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Abstract 

Loeb, D.E., A generalization of the binomial coefficients, Discrete Mathematics 105 (1992) 

143-156. 

We pose the question of what is the best generalization of the factorial and the binomial 

coefficient. We give several examples, derive their combinatorial properties, and demonstrate 

their interrelationships. 

1. Introduction 

Despite being so fundamental to combinatorics, several authors have noticed 
that one is virtually unlimited in the choice of definition for the factorial-at least 
as far as umbra1 calculus is concerned. Indeed, one is presented with a 
bewildering number of alternatives each with its own notation. 

We present a new definition of the factorial which generalizes the usual one, 
and study the binomial coefficients it induces. They are blessed with a variety of 
combinatorial properties. However, what we are most interested in is studying 
the interrelationship between this factorial and other famous ones. 

2. The Roman factorial 

We begin by presenting a generalization of the factorial n ! which makes sense 
for negative integral values of it as well as nonnegative called the Romanfictoriul 
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Table 1 
Roman factorials [nl ! 

nj -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 
n!j-& & -i j -1 1 1 1 2 6 24 120 720 

[rzl! after its inventor Steve Roman. As usual for at a nonnegative integer the 
factorial is given by the product 

[nl!=n!=lx2x3x...xn. 

However, for n a negative integer, 

lnl! = (r-,l’;;, , see Table 1. 

Proposition 2.1 (Knuth). For any integer n, 

[nl! l-n]! = (-1)” InI. 

More generally, for every real number a, let 

[ul ! = { 
r(a + 1) when u is not a negative integer, and 

(-1>“-‘/(-a - l)! when a is a negative integer 

where r(u) is the analytic Gamma function. 
Thus, for all a 

[ul !/ [u - 1) ! = [u) 

where Roman a is defined to be 

14 ={ 
a for a # 0, 

1 for a = 0. 

(1) 

Note that equation (1) and the condition 101 = 1 completely characterize the 
Roman factorial of integers. 

3. The Roman coefficients 

These extensions of the notion of factorial lead to a corresponding 
generalization of the definition of binomial coefficients. 

Definition 3.1 (Roman coefficients). For all real numbers a and b, define the 
Roman coefficient (read: ‘Roman a choose b’) to be 

See Table 2. 
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Table 2 
Roman coefficients, [;I 

nk -47 
: 
3 
2 
1 

-4 -3 -2 -1 
-l/840 l/252 -l/56 117 

-l/504 l/168 -l/42 l/6 

-l/280 l/105 -l/30 l/5 

-l/140 l/60 -l/20 l/4 

-l/SO l/30 -l/12 113 

-l/20 l/12 -l/6 l/2 

01 2 3 4 5 6 

1 -2 3 -4 5 -6 7 

1 -3 6 -10 15 -21 28 

1 -4 10 -20 35 -56 84 

1 -5 15 -35 70 -126 210 

When the two argument are both integers, the relationship between the Roman 
coefficients and the binomial coefficients is given by the following. 

Proposition 3.2 (The six regions). Let n and k be integers. Depending on what 
region of the Cartesian plane the point (n, k) is in, the following formulas apply: 

Region 1. Zf n > k > 0, then 

See Table 3. 
Region 2. Zf k 2 0 > n, then 

See Table 4. 
Region 3. Zf 0 > n 2 k, then 

151 = (-l)“+*( ;k_-kl). 

See Table 5. 

Table 3 
Region 1 



146 D.E. Loeb 

Table 4 
Region 2 

Table 5 
Region 3 

Region 4. If k > n 2 0, then 

11 ; = (-I)“+~& (3-l = (-1)“+*“& (, : 1)l 

= (_l)n+k+l; (” ; ‘)-l 

= (-l)n+k+ln c S(j, n)/kj+l= 
js0 

W”+k[ An&]x_o 2 

where the S(j, n) are the Stirling numbers of the second kind, and A is the forward 
difference operator Ap(x) =p(x + 1) -p(x). See Table 6. 

Region 5. Zf n 2 0 > k, then 

I;] = (_l)k; (“; “)-‘= (_q”-& (” -f - ‘)-’ 

= (_++I m& (” --: ; ‘)-’ 

= -B(k -n, -k), 

where the pair (n, n - k) lies in Region 4 (defined above), and B(n, k) LY the 
analytic Beta function. See Table 7. 
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Table 6 
Region 4 

Region 6. If 0 > k > n, then 

147 

where the pair (k - n - 1, -n - 1) lies in Region 4 (defined above), and the pair 

(k - n - 1, k) lies in Region 5 (dejined above). 

Table 7 
Region 5 

n\k ( -4 -3 -2 -1 
6 ( -l/a40 l/252 -l/56 117 
5 -l/504 l/168 -l/42 l/6 

4 -l/280 l/105 -l/30 l/5 

3 -l/140 l/60 -l/20 114 
2 -l/E0 l/30 -l/12 l/3 
1 -l/20 l/12 -l/6 l/2 
0 -l/4 l/3 -l/l 1 

Note that in Regions 1,2, and 3, the Roman coefficients equal binomial 
coefficients up to permutation and change of sign. In Regions 4,5, and 6, the 
Roman coefficients are expressed simply in terms of the reciprocals of the 
binomial coefficients. Furthermore, regions 4,5, and 6 are identical up to 

Table 8 
Region 6 
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permutation and change of sign. Thus, all of the Roman coefficients are related in 
a simple way to those in the first quadrant (Regions 1 and 4). In particular, the 
Roman coefficients always equal integers or the reciprocals of integers. 

4. Properties of Roman coefficients 

Several binomial coefficients identities extend to Roman coefficients. 

Proposition 4.1 (Complementation Rule). For all real numbers a and b, 

I;]= l.“bl* 

Proposition 4.2 (Iterative Rule). For all real numbers a, b, and c; 

Proposition 4.3 (Pascal’s 
numbers, then we have 

Recursion). Zf a and b are distinct and nonzero real 

U-l 

I 1 b-1. 

Proof. Since under these conditions la] = a, Lb1 = b, and [a - b] = a - b, 

[u - 11 ! 

[a - b - 11 ! lb]! + [u - bl ! Lb - 11 ! 

La - 11 ! 

= l”-bl([a-bl! Lb]! 

la - 1) ! 

= la1 ( lu - bl ! 161 ! 

bl! 
= [a-b]! [bl! 

Corollary 4.4. Zf r is a nonnegative integer and the pairs of integers (n, k), 

(n + r, k), (n, k + l), and (n + r + 1, k + 1) all lie in the same region (us dejined in 

Theorem 3.2), we have 
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Proof. Induction on r. 0 

Contrast this corollary with this classical result involving binomial coefficients 
in which for n 3 k 3 0, 

Analogous results hold more generally for real numbers. 
If we adopt Iverson’s notation, for the moment, writing logical expressions in 

parenthesis to mean 1 if true and 0 if false, then in the discrete case we have the 
following proposition. 

Proposition 4.5 (Knuth’s Rotation/Reflection law). For any integer n and k, 

t-11 k+(k>O) --n L 1 k_ 1 = (-l)n+(n’O) .--“1 . I 1 
Proof. By Proposition 2.1, we have 

Proposition 4.6 (Roman’s Identity). For all integers n and k, 

Proof. Proposition 2.1. 0 

5. Generalizations of the Roman coefficients 

The Roman coefficients defined earlier were very useful. However, there are 
several other generalizations of binomial coefficients. For example, recall the 
classical definition of extended binomial coefficients. 

Definition 5.1 (Classical extended binomial coefficient). Given a field element 
x E K in a field K of characteristic zero, and a nonnegative integer k, define the 
binomial coefficient ‘x choose k’ to be: 

0 ; = @h/k!, 
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where (x)~ denotes the lower factorial of x of degree k 

k-l 

CrI (x-i)=x(x-1).*.(x-kkl) for k 2 0, and 

~~k(x-i)-‘=1/(x+l)(x+2)~~~(x-k) fork<O. 

What is the relationship between the Roman coefficients and the other 
generalizations of binomial coefficients? To fully answer this question, we must 
generalize our notation of harmonic factorial. 

5 1. Knuth coeficients 

Adopt the following convention independently discovered by Donald Knuth. 

Definition 5.2 (Knuth factorial). Define La1 E for a real number to be the most 
significant term of r(a + 1 + E) where E is an infinitesimal from the field of 
surreal numbers (a non-Euclidean field which contains the real numbers). 

Thus, for a real, 

14:={;-"1)2 
when a is not a negative integer, and 

o/( a _ _ l)! when a is a negative integer, (2) 

where o = l/c. This choice of factorial would have led to ‘tags’ of E or o in 
appropriate places in results of this paper. 

For instance, again for a real, 

This is perhaps more natural since then [ul E only differs from a by at most an 
infinitesimal. 

If we adopt equation (2) as our definition where E can be any arbitrary 
constant, then the Roman factorial can be seen as a special case of the Knuth 
factorial where E = 1. That is, [al ! = 1~1.‘. Thus, the motivation 

Let us proceed to generalize the Roman coefficients. 

Definition 5.3 (Knuth coefficient). For all a and b, define the 
lg] E by the fraction 

a & 

. 11 14: 
b .= [bj:[a - b]E’ 

Let us calculate 1~1” for each of the six regions mentioned in Theorem 3.2. 

for our notation. 

Knuth coefficient 
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Proposition 5.4 (The six regions). Let E be a nonzero complex number or surreal 

number, and n, k be integers. Depending on what region of the Cartesian plane the 

pair (n, k) is in, the following formulas apply: 

Region 1. If n 3 k 2 0, then 

Region 2. If k 2 0 > n, then 

Region 3. If 0 > n 3 k, then 

[;]I= (-l)“fk( -,“_-kl) = 121. 
Region 4. If k > n 2 0, then 

Region 5. If n 2 0 > k, then 

(-l)n+k~= E n 

k(“ik) 11 k . 
Region 6. If 0 > k > n, then 

n ’ 11 k .= 

5.2. Gamma-coefficients 

A limiting case of the Knuth coefficient is of special interest. 

Definition 5.5 (Gamma-coefficient). Let n and k be arbitrary integers. Define the 
Gamma-coefficient 

See Table 9. Note, however, that L;:l f diverges as E tends to zero, so it is 
impossible to define a Gamma-coefficient [Al? for a and b real. 

In Regions 1,2, and 3, the Gamma-coefficients are equal to the Roman 
coefficients. In Region 4,5, and 6, the Gamma-coefficients are identically zero 
whereas the Roman coefficients are never zero. Nevertheless, one should note 
that even when the Classical binomial coefficient and the Roman coefficient 
differ, the difference is at most one. 
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Table 9 
Gamma-coefficient I;] ! 

nk \ -4 -3 -2 -1 0 1 2 3 4 5 6 
6 o o o II I 6 15 XI 15 
i 0 0 0 0 0 0 0, 0 1 5 10 10 5 

i 0 0 0 0 0 0 0133 01 

A 0 0 0 0 0 0 01 01 

1 -1 1 -1 1 1 -1 1 -1 1 -I 1 
-2 3 -4 5 -6 7 

-10 15 -21 28 

-20 35 -56 84 

-5 pi- 0 0 0 1 1 -5 15 -35 7” -126 2,” j 

Also, notice that the Gamma-coefficients are always integers. In particular, for 
k 2 0 (i.e. Regions 1,2, and 3), the Gamma-coefficients agree with the classical 
extended binomial coefficients. 

The identities mentioned in Section 4 generalize to Gamma-coefficients. 
However, we defer any discussion of the combinatorial significance to [7]. 

Proposition 5.6 (Complementation Rule). For all real numbers a, b, and E, 

[:l:= [&lf. Z p t I ,f n ar icu ar or all integers n and k, 1~10 = 1” Ikl 0. 

Proposition 5.7 (Iterative Rule). For all real numbers a, b, c, and E, 

1x u:= His 3 
In particular, for all integers m, n, and k, 

Proposition 5.8 (Pascal’s Recursion). (1) Let a and b be distinct nonzero real 
numbers, and let E be a nonzero complex number. Then 

I;\:= La;‘]:+ [;I:]:. 

(2) For all n and k, 

unless n = k = 0. 

Nevertheless., [~]O=lwhereas ]I:]!+ [;‘]‘?=1+1=2. 
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5.3. Other factorials 

Actually as noted by Ueno [12] and Roman [8,9], any choice of [al ! could be 
used for computations involving an umbra1 calculus. The only restrictions are that 
LO]! must equal one, and for the so called continuous iterated logarithmic algebra 
of [5], the function a H [al ! must be continuous. 

For example, if we choose Ial ! = 1 as in [l], then we have the theory of 
convolution sequences. Whereas, if for n an integer, we set as in [ll] 

then we achieve a q-analog of the ‘ [n]-logarithmic theory’. 

5.4. Multinomial coefficients 

Recall the usual definition of a multinomial coefficient. 

Definition 5.9 (Classical multinomial coefficient). Let n be a nonnegative integer, 
and let /3 be a vector with finite support of nonnegative integers. Then define the 
multinomial coefficients n choose /3 to be 

if Ifi] = n, and 

otherwise. 

Note that (i) is the number of ordered partitions of type p of a given n-set. 
By analogy, for all reals a, and all real vectors /3 with finite support, define the 

multinomial Roman coefficient a choose j3 to be 

if I/31 = a, and 

otherwise, 

Define the multinomial Knuth coefficients and Gamma-coefficients similarly. The 
multinomial Gamma-coefficients are well defined since they would only diverge if 
some denominator has an excess of factors of E. However, that could only happen 
if n < 0 and ki 3 0 for all i, but in that case, n f Ci=, kj, so the multinomial 

c-coefficient, ]&:=,]. ’ is zero by definition. Contradiction! Thus, the Gamma- 
coefficients are well defined. 

In terms of multinomial coefficients, Proposition 4.2 becomes 
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and Proposition 5.7 becomes 

More generally, we have the following theorem. 

Proposition 5.10 (Iterative Rule). Let (ki)l=, be a finite sequence of integers with 

sum n. Then 

As opposed to ordinary Roman coefficients, these multinomial Roman 
coefficients are not always integers or reciprocals of integers--even when all of 
the arguments are integers. For example, [2,2T_ 11 = 4 . 

However, the multinomial Gamma-coefficients are always integers, for if 
[o~!=,l’! is nonzero, then we are in one of the following two cases. Either n > 0, 
and ki L 0 for all i, or n < 0 and there is a unique i such that ki < 0. In the first 
case, these are ordinary multinomial coefficients. It suffices to consider the other 
case. Thus, IZ CO. Without loss of generality, let k, ~0. now, 

[(&= l”=(-l)n+kl[_n _yk;-’ k.1’ 
I, 1 * 3 2,..., , . 

= (-l)“+*l( --II _ ;,k;, .l+ . , ki ’ 

where -k, - 1, -n - 1, k,, k3,. . . , kj-1, kj 2 0. Hence, all the nonzero multi- 
nomial Gamma-coefficients are (up to sign) ordinary multinomial coefficients, and 
thus integers. 

6. Resistance of the n-cube 

Via the Gamma-coefficients and the theory of sets with a negative number of 
elements [7], we have a simple combinatorial interpretation for the Roman 



A generalization of the binomial coefficients 155 

Table 10 
Resistance of the n-cube 

~~(0123 4 5 6 7 
n 0 1 1 516 213 a/15 13/30 151/340 

coefficients in Regions 1,2, and 3. However, what is the significance of the 
Roman coefficients in Regions 4,5, and 6? In these regions, the Roman 
coefficients are the reciprocals of integers, so they do not enumerate any set. 
However, the following application illustrates their combinatorial significance. 

Proposition 6.1. Consider an n-cube in which each edge is represented by a wire of 
resistance l& (one Ohm). The resistance between two opposing vertices of the cube 
is (see Table 10) 

R, = 2-” i i-‘pQ. 
i=l 

Proof. The cube is isomorphic to the Hasse diagram of the boolean lattice of 
subsets of {1,2, . . . , n}. Without loss of generality, the two opposing vertices are 
0, and {1,2,. . . , n}. To compute the resistance, connect these two vertices to a 
1V battery. The resulting current (in Amperes) is equal to the resistance (in 
Ohms). 

By symmetry, each vertex on level i of the lattice has the same potential. 
Hence, we can consider each level as a single node without effecting the 
resistance. Any two adjacent levels i and i + 1 are connected by (n - i)(r) edges. 
Thus, the resistance between levels i and i + 1 is (l/n - i)(y)-‘0, or in the 
notation of Roman coefficients, the resistance between levels i and i + 1 is 

The total resistance R, is the sum of the resistances between the adjacent 
levels, 

R,=- 2 [-ni-l]SX 
i=-_n 

By Theorem 4.3, 

2R,=R,_,+k. 
n 

We conclude by induction noting that R0 = 0 and R, = l&. Cl 

Note that as n tends towards infinity, R, tends towards zero as (2/n)Q. 
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