each i, we allow one cluster Cj with j 6= i

to be splitted by `i, and ask that no two clusters split each other. Whereas in [7], each cluster Cj other than Ci is completely
contained in a semiplane of `i. While this step further is more general and powerful, it brings new technical complications
that are analyzed and sorted out throughout this section.
Before moving on to describing formally the constructions (starting in Section 5.2), we present in the next subsection a

fully worked out example, with the intention of both introducing and motivating the main ideas in our constructions.
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a b

Fig. 2. (a) The base 6-point set. (b) A pre-halving set of lines.

5.1. An example: drawing a K18 from a drawing of K6

Consider the 6-point set P = {p1, p2, p3, p4, p5, p6} given in Fig. 2(a), the underlying point set of a geometric drawing of
K6. Our aim is to substitute each of p1, p3, and p6 with a 2-point set (C1, C3, and C6, respectively), and each of p2, p4, and p5
with a 4-point set (C2, C4, and C5, respectively). At this point it may help the reader to take a sneak peek at Fig. 4, the final
18-point set Q .
The idea is to grow this 6-point set as described so that the final 18-point set is the underlying point set of a K18 with as

few crossings as possible. Now in order to be able to easily count the final number of crossings, the points in each Ci need to
be all placed very closely to each other and to the corresponding pi. To minimize the final number of crossings, the crucial
observations are: (i) the number of crossings defined by points in the same Ci must be as small as possible; and (ii) it is
desirable to let the points in each Ci be placed so that the line spanned by any two of them is as close as possible to being a
halving line of the final set.
The convenience of accomplishing (i) is evident. To justify (ii) it suffices to take a look at Eq. (12): pairs of points that

define a halving line contribute the least to the crossing number.
To satisfy (i) in our current example, it suffices to ensure that the convex hull of each of the 4-point sets of C2, C4, and

C5 is a triangle (in general, if some Ci had n points, we would naturally choose the underlying point set of a Kn with as few
crossings as possible). Now our strategy to satisfy (ii) is to try to place the points in each Ci very close to a line through pi that
halves Q \ Ci. Since at this initial stage we have obviously not determined Q , our strategy is, if possible, to find for each pi a
line that is not incident to another pj and that halves Q \ Ci. (This is done by taking into account the size of each Ci; even if
we have not determined them yet, we know their size in advance.) It is easy to check that this ideal scenario does not occur
in our current example: every line through p1 that does not go through another pj, does not have one half of the points of
C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 in each of its open halfplanes. Thus we adjust the strategy by choosing a line `1 that spans p1 and
p2, with the following in mind: the points of p1 will be placed very close to this line, and we have to be careful to place the
correct amount of points of p2 in each halfplane of this line (so that the line indeed halves Q \ C1). Here, the six points of
C3 ∪ C4 are on the left halfplane of `1, and the six points of C5 ∪ C6 are on its right halfplane. Thus (recall that |C2| = 2) one
of the points of C2 will have to be placed on each halfplane of `1.
We find a line `i with similar properties for each i = 2, 3, 4, 5, 6. For obvious reasons, we call {`1, `2, `3, `4, `5, `6} a

pre-halving set of lines. The result is illustrated in Fig. 2(b).
It is now the time to start the process of replacing each pi by its corresponding Ci. It is convenient to do so in two stages:

first we replace each pi by a set Ui of ci := |Ci| collinear points, placed along `i. This process of replacing the points pi is
illustrated in Fig. 3(a). We note that the points in each Ui must be placed in a very small neighborhood of its corresponding
pi, so that for any three pairwise distinct i, j, k, if we choose one point qi of Ui, one point qj of Uj, and one point qk of Uk, the
order type of (qi, qj, qk) is the same as the order type of (pi, pj, pk).
When we replace a point pi, we must be very careful: if a line `j spans pj and pi, then after the replacement process,

we must leave on each halfplane of `j the same number of points of Q \ Uj. For instance: `2 spans p2 and p4, and its
left (respectively, right) halfplane contains p1 and p3 (respectively, p5 and p6). Thus, after replacing p1, p3, p5, and p6, by
U1,U3,U5, and U6, respectively, `2 will have 4 points to its left (namely U1 ∪ U3) and 6 points to its right (namely U5 ∪ U6).
Therefore, when we replace p4 by U4, wemust ensure that 3 points of U4 stay to the left of `2, and the other point of U4 stays
to its right, so that each halfplane of `2 contains exactly 7 points, see Fig. 3(b). Similar care must be taken when we replace
each pi by its corresponding Ui.
Finally, we perturb very slightly each Ui to a set Ci in general position, so that the order type of the whole set remains

otherwise unchanged.
In the formal descriptionwe shall do in the following subsections, each Ci is taken froma clustermodel Si: the ultimate goal

is to have Ci with the same order type as Si, which must be a point set whose crossing number we happen to know exactly.
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a b

Fig. 3. (a) Replacing the points pi . (b) Ensuring that `2 and `3 are halving lines.

Fig. 4. The resulting set, the underlying point set of a geometric drawing of K18 .

The final result is illustrated in Fig. 4. Admittedly, the points in each Ci, i = 2, 4, 5 do not appear to be in general position,
but this is a product of the limitation of our drawing and printing technology: a figure in which the four points of C2 are
visibly not collinear would require a much larger size and higher definition.
The geometric drawing of K18 resulting from the 18-point set in Fig. 4 happens to be quite good in terms of its crossing

number: it is not difficult to argue (this is done in its full generality in Section 5.5 below) that this geometric drawing of K18
has exactly 1035 crossings, as opposed to the 1029 drawings of optimal drawings of K18.

5.2. Input and output

The primary ingredients of our construction are a base point set P , sets Si that serve as models for our clusters, and what
we call a pre-halving set of lines (Condition 3 below), which is a generalization of the corresponding ‘‘halving properties’’
required in [3,7]. We refer the reader to Fig. 5.
The input

1. The base set: a point set P = {p1, p2, . . . , pm} in general position. This is the underlying set of the base geometric drawing
of Km.

2. The cluster models: for each i = 1, 2, . . . ,m, a nonempty point set Si in general position. We ask that no two points in a
cluster Si have the same x-coordinate. Let si = |Si| and I = {i : si > 1}.

3. The pre-halving set of lines: for each i ∈ I , a directed line βi containing pi. For each βi, we let L(i) (respectively, R(i))
denote the set of those k such that pk is on the left (respectively, right) semiplane of βi. If βi goes through a pj other than
pi, we say that pi and βi are splitting. In this case, we say that βi splits pj, and write j = σ(i). Otherwise, pi and βi are
called simple. (Note that σ(i) is defined if and only if pi and βi are splitting.) The collection of these lines must satisfy the
following properties.
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Fig. 5. The sets S1, S2, S3 , and S4 are cluster models. We show a pre-halving set of lines {β1, β2, β3, β4} for the base point set P = {p1, p2, p3, p4} and the
integers s1 = |S1| = 6, s2 = |S2| = 3, s3 = |S3| = 5, and s4 = |S4| = 8.

(a) If i 6= j, then βi 6= βj and βi 6= −βj, the reverse line of βj.
(b) If βi is simple, then 0 ≤

∑
k∈L(i) sk −

∑
k∈R(i) sk ≤ 1.

(c) If βi is splitting, then βi is directed from pi to pσ(i) and |
∑
k∈L(i) sk −

∑
k∈R(i) sk| ≤ sσ(i) − 1.

Note that properties (a) to (c) relate only to the point set P and to the integers si, and are independent of the order types
of the sets Si.
The output
The construction consists of substituting each pi, with i ∈ I , by a cluster Ci. Ci is a suitable affine copy of Si whose points

are aligned along a line `i. If si = 1, then Ci = {pi}. The result is a set C :=
⋃m
i=1 Ci of n := |C | points in general position, the

augmented point set. To describe in detail the properties of Ci and `i, we need a couple of definitions.
A directed line ` halves a set of points T if the left semiplane of ` contains d|T |/2e points of T , and the right semiplane

contains the remaining b|T |/2c points. It follows from the definition that ` and T are disjoint. If ` is a line that halves a set
T , and S is a set of points disjoint from T , then S halves T as `, if every line `′ spanned by two points in S can be directed so
that it halves T in exactly the same way as `. That is, the left (respectively, right) semiplane of `′ contains the same subset
of T as the left (respectively, right) semiplane of `.
With this terminology, the key properties of the sets Ci and of the lines `i are the following.

(1) Inherited order-type property. For any three pairwise distinct i, j, k, and qi ∈ Ci, qj ∈ Cj, qk ∈ Ck, the order type of the
triple qiqjqk is the same as the order type of pipjpk.

(2) Halving property. For each i ∈ I , `i halves C \ Ci and Ci halves C \ Ci as `i.

5.3. The construction

Step 1. Enlarging each point pi to a very small disc Di that will contain the cluster Ci.
For each i = 1, . . . ,m, let Di be a disc of radius ri centered at pi, such that the collection Di satisfies the following. If

qi ∈ Di, qj ∈ Dj, qk ∈ Dk (with i, j, k pairwise distinct), then the order type of the triple qiqjqk is the same as the order type
of pipjpk. It is clear that this can be achieved by making the radius of each Di sufficiently small.

Step 2. Replacing each pi with a set Ui contained on Di ∩ βi.
We now construct a first approximation Ui to each cluster Ci. The first simplification is that the each set Ui is collinear,

as opposed to Ci, which is in general position. Although, we might certainly describe the construction without using
intermediate collinear sets, it is a convenient device that greatly simplifies our work.
For each i ∈ I , consider a similarity transformation that takes the origin to pi and the x-axis to βi, such that the image Ci

of Si is contained in the interior of the disc centered at the origin with radius ri/2. Let Ui be the projection of Ci onto βi, thus
Ui lies on βi. If si = 1, we make Ui = Ci = {pi}. Then Ui is completely contained in Di for every i. Let U =

⋃m
j=1 Uj. See Fig. 6.

Beforemoving on to the next step,we observe that each setβi has a good halving potential. In fact, ifβi is simple, it already
halves U \ Ui. And if βi is splitting, then the difference between the number of points in U \ Ui on each side of βi is at most
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Fig. 6. Enlarging each point pi to a small disc Di of radius ri (example from Fig. 5) and the sets U1,U2,U3 , and U4 from Step 2. Each set Ui lies on βi and is
contained in the disc Di .

Fig. 7. We consider D2 and D3 from Fig. 6. Line `2 halves U \U2 and `3 halves U \U3 . Since p3 is simple, U3 remains unchanged and `3 = β3 . p2 is splitting,
with β2 through p3 . There are 19 points in U \U2 , 10 of which must be on the left of `2 . U1 (6 points) is on the left of β2 and U4 (8 points) is on its right. We
use U3 to balance: rotate U2 around p2 , so that `2 leaves 4 points of U3 on its left.

sσ(i) − 1. In this case, βi does not necessarily halve U \ Ui, but it intersects Dσ(i), which contains exactly sσ(i) points of U \ Ui.
Thus, a very small rotation of Ui (and βi) may balance this difference. A preview of Fig. 7 may be of help here. Unfortunately,
there is a significant gap to be filled: we may certainly perform this rotation to adjust any particular βi, but whenever the
turn comes forβσ(i) to be adjusted, if we rotate this linewemay break the halving property previously achieved byβi. Taking
care of this possible scenario transforms an otherwise intuitive, straightforward procedure into a somewhat technical one.
This is the task for the next step.
Step 3. Moving the sets Ui, so that each Ui lies on a line `i that halves U \ Ui.
Our goal in this step is to slightly move (rotate or translate) each set Ui with i ∈ I , so that the line containing Ui passes

through pi and halves U \ Ui. In what follows, `i denotes the line containing Ui. We describe a dynamic process that moves
Ui, and accordingly `i and Ci. Even when we are actually transforming the Ui, `i, and Ci, we keep their names all the way
through. If si = 1, Ui = Ci = {pi} remains unchanged throughout this process. The central feature of the whole process is
the following
Key property. The set Ui is contained in the interior of Di and lies on `i (whenever si > 1) during the entire process. In their
final position, `i goes through pi and halves U \ Ui.
To describe the process, we consider the digraph G with vertex set P ′ = {pi ∈ P : i ∈ I}, induced by the set of splitting

pre-halving lines, that is, there is an arc from pi to pj if and only if σ(i) = j, see Fig. 8. Thus, if pi is simple, then its outdegree
is zero, and if it is splitting, then its outdegree is one. These properties guarantee that each strong component of G is either
acyclic, or contains at most one directed cycle. In any case, each strong component must have a vertex, called root, that can
be reached from all other vertices in the component. (That is, for each vertex p in the component, there is a directed path
from p to the root.)
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a b c

Fig. 8. (a) The graph G corresponding to the example in Fig. 5. (b) An acyclic component. (c) A component with a cycle at the time (2) is applied in Step 3.

Wework on one component at a time. Let Pc ⊆ P ′ be a strong component of G and pk its root. Start by coloring all vertices
of Gwhite. Coloring a point pi blackmeans that `i andUi have reached their final position. Color pk black, and if pk is splitting,
then color pσ(k) grey. A white or a grey point is said to be ready if pσ(k) is black. As long as there are ready points, we apply
(1) or (2) below.

(1) If possible, arbitrarily choose a white ready point pi. Slightly rotate Ui around pi until `i halves U \ Ui. This is always
possible asking that `i intersects Dσ(i) at all times, because βi 6= ±βj, `i intersects Dσ(i), Dσ(i) has sσ(i) points, and before
rotating Ui, we have an unbalance of at most sσ(i) − 1. Color pi black.

(2) If (1) cannot be applied, then work with the grey point pσ(k). First, proceed as in (1), that is, rotate `σ(k) until it halves
U \ Uσ(k). Then translate Uσ(k) along `σ(k) until `k (which stays still) halves U \ Uk. Since Uσ(k) was originally contained
on a disc of radius rσ(k)/2 centered at pσ(k), then Uσ(k) is still contained in Dσ(k) during the translation. Color pσ(k) black.
See Fig. 8(c).

Note that (2) is applied at most once, and if we cannot apply (1) or (2), then all points are already black. Since the key
property is maintained at all times during the process, then at the end we have achieved our goal: Each Ui lies on `i and is
contained in the interior of Di. Also, `i goes through pi and halves U \ Ui.
Step 4. Flattening Ci towards Ui.
Finally, for i ∈ I , we affinely flatten each Ci towards Ui to obtain its final position. Again, if si = 1, then Ci = {pi}. For each

0 ≤ ε ≤ 1 and each i ∈ I , let Ci(ε) be the set obtained from Ci by orthogonally moving its points towards Ui reducing their
distance to `i by a factor of ε. (If si = 1, then Ci(ε) = {pi}.) For each i, measure the distances from all points in

⋃
j6=i Sj(ε) to

`i, making it negative if the point and its corresponding point in U are on different sides of `i. Let f (ε) be the minimum of
these distances for fixed ε and over all i ∈ I . Note that the function f is continuous and f (0) > 0 as

⋃m
i=1 Ci(0) = U . Then

there must be an ε′ > 0 such that f (ε′) > 0. The final position of Ci is Ci(ε′). Let C :=
⋃m
i=1 Ci. Since each Ci is contained in

Di, then C satisfies the inherited order-type property and the halving property. And because U satisfies the halving property
then C also satisfies it. The fact that each Ci is an affine copy of Si, preserving this way its order type, will allow us to count
the number of crossings in C .

5.4. Keeping 3-symmetry and 3-decomposability

Let θ be the counterclockwise rotation of 2π/3 around the origin. We say that the input set (P, {βi}i∈I , {Si}mi=1) is 3-
symmetric if: the base point set P is 3-symmetric, say via the function θ , the pre-halving set of lines {βi}i∈I is 3-symmetric
under the same function θ , and the collection of cluster models {Si}mi=1 is partitioned into orbits of equal clusters according
to the function θ . That is, if pi = θ(pj) = θ2(pk), then βi = θ(βj) = θ2(βk) and Si = Sj = Sk.
Similarly, we say that the input set is 3-decomposable, if the base point set P is 3-decomposable, with partition A, B, and

C , and if the collection of cluster models satisfies that∑
i:pi∈A

si =
∑
j:pj∈B

sj =
∑
k:pk∈C

sk.

Note that no assumption is made on the pre-halving set of lines.
The following observations are worth highlighting.

Remark 1. If the input set is 3-symmetric, then the construction can be performed so that the resulting augmented point set
C is 3-symmetric. Similarly, if the input set is 3-decomposable, then the construction can be performed so that the resulting
augmented point set C is 3-decomposable.
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5.5. Counting the crossings in the augmented drawing

Now we count the number of crossings in the resulting point set C =
⋃m
i=1 Ci, equivalently, the number of convex

quadrilaterals�(C). Themost important aspect of the calculation is that it only depends on the input set, that is, on the base
point set P , the cluster models Si, and the collection of pre-halving lines. Thus the number of crossings in the augmented
drawing can be calculated (perhaps using a computer) without explicitly doing the construction. This is particularly useful
in Section 6, where we iterate this construction and, as a consequence, we obtain the currently best general drawings of Kn.

5.5.1. A closer look into how clusters get splitted
Before going into the calculation, we introduce some terminology. If pi is simple (respectively, splitting), thenwe say that

Ci itself is simple (respectively, splitting). If Ci is simple, then each Cj with i 6= j is completely contained in a semiplane of `i.
If Ci is splitting, then the same holds except for the cluster Cσ(i): a nonempty subset Li of Cσ(i) is on the left semiplane of `i,
while the also nonempty subset Ri = Cσ(i) \ Li is on the right semiplane. We remark that Li and Ri are not subsets of Ci, but
of Cσ(i). By convention, if Ci is simple, so that σ(i) is not defined, then we let Li = Ri = ∅.
Note that the previously defined setL(i) (respectively,R(i)) coincides with the set of those j such that Cj is completely

contained in the left (respectively, right) semiplane of `i. Thus, if Ci is simple, then L(i) ∪ R(i) = {1, 2, . . . ,m}, and if Ci
is splitting, then L(i) ∪ R(i) = {1, 2, . . . ,m} \ {σ(i)}. We also remark that the sizes of Li and Ri are fully determined by∑
j∈L(i) sj and si. Indeed, the left semiplane of `i contains d(n− si)/2e points of C \ Ci,

∑
j∈L(i) sj of which belong to a Cj other

than Cσ(i). Therefore, |Li| = d(n− si)/2e −
∑
j∈L(i) sj. The size of Ri is analogously calculated.

5.5.2. The calculation of crossings
We now count the number of crossings in Dn, that is, the number �(C) of convex quadrilaterals defined by points in C .

We count separately five different types of convex quadrilaterals contributing to �(C). Adding the five contributions gives
the exact value of �(C).
Type I. Convex quadrilaterals whose points all belong to different clusters.
It follows from the inherited order-type property that the number of quadrilaterals of Type I is:∑

i<j<k<`
pi,pj,pk,p` is a convex quadrilateral

sisjsks`.

Type II. Convex quadrilaterals whose points belong to three distinct clusters.
Every convex quadrilateral of Type II has two points in a cluster Ci and the other two points in clusters Cj, Ck, with i, j, k

pairwise distinct. Now any four such points define a convex quadrilateral if and only if the points in Cj and Ck are on the
same semiplane determined by `i. Recalling that the set of points in C \ Ci on the left (respectively, right) halfplane of `i is
(
⋃
j∈L(i) Cj) ∪ Li (respectively, (

⋃
j∈R(i) Cj) ∪ Ri), it follows that the total number of convex quadrilaterals of Type II equals:

m∑
i=1

( si
2

)( ∑
j,k∈L(i)
j<k

sjsk +
∑
j∈L(i)

sj|Li| +
∑
j,k∈R(i)
j<k

sjsk +
∑
j∈R(i)

sj|Ri|
)
.

Type III. Convex quadrilaterals whose points belong to two distinct clusters, with two points in each cluster.
For each fixed Ci, and points p, q in Ci, p and q define a convex quadrilateral of Type III with those pairs of points that are

on the same Cj and on the same halfspace of `i, except when i = σ(j) and one of p and q belongs to Lj and the other to Rj.

Thus the number of convex quadrilaterals of Type III that involve two points in Ci is
( si
2

) (∑
j6∈{i,σ (i)}

( sj
2

)
+

(
|Li|
2

)
+

(
|Ri|
2

))
−∑

j:i=σ(j)

( sj
2

)
|Lj||Rj|.When summing over all i, each convex quadrilateral of Type III gets counted exactly twice. Thus the total

number of convex quadrilaterals of Type III is:

1
2

m∑
i=1

( si
2

)( ∑
j6∈{i,σ (i)}

( sj
2

)
+

(
|Li|
2

)
+

(
|Ri|
2

))
−

∑
j:

i=σ(j)

( sj
2

)
|Lj||Rj|

 .
Type IV. Convex quadrilaterals with three points in the same cluster and the other point in a distinct cluster.
To count these crossings we need to introduce a bit of terminology. If S is a point set in general position in the plane,

and p = (px, py), q = (qx, qy), r = (rx, ry) ∈ S, with px < qx < rx, then the concatenation of the segments pq and qr is
either concave up or concave down. In the former case, we say that {p, q, r} is itself concave up, and in the latter case, we say
it is concave down. We let t(S) (respectively, u(S)) denote the number of 3-subsets of S that are concave up (respectively,
concave down). If no two points in S have the same x-coordinate, then each 3-subset of S is either concave up or concave
down, and so in this case t(S)+ u(S) =

(
|S|
3

)
.
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Now it follows from the construction of the clusters Ci, that given any 3 points p, q, r ∈ Ci, then a fourth point s in
another cluster forms a convex quadrilateral with p, q, and r if and only if either (i) s is in the left semiplane of `i and {p, q, r}
is concave up in Si; or (ii) s is in the right semiplane of `i and {p, q, r} is concave down in Si.
Since there are d(n − si)/2e points s in C \ Ci in the left halfspace of `i, and b(n − si)/2c points s of C \ Ci in the right

halfspace of `i, it follows that the total number of quadrilaterals of Type IV equals:
m∑
i=1

(
t (Si) ·

⌈
n− si
2

⌉
+ u(Si) ·

⌊
n− si
2

⌋)
.

Type V. Convex quadrilaterals with all four points in the same cluster.
This is simply the sum of the number of convex quadrilaterals in each Ci, or equivalently, in each Si:

m∑
i=1

�(Ci) =
m∑
i=1

�(Si).

6. Doubling all points of a set with an odd number of points

There is a case in which the construction from Section 5 is particularly useful: when the cluster models are all equal to
each other. This is the approach followed by Aichholzer et al. [7] and by Ábrego and Fernández-Merchant [3].
In [7], the equivalent of our `is do not split any cluster, and the cluster models are sets in convex position called lens

arrangements. This is the best possible choice (under the no-splitting assumption) to minimize the number of crossings of
the augmented point set.
In [3], clusters of size 2 are used in an iterative process, starting from a base point set with m points, and producing

augmented point sets with 2km points for k = 0, 1, . . .. This has been used to obtain the best upper bounds known for
the rectilinear crossing number prior to the present work. The only limitations of the process in [3] are that (i) the base
configuration P is assumed to have an even number of points; and (ii) the base configuration P is assumed to have a halving
matching, that is, an injection from P to the set of halving lines of P , such that each p ∈ P gets mapped to a line incident with
p. The base for this iterative process is the following result.
Lemma 3 in [3]. If P is an m-element set, m even, and P has a halving-line matching, then there is a point set Q = Q (P) in
general position, |Q | = 2m, Q also has a halving-line matching, and �(Q ) = 16�(P)+ (m/2)(2m2 − 7m+ 5).
As in [3], we now use clusters of size 2, but within themore general framework described in the previous section, we can

use a base configuration with an odd number of points. This also has the advantage that the existence of a pre-halving set of
lines is trivially satisfied. Moreover, after one iteration, we get a set with an even number of points and a halving matching,
allowing us to use the iterative construction in [3].

Proposition 1. Starting from any point set P with m := |P| odd, and duplicating each point (that is, substituting each point by
a 2-point cluster), our construction yields a 2m-point set C in general position with �(C) = 16�(P)+ (m/2)(2m2 − 7m+ 5).
Moreover, C has a halving matching.

Proof. To apply our construction, we first need to check the existence of a pre-halving set of lines. This is trivial because
si = 2 for every i = 1, . . . ,m. That is, it suffices to choose, for each pi, a line βi through pi that leaves (m− 1)/2 points of P
on each side. Moreover, such a line is simple, and thus Li = Ri = ∅. Knowing the existence of a pre-halving set of lines, we
may proceed to calculate the number of convex quadrilaterals in the augmented 2m-set C .

• Type I. Since si = 2 for each i, then C has 16�(P) convex quadrilaterals of Type I.
• Type II. For each i, the line `i has exactly (m − 1)/2 clusters Cj on each side. Thus C has

∑m
i=1

(
2
2

)
((

(m−1)/2
2

)
· 4+

(
(m−1)/2
2

)
· 4
)
= m(m− 1)(m− 3) convex quadrilaterals of Type II.

• Type III. For each i, σ(i) is undefined and Li = Ri = ∅. Thus C has 12
∑m
i=1

(
2
2

) (∑
j6=i

(
2
2

))
=

1
2m(m − 1) convex

quadrilaterals in C of Type III.
• Types IV and V. Since there are no clusters of size 3 or larger, then C has no convex quadrilaterals of Types IV or V.

Summing up the contributions of Types I, II, and III, it follows that �(C) = 16�(P)+ (m/2)(2m2 − 7m+ 5), as claimed.
Finally, we show that C has a halving matching. If ` is a directed line that spans points p and q, then p is before q in ` if

as we traverse `, first we find p and then q. Recall that in the last step in the construction we start with all points in each
cluster Ci lying on line `i, and perturb them so that the order type of Ci coincides with that of Si. Since here all clusters have
size 2, there is no need to perturb them: their final position may as well be on `i. For each pi ∈ P , we let p′i, p

′′

i denote the
two points in C into which pi get splitted, labeled so that p′i is before p

′′

i in `i. We assume without any loss of generality that
all lines `i are directed so that their angles with the x-axis are between 0 and π .
Now `i is clearly a halving line for every i. Thus we may associate `i to one of p′i and p

′′

i , and only need to seek a halving
line to associate to the other point. We rotate `i counterclockwise around p′i until we hit another point in C (say q), and let
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`′i denote the line through p
′

i and q, with the direction it naturally inherits from `i. If q is before p
′

i in `
′

i , then let `
′

i := `′i .

Otherwise, let `′i denote the line spanning p
′′

i and qwith the orientation it naturally inherits from `i, that is, so that q is before

p′′i in `
′

i . In either case, `
′

i is a halving line that goes through one of p
′

i or p
′′

i .We associate this halving line to the point in {p
′

i, p
′′

i }

belonging to it, and to the other point we associate `i. It is easily checked that if i 6= j, then `′i 6= `
′

j (and trivially `i 6= `j).
Therefore this defines an injection from C to the set of its halving lines. Thus C has a halving matching, as claimed. �

We are now ready to prove the main result in this section.

Theorem 4. If P is an m-element point set in general position, with m odd, then

cr(Kn) ≤
24cr(P)+ 3m3 − 7m2 + (30/7)m

m4

(n
4

)
+Θ(n3). (13)

Proof. We closely follow the proof of Theorem 2 in [3]. (Note that Lemma 3 in [3], the equivalent to our Proposition 1, may
also be derived from the construction in Section 5).
Applying Proposition 1 to P−1 := P , we obtain an even cardinality point set P0 with a halving matching. Thus, we can

apply iteratively Lemma 3 in [3] with P0 as the base configuration. Then, for all k > 0, if Pk denotes the set obtained from
Pk−1 using Lemma 3 in [3], we have

cr(Pk) = 16cr(P)+m38k−1(2k − 1)−
7
6
m24k−1(4k − 1)+

5
14
m2k−1(8k − 1).

Now by letting n := |Pk| = 2km, we get

cr(Pk) =
(
24cr(P)+ 3m3 − 7m2 + (30/7)m

24m4

)
n4 −

1
8
n3 +

7
24
n2 −

5
28
n. �

This inequality was previously known (Theorem 2 in [3]) only for drawings with an even number of points. The existence
of a point set satisfying this halving property, together with this theorem, constitute the best tools available to obtain upper
bounds for the rectilinear crossing number constant.
We cannot overemphasize the importance of Theorem 4 and Theorem 2 in [3]: they constitute the best tools available

to obtain upper bounds for the rectilinear crossing number constant q∗. As of the time of writing, the best bound known for
q∗, namely

q∗ ≤
83247328
218791125

< 0.380488,

is obtained by applying Theorem 4 to a particular drawing of K315, see Section 7.

7. Symmetric geometric drawings

Themost fruitful and comprehensive effort to produce good geometric drawings of Kn is the Rectilinear Crossing Number
Project, led by Oswin Aichholzer [6]. Prior to the present work, the drawings in [6] constitute the state-of-the-art in the
subject: for every n ≤ 100, the previously best crossing-wise geometric drawing of Kn can be found in [6]. A detailed look
at the information in [6] shows that the vast majority of drawings seem close to being 3-symmetric.
We have successfully produced 3-symmetric and 3-decomposable drawings that match or improve the best drawings

reported in [6]. Our results are summarized as follows.

(1) For every positive integer n < 100, n a multiple of 3, we produced a 3-symmetric and 3-decomposable geometric
drawing of Kn whose number of crossings is less than or equal to that in [6]. Some of these drawingswere obtained using
heuristic methods based on previous drawings, and the rest using our replacing-by-clusters construction in Section 5.
For a brief summary of our results, see Table 1.

(2) The best upper bound for the rectilinear crossing number constant q∗ = limn→∞ cr(Kn)/
( n
4

)
is now achieved by 3-

symmetric and 3-decomposable drawings. For this we apply Theorem 4 to a 3-symmetric and 3-decomposable drawing
of K315 with 152210640 crossings, and recall Remark 1.

Trying to produce 3-symmetric geometric drawings of Kn that improve those of Aichholzer is a formidable task, specially
for large values of n. Prior to ourwork, no good crossing-wise 3-symmetric drawings had been reported, other than those for
very small values of n. For each positive integer nmultiple of 3, we produced 3-symmetric drawings of Kn whose number of
crossings is less than or equal to the previous best drawing. Our drawings are optimal for n ≤ 27 [4], andwe conjecture they
are optimal for n = 36, 39, and 45. The drawings for n ≤ 57, with the exception of n = 33, were obtained independently.
A good sample of these drawings is our 3-symmetric drawing of K24, sketched in Fig. 9. The precise coordinates of the
eight points in one wing W are: p1 = (−51, 113); p2 = (6, 834); p3 = (16, 989); p4 = (18, 644); p5 = (18, 1068);
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Fig. 9. The underlying vertex set of an optimal 3-symmetric geometric drawing of K24 . This point set contains optimal nested 3-symmetric drawings of
K21, K18, K15, K12, K9, K6 , and K3 .

Fig. 10. The underlying vertex sets of 3-symmetric geometric drawings of K27 (left) and K30 (right). In each case, the coordinates given correspond to one
third of the points; the other two thirds are obtained by rotating the given set angles of 2π/3 and 4π/3, respectively. The induced drawing of K27 is known
to be optimal, and we conjecture that the induced drawing of K30 is also optimal.

p6 = (22, 211); p7 = (−26, 313); p8 = (17, 1036). If θ denotes the counterclockwise rotation of 2π/3 around the origin,
then the whole 24-point set is P = W ∪ θ(W ) ∪ θ2(W ).
The geometric drawing induced by this point set has 3699 crossings, and is thus optimal [4]. A remarkable property of

this drawing is that it contains a chain of optimal 3-symmetric subdrawings of K21, K18, K15, K12, K9, K6, and K3. Indeed, if
Wi = {p1, p2, . . . , pi} then the point setWi ∪ θ(Wi) ∪ θ2(Wi) is an optimal drawing of K3i for 1 ≤ i ≤ 8, that is, its number
of crossings matches the one known to be optimal (see [4,8]).
We also include 3-symmetric drawings of K27 and K30 (Fig. 10), K36 and K39 (Fig. 11), and K45 (Fig. 12). The drawing of K27

is known to be optimal [4]. For reasons that are beyond the scope of this work, we firmly believe that the given drawings of
K30, K36, K39, and K45 are also optimal.
Given the evolving nature of our symmetric drawings of K42, K48, K51, K54, K57, and for space reasons, they are hardly

worth including in the present work. They are available in an extended version of this paper [1].
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Fig. 11. The underlying vertex sets of 3-symmetric geometric drawings of K36 (left) and K39 (right), both of which we conjecture are optimal. In each
case, the coordinates given correspond to one third of the points; the other two thirds are obtained by rotating the given set angles of 2π/3 and 4π/3,
respectively.

Fig. 12. The underlying vertex set of a 3-symmetric geometric drawing of K45 , which we conjecture is optimal. The coordinates given correspond to one
third of the points; the other two thirds are obtained by rotating the given set angles of 2π/3 and 4π/3, respectively.

To obtain the drawings for n ≥ 60, and for the special case n = 33, we use the construction in Section 5. For each such
Kn, it suffices to give the base drawing Dm for some suitable m < n, the cluster models Si, and a pre-halving set of lines
{βi}i∈I for Dm. This determines the information relevant to calculate the number of crossings of the resulting drawing of Kn:
the sizes of the clusters that lie to the left of each line `i, and the sizes of the sets Li and Ri of the cluster (if any) that is
splitted by `i. We use a base drawing of K30 to obtain drawings for K33 and K60, and a base drawing of K51 to obtain drawings
of Kn with 60 < n < 100. It makes little sense to include here the details of any such example, not only because of the
amount of information required to do so, but also because, by no means, we believe that the drawings found as of the time
of the writing are optimal. They are the best current examples and support our conjectures that optimal 3-symmetric and
3-decomposable geometric drawings exist for every N multiple of 3. Instead, we gathered all the information relevant to
these drawings in its full detail in [1]. Here, we include Table 1 as a summary of our results.

8. Improved upper bound for the rectilinear crossing number constant

We finally bring together the results from the previous two sections to establish the best known upper bound for the
rectilinear crossing number constant q∗ := limn→∞ cr(Kn)/

( n
4

)
.

Theorem 5. The rectilinear crossing number constant q∗ satisfies q∗ ≤ 83247328
218791125 < 0.380488.

Proof. It follows from Theorem 4 and the definition of q∗ that if P is a point set, and |P| = m is odd, then

q∗ ≤
24cr(P)+ 3m3 − 7m2 + (30/7)m

m4
. (14)

Now, as we pointed out in Section 7, we have produced a geometric drawing of K315 with 152210640 crossings. Plugging
in these values into the previous equation yields Theorem 5. �
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Table 1
For each n < 100, n a multiple of 3, we have found a 3-symmetric and 3-decomposable drawing whose number of crossings is less than or equal to the
number of crossings in the previously best geometric drawing of Kn . We also include our current record for K315 , the drawing that gives, in combination
with Theorem 4, q∗ < 0.380488. For comparison purposes, the entries in the fourth column show the number of crossings in the best known unrestricted
(i.e., non-necessarily rectilinear) drawing of Kn: for each n ≥ 5, it is known that Kn can be drawn with 14 b

n
2 cb

n−1
2 cb

n−2
2 cb

n−3
2 c crossings. A long standing

conjecture states that this is the crossing number of Kn for all n ≥ 5.

n Number of crossings in
the previous best
drawing [6]

Number of crossings in the
currently best 3-symmetric
drawing

Number of crossings in the
currently best
(non-necessarily rectilinear)
drawing
1
4 b
n
2 cb

n−1
2 cb

n−2
2 cb

n−3
2 c

How we obtained the
drawing reported in the
third column

n ≤ 27,
n divisible by 3

Optimal for each n Optimal for each n Optimal for n ≤ 12 Independently

30 9726 9726 9555 Independently
33 14634 14634 14400 From K30
36 21175 21174 20808 Independently
39 29715 29715 29241 Independently
42 40595 40593 39900 Independently
45 54213 54213 53361 Independently
48 71025 71022 69828 Independently
51 91452 91452 90000 Independently
54 115994 115977 114075 Independently
57 145178 145176 142884 Independently
60 179541 179541 176610 From K30
63 219683 219681 216225 From K51
66 266188 266181 261888 From K51
69 319737 319731 314721 From K51
72 380978 380964 374850 From K51
75 450550 450540 443556 From K51
78 529350 529332 520923 From K51
81 618048 618018 608400 From K51
84 717384 717360 706020 From K51
87 828233 828225 815409 From K51
90 951526 951459 936540 From K51
93 1088217 1088055 1071225 From K51
96 1239003 1238646 1219368 From K51
99 1405132 1404552 1382976 From K51
315 – 152210640 149964516 From K51

9. Concluding remarks

Thepreviously best knowngeneral bounds for the rectilinear crossingnumber ofKn are 0.379972
( n
4

)
+Θ(n3) < cr(Kn) <

0.38054415
( n
4

)
+Θ(n3); see [5] for the lower bound, and [3] with a drawing of K90 with 951526 crossings by Aichholzer for

the upper bound. Thus the general upper bound in Theorem 5, together with the lower bound given by Theorem 3, closes
this gap by about 10%, and by 20% under the quite feasible assumption of 3-decomposability. In fact, we strongly believe
that:

Conjecture 1. For each positive integer n multiple of 3, all optimal rectilinear drawings of Kn are 3-decomposable.

The reasons for this belief go beyond the evidence of all known optimal drawings: the underlying point sets of all the
best crossing-wise known drawings of Kn happen to minimize the number of (≤ k)-sets for every k ≤ n/3, and a point set
with this property is in turn 3-decomposable (an equivalent form of this statement appears in [9]).
Another strong feeling that we have is about the symmetry. We note that none of the explicit best known constructions,

prior to this paper, is 3-symmetric (except for some very small values of n). Yet, they resemble a 3-symmetric set. This hints
to the existence of equally good drawings of Kn that are 3-symmetric (which seems to be awide spread belief). In this context
we believe that:

Conjecture 2. For each positive integer n multiple of 3, there is an optimal geometric drawing of Kn that is 3-symmetric.

Our main findings back up Conjectures 1 and 2. Indeed, we have found, for every nmultiple of 3, a 3-decomposable and
3-symmetric geometric drawing of Kn with the fewest number of crossings known to date. Thus, in particular, for each n
multiple of 3 for which the exact value of cr(Kn) is known (that is, n ≤ 27), we have found an optimal geometric drawing
that is 3-decomposable and 3-symmetric. These drawings are described in Section 7. Some were obtained using heuristic
methods based on previously known constructions; the rest were obtained applying our replacing-by-clusters construction
from Section 5, with base drawings of K30 or K51. In fact, this drawing of K315 is obtained from a base drawing of K51, and it
is the initial base drawing used to establish Theorem 5.
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