NOTE

ON LINE DISJOINT PATHS OF BOUNDED LENGTH

Geoffrey EXOO
Bell Laboratories, Holmdel, NJ 07733, USA (Current adaress: Dept. of Computer Science. Indiana State University, Terre Haute, IN 47809, USA)

Received 20 May 1931
Revised 12 March 1982

Abstract

In a recent paper Lovász, Neumann-Lara and Plummer proved some Mengerian theorems for paths of bounded length. In this note the line connectivity analogue of their problem is considered.

In [3] Lovász, Neumann-Lara and Plummer considered the problem of extending Menger's theorem to paths of bounded length. Given a graph G and nonadjacent points x and y of G they defined $S_{k}(x, y ; G)$ to be the minimum number of points whose removal increases the distance from x to y to more than k, and defined $I_{k}(x, y ; G)$ to be the maximum number of internally disjoint $x-y$ paths whose length does not exceed k. They focused their study on the ratio $S_{k}(x, y ; G) / I_{k}(x, y ; G)$ and in particular on how large this ratio can be. If $f_{0}(k)$ is defined to be the supremum of the ratio taken over all graphs G and all nonadjacent points x and y, then they showed that $f_{0}(k) \leqslant\left[\frac{1}{2} k\right]$.

In [2] it was shown that $f_{0}(k) \geqslant\left[\frac{1}{4}(k+3)\right]$, settling a conjecture of Lovász [1, p. 248] that $f_{0}(k) \leqslant \sqrt{k}$. (The lower bound has recently been improved to $\left[\frac{1}{3}(k+1)\right]$ by F.R.K. Chung [personal communication].) In this note the analogous problem for line connectivity is considered.

Let $S_{k}^{\prime}(x, y ; G)$ be the minimum number of lines in a graph G whose removal increases the distance between distinct points x and y to more than k and let $I_{k}^{\prime}(x, y ; G)$ be the maximum number of line disjoint $x-y$ paths in G whose length does not exceed k. Finally let $f_{1}(k)$ be the supremum of $S_{k}^{\prime}\left(x_{1}, y_{i}, G\right) / I_{k}^{\prime}\left(x_{1}, y_{i}, G\right)$ taken over all graphs G and points x and y in G.

Theorem. For all $k \geqslant 2,\left[\frac{1}{2} k\right] \geqslant f_{1}(k) \geqslant\left[\frac{1}{3}(k+2)\right]$.
Proof. The proof of the lower bound is by construction. A family of graphs $\left\{\boldsymbol{H}_{m}\right\}$ is constructed containing points x and y such that $S_{3 m-2}^{\prime}\left(x, y ; H_{m}\right)=m$ and $I_{3 m-2}^{\prime}\left(x, y ; H_{m}\right)=1$. We now describe H_{m}. Begin with a path of length $2 m-1$ between points $u=w(1,1)$ and $v=w(1,2 m)$ containing points $w(1,1)$, $w(1,2), \ldots, w(1,2 m)$. Call this path and its points layer 1 . Layer 2 is added by 0012-365X/83/0000-0000/\$03.00 © 1983 North-Holland

Fig. 1. The graphs H_{2}, H_{3} and H_{4}.
including the $2 m-1$ points $w(2,1), w(2,2), \ldots, w(2,2 m-1)$, so that, for $i=1$ to $2 m-1, w(2, i)$ is adjacent to $w(1, i)$ and $w(1, i+1)$ but to no other points in the irst two layers. Suppose that layers 1 through $i-1$ have been constructed. Layer i contains points $w(i, 1), w(i, 2), \ldots, w(i, 2 m-i+1)$, and $w(i, j)$ is adjacent to $w(i-1, j)$ and $w(i-1, j+1)$ but to no other points in the first i layers. Construct layers $1,2, \ldots, m$. Finally to complete H_{m}, for each $i, 2 \leqslant i \leqslant m$, $z d d$ paths of length $i-1$ between $w(1,1)$ and $w(i, 1)$ and between $w(1,2 m i)$ and $w(1,2 m-1+$ 1). The graphs $\mathrm{H}_{2}, \mathrm{H}_{3}$ and H_{4} are shown in Fig. 1.

To see that $I_{3 m-2}^{\prime}\left(x, y ; H_{m}\right)=1$ observe that any $x-y$ path with length $3 m-2$ or less must contain m lines in layer 1 . Since layer 1 has but $2 m-1$ lines, any two such paths must share a line.

To show that $S_{3 m-2}^{\prime}\left(x, y ; H_{m}\right)=m$ suppose to the contrary that there is a set A of $m-1$ lines in H_{m} whose removal increases the distance from x to y to more than $3 m-2$. If A contains a line incident with a point of layer m then there are at most $m-1$ lines in A joining points in lower layers, and an easy induction argument gives the desired conclusion. If no line in A is incident with a point in layer m, then a path from x to y of length $3 m-2$ or less can be found without much difficulty. (The reader interested in a more detailed exposition of a similar argument should consult [2].)

This establishes the lower bound for values of k of the form $3 m-2$. For other values of k one zan simply subdivide lines incident with x to cbtain the appropriate examples.

For the upper bound, the proof given by Lovász, Neumann-Lara and Plummer [3] can be easily modified to the line version, giving the desired result.

References

[1] J.A. Bondy and U.S.R. Surty, Graph Theory with Applications (American Elsevier, New York, 1976).
[2] S.M. Boyles, and G. Exoo, A counterexample to a conjecture on paths of bounded length, J. Graph Theory, to appear.
[3] L. Lovász, V. Neumann-Lara and M.D. Plummer, Mengerian theorems for paths of bounded length, Perind. Math. Hungar. 9 (1978) 269-276.

