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Abstract

It is well known that the mathematical models provide very important information for the research of
human immunodeficiency virus-type 1 and hepatitis C virus (HCV). However, the infection rate of almost
all mathematical models is linear. The linearity shows the simple interaction between the T cells and the
viral particles. In this paper, we consider the classical mathematical model with saturation response of the
infection rate. By stability analysis we obtain sufficient conditions on the parameters for the global stability
of the infected steady state and the infection-free steady state. We also obtain the conditions for the existence
of an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the
results.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Mathematical modelling has been proven to be valuable in understanding the dynamics of
HIV, HBV and HCV infection [1–6]. By direct application of models to data obtained from
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experiments in which antiretroviral drugs were given to perturb the dynamical state of infection
in HIV-1 infected patients, minimal estimates of the death rate of productively infected cells, the
rate of viral clearance and the viral production rate have been obtained [1–6]. Those models gave
so accurate depiction of the virus load that they are almost consistent with the actual data. The
research of mathematical models is very helpful for the clinical treatment. Especially, the models
of combination therapy provide very important meaning for the cure of HIV. However, infection
by HIV-1 and HCV has many puzzling quantitative features.

Pathogenesis of chronic infection with HBV, HIV and HCV is characterized by a dynamic
equilibrium between viral production and clearance [1,5,7]. The introduction of antiviral therapy
can upset this equilibrium by inhibiting virus production and causing a decline in the viral load.
Indeed, the rate of decline in the viral load is a measure of the rate of viral clearance and by
inference, it must be equivalent to the rate of virus production before therapy [1,5,7]. By using a
system of differential equations, mathematical functions describing the level of virus over time
can be derived, which predict the fall in serum virus concentration following the introduction of
effective antiviral therapy. By using regression analysis one can fit the experimentally derived
viral load data and derive quantitative estimates for the various kinetic parameters associated
with the viral infection [3]. An essential prerequisite is the ability to accurately quantify the level
of serum virus, and so along with the development of potent antiviral agents, the development
of sensitive and specific DNA-based methods of viral quantification has been fundamental to the
exploration of HIV, HCV and HBV dynamics.

The population dynamics of target cells (CD4+ T cells in case of HIV or hepatic cells in
case of HCV and HBV) is not completely understood. Nevertheless, a reasonable model for this
population of cells is

dT

dt
= s − dT + aT (1 − T/Tmax), (1.1)

where s represents the rate at which new T cells are created from sources within the body, such
as the thymus, T cells can also be created by proliferation of existing T cells. Here we represent
the proliferation by a logistic function in which a is the maximum proliferation rate of target
cells. Tmax is the T population density at which proliferation shuts off. d is death rate of the
T cells. If the population ever reaches Tmax, it should decrease; thus we impose the constraint
dTmax > s. Equation (1.1) has a single stable steady state given by

T̂ = Tmax

2a

[
a − d +

√
(a − d)2 + 4as/Tmax

]
. (1.2)

In the presence of virus, T cells become infected. The simplest and most common method of
modelling infection is to augment (1.1) with a “mass-action” term in which the rate of infection is
given by βV T , with β being the infection rate constant. This type of term is sensible, since virus
must meet T cells in order to infect them and the probability of virus encountering a T cell at low
concentrations (when V and T motions can be regarded as independent) can be assumed to be
proportional to the product of their concentration, which is called linear infection rate. Thus, in
what follows, the classical models assume that infected T cells at rate −βV T and the generation
of infected T cells at rate βV T .

With the simple mass-action infection term, the rates of change of uninfected cells, T , pro-
ductively infected cells, I , and virus, V , are

Ṫ = s − dT + aT (1 − T/Tmax) − βT V,
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İ = βT V − δI,

V̇ = pI − cV, (1.3)

where T is the number of target cells, I is the number of infected cells, V is the viral load of
the virion. In model (1.3), δ is the loss rate constant of infective cells, p is the virion production
rate for infected cell (p/δ is the total number of virion produced by a productively infected cell
during its lifetime) and c is the clearance rate constant of free virion.

Although the rate of infection in most HIV models is bilinear in the virus V and the uninfected
target cells T , actual incidence rates are probably not strictly linear in each variable over the
entire range of V and T . For example, a less than linear response in V could occur due to
saturation at high virus concentration, where the infectious fraction is high so that exposure is
very likely. Thus, it is reasonable for us to assume that the infection rate of modelling HIV, HBV
and HCV infection in saturated mass action, βT V p/(1+αV q), where p,q,α > 0 are constants.

In this paper, we shall investigate the viral model with saturation response of the infection rate
(p = q = 1). The model can be written as the following form:

Ṫ = s − dT + aT (1 − T/Tmax) − βT V

1 + αV
,

İ = βT V

1 + αV
− δI,

V̇ = pI − cV . (1.4)

Standard and simple arguments show that solution of the system (1.4) always exists, and stay
positive and bounded.

2. Equilibria, stability and periodic solution of saturation infection

The possible non-negative equilibria of system (1.4) are E1(T̂ ,0,0), E2(T̄ , Ī , V̄ ), where

T̄ = Tmax

2a

[
a − d − β/α +

√
(a − d − β/α)2 + 4as/Tmax + 4acδ/(pαTmax)

]
,

Ī = c

p
V̄ , V̄ = 1

αcδ
(pβT̄ − cδ).

Now, we will begin the analysis of the stability of the equilibria of system (1.4).
Let E∗(T ∗, I ∗,V ∗) be any arbitrary equilibrium. Then the characteristic equation about E∗

is given by∣∣∣∣∣∣∣∣
a − d − 2aT ∗/Tmax − βV ∗

1+αV ∗ − λ 0 − βT ∗
(1+αV ∗)2

βV ∗
1+αV ∗ −δ − λ

βT ∗
(1+αV ∗)2

0 p −c − λ

∣∣∣∣∣∣∣∣
= 0. (2.1)

For equilibrium E1(T̂ ,0,0), (2.1) reduces to

(a − d − 2aT̂ /Tmax − λ)
(
λ2 + (c + δ)λ + cδ − pβT̂

) = 0. (2.2)

Hence, E1(T̂ ,0,0) is asymptotically stable for T̂ < cδ/pβ , is a saddle with dimWs(E1) = 2,
dimWu(E1) = 1 for T̂ > cδ/pβ.
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Since T̂ and T̄ satisfy

s + (a − d)T̂ − (a/Tmax)T̂
2 = 0,

s + (a − d)T̄ − (a/Tmax)T̄
2 = 1

pα
(pβT̄ − cδ),

T̄ > cδ/pβ ⇒ s + (a − d)T̄ − (a/Tmax)T̄
2 > 0 ⇒ T̂ > T̄ ,

T̄ < cδ/pβ ⇒ s + (a − d)T̄ − (a/Tmax)T̄
2 < 0 ⇒ T̂ < T̄ .

Hence, if T̄ > cδ/pβ , then T̂ > T̄ > cδ/pβ , and E1(T̂ ,0,0) is unstable, at the same time,
the positive equilibrium E2(T̄ , Ī , V̄ ) exists. Further, if T̄ < cδ/pβ, then T̂ < T̄ < cδ/pβ , and
E1(T̂ ,0,0) is locally asymptotically stable, meanwhile, the positive equilibrium E2(T̄ , Ī , V̄ )

(Ī < 0, V̄ < 0) is not feasible.
Let

R0 =
(

pβ

cδ

)
T̄ .

We can see that R0 is a bifurcation parameter. When R0 < 1, the uninfected steady state E1
is stable and the infected steady state E2 does not exist (unphysical). When R0 > 1, E1 becomes
unstable and E2 exists.

It is well known that the value, R0, which is called the basic reproductive ratio of system (1.4),
is very important (see [8]). Thus, the basic reproductive ratio, R0 determines the dynamical
properties of system (1.4) over a long period of time.

For system (1.3), it is known that the basic reproductive ratio is given by

R01 =
(

pβ

cδ

)
T̂ .

Obviously, there are very large differences of the basic reproductive ratio between the linear
infection rate and saturation infection rate. If α → 0, then T̄ → (cδ)/(pβ), R0 → 1; if α → ∞,

then T̄ → T̂ , R0 → R01.

For equilibrium E2(T̄ , Ī , V̄ ), (2.1) reduces to

λ3 + b1λ
2 + b2λ + b3 = 0, (2.3)

where

b1 = s/T̄ + aT̄ /Tmax + c + δ > 0,

b2 = cδ + (c + δ)(s/T̄ + aT̄ /Tmax) − pβT̄

R2
0

= 1

R0
cδ(R0 − 1) + (c + δ)(s/T̄ + aT̄ /Tmax)

> 0,

b3 = cδ(s/T̄ + aT̄ /Tmax) + pβT̄

R2
0

(
βV̄

R0
− s

T̄
− aT̄

Tmax

)

= 1

R2
0

(s/T̄ + aT̄ /Tmax)cδR0(R0 − 1) + pβ2T̄ V̄

R3
0

> 0.



X. Song, A.U. Neumann / J. Math. Anal. Appl. 329 (2007) 281–297 285
We also have

b1b2 − b3

= c + δ

R2
0

[
cδR0(R0 − 1) + R2

0(s/T̄ + aT̄ /Tmax)(s/T̄ + aT̄ /Tmax + c + δ) − βcδV̄

c + δ

]
.

By Routh–Hurwitz criterion, we have the following Theorem 2.1.

Theorem 2.1. Suppose that

(i) R0 > 1,

(ii) cδR0(R0 − 1) + R2
0(s/T̄ + aT̄ /Tmax)(s/T̄ + aT̄ /Tmax + c + δ) >

βcδV̄
c+δ

.

Then the positive equilibrium E2(T̄ , Ī , V̄ ) is asymptotically stable.

For the parameter values T0 = 1000, I0 = 0, V0 = 10−3, d = 0.01, δ = 0.5, c = 9, a = 7,
Tmax = 1300, s = 5, β = 2 × 10−4, α = 10−6. The number of infectious viruses released, p,
varies in the literature. We first take p = 1000, then the conditions of Theorem 2.1 are satisfied.
The infected steady state E2 = (23.32558428,330.2337120,36692.63466) is asymptotically sta-
ble. Numerical simulations show that trajectories of system (1.4) approach to the steady state.
Increasing the p value will decrease the numbers of uninfected CD4+ T-cells and infected cells
and increasing the number of virus, but will not change the stability of the steady state. When
p = 2000, the steady state becomes E2(11.67952500,171.8100000,38180.00000), which is as-
ymptotically stable.

Indeed, for system (1.4), we have

lim
t→+∞ supT (t) � T̂ = Tmax

2a

[
a − d +

√
(a − d)2 + 4as/Tmax

]
.

Then there is t1 > 0 such that for any sufficiently small ε > 0, we have

T (t) � T̂ + ε, for t > t1.

Theorem 2.2. There is M > 0 such that, for any positive solution (T (t), I (t),V (t)) of sys-
tem (1.4),

I (t) < M, V (t) < M, for all large t.

Proof. Set

V1(t) = T (t) + I (t).

Calculating the derivative of V1 along the solutions of system (1.4), we find

V̇1(t) = s − dT (t) + aT (t)
(
1 − T (t)/Tmax

) − δI (t)

= −dT (t) − δI (t) + aT (t) − a/TmaxT
2(t) + s

= −dT (t) − δI (t) − a/Tmax(T − Tmax/2)2 + (aTmax + 4s)/4

� −hV1(t) + (aTmax + 4s)/4.
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We have V̇1(t) + hV1(t) � M0, where M0 = (aTmax + 4s)/4, h = min(d, δ). Further

V1(t) <
M0

h
+

(
V1(0) − M0

h

)
e−ht .

Hence, we obtain the boundedness of V1(t), that is, there exist t2 > 0 and M1 > 0, such that
V1(t) < M1, for t > t2. Then I (t) has an ultimately above bound. It follows from the third
equation of Eq. (1.4) that V (t) has an ultimately above bound, say, their maximum is an M . Then
the assertion of Theorem 2.2 now follows and the proof is complete. This shows that system (1.4)
is dissipative. �

Define

Ω = {
(T , I,V ): 0 � T � T̂ , 0 � I, V � M

}
.

It is easy to see that, for system (1.4),

Ṫ � s − dT + aT (1 − T/Tmax) − (β/α)T ,

which implies that

lim
t→∞ infT (t) � Tmax

2a

[
a − d − β/α +

√
(a − d − β/α)2 + 4as/Tmax

] �= m.

Theorem 2.3. If R0 < 1, then E1(T̂ ,0,0) is globally asymptotically stable.

Proof. From the last two equations of Eq. (1.4), for t > t1, we have

İ � βT̂ V − δI,

V̇ = pI − cV . (2.4)

We consider the comparison equations

ż1 = βT̂ z2 − δz1,

ż2 = pz1 − cz2. (2.5)

Since R0 < 1, we have pβT̂ < pβT̄ < cδ. It is easy to show that if pβT̂ < cδ for any solution of
(2.5) with non-negative initial values we have limt→∞ zi(t) = 0, i = 1,2. Let 0 < I (0) � z1(0),
0 < V (0) � z2(0). If (z1(t), z2(t)) is a solution of system (2.5) with initial value (z1(0), z2(0)),

then by the comparison theorem [9], we have I (t) � z1(t),V (t) � z2(t) for all t > t1. Hence,
limt→∞ I (t) = 0 and limt→∞ V (t) = 0. Moreover, limt→∞ infT (t) � m.

For ε ∈ (0,1) sufficiently small, there exists t2 = t2(ε) such that, for t > t2,

s + (a − d − βε)T − (a/Tmax)T
2 � Ṫ (t) � s + (a − d)T − (a/Tmax)T

2.

This clearly shows that limt→∞ T (t) = T̂ . This proves the theorem. �
Theorem 2.4. If R0 > 1, then system (1.4) is permanent.

Proof. If R0 > 1, we have T̂ pβ > T̄ pβ > cδ. We begin by verifying weak persistence of (1.4).
If it is not weakly persistent, it follows from the proof of Theorem 2.2 that there is a positive
orbit (T (t), I (t),V (t)) of (1.4) such that

lim T (t) = T̂ , lim I (t) = 0, lim V (t) = 0.

t→+∞ t→+∞ t→+∞
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Since T̂ > (cδ)/(pβ), we can choose ε > 0 small enough such that

T̂ − ε

1 + αε
>

cδ

pβ
. (2.6)

Since limt→+∞ T (t) = T̂ , limt→+∞ V (t) = 0, for this ε, we can choose t0 > 0 large enough
such that if t > t0, we have

T (t) > T̂ − ε, V (t) < ε,

and

İ (t) = βT (t)

1 + αV (t)
V (t) − δI (t) � β(T̂ − ε)

1 + αε
V (t) − δI (t),

V̇ (t) = pI (t) − cV (t), for t > t0. (2.7)

Let us consider the matrix Aε defined by

Aε =
(−δ

β(T̂ −ε)
1+αε

p −c

)
.

Since Aε admits positive off-diagonal element, the Perron–Frobenius theorem implies that there
is positive eigenvector v = (v1, v2) for the maximum eigenvalue α1 of Aε . Moreover, by (2.6),
we see that the maximum eigenvalue α1 is positive.

Let us consider

ż1 = β(T̂ − ε)

1 + αε
z2 − δz1,

ż2 = pz1 − cz2. (2.8)

Let z(t) = (z1(t), z2(t)) be a solution of (2.8) through (lv1, lv2) at t = t0, where l > 0 satisfies
lv1 < I (t0), lv2 < V (t0). Since the semiflow of (2.8) is monotone and Aεv > 0, it follows that
zi(t) is strictly increasing and zi(t) → +∞, as t → +∞, contradicting the eventual boundedness
of positive solution of (1.4). Thus, no positive orbit of (1.4) tends to (T̂ ,0,0) as t tends to infinity.
This shows that (1.4) is weakly persistent. Then an application of the techniques given in [10]
concludes the permanence of (1.4). The proof of Theorem 2.4 is complete. �

M. Hirsch [9], H.R. Zhu and H.L. Smith [11] and H.L. Smith and H. Thieme [12] proved
that three-dimensional competitive systems that live in convex sets have the Poincaré–Bendixson
property; that is, any non-empty compact omega limit set that contains no equilibria must be a
closed orbit.

Theorem 2.5. Assume D is convex and bounded. Suppose system

Ẋ = F(X), X ∈ D, (2.9)

is competitive and permanent and has the property of stability of periodic orbit. If X̄0 is the only
equilibrium point in intD and if it is locally asymptotically stable, then it is globally asymptoti-
cally stable in intD.

By looking at its Jacobian matrix and choosing the matrix H as

H =
(1 0 0

0 −1 0
0 0 1

)
,
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we see that system (1.4) is competitive in Ω , with respect to the partial order defined by the
orthant K1 = {(T , I,V ) ∈ R3: T � 0, I � 0, V � 0}.

Theorem 2.6. Suppose that

(i) R0 > 1,

(ii) cδR0(R0 − 1) + R2
0(s/T̄ + aT̄ /Tmax)(s/T̄ + aT̄ /Tmax + c + δ) >

βcδV̄
c+δ

.

Then the positive equilibrium E2 of Eq. (1.4) is globally asymptotically stable provided that one
of the following two assumptions holds:

(iii) Tmax(a − d)/(2a) < m < T̂ < Tmax(a − d + δ)/(2a),
(iv) m > Tmax(a − d + δ)/(2a).

The proof of this theorem is the same as those of Theorems 2.1 and 4.2 in [9]. Since system
(1.4) is competitive and permanent, and E2 is locally asymptotically stable if (i) and (ii) hold.
Furthermore, in accordance with Theorem 2.5 (where we can choose D = Ω), Theorem 2.6
would be established if we show that system (1.4) has the property of stability of periodic orbits.
In the following, we prove it.

Proposition 2.1. Assume condition (iii) or (iv) of Theorem 2.6 hold true. Then system (1.4) has
the property of stability of periodic orbits.

Proof. Let P(t) = (T (t), I (t),V (t)) be a periodic solution whose orbit Γ is contained in intΩ .
In accordance with the criterion given by Muldowney in [13], for the asymptotic orbital stability
of a periodic orbit of a general autonomous system, it is sufficient to prove that the linear non-
autonomous system

Ẇ (t) = (
DF [2](P(t)

))
W(t) (2.10)

is asymptotically stable, where DF [2] is the second additive compound matrix of the Jaco-
bian DF (see Appendix A).

The Jacobian of Eq. (1.4) is given by

DF =
⎛
⎜⎝

a − d − 2a
Tmax

T − βV
1+αV

0 − βT

(1+αV )2

βV
1+αV

−δ
βT

(1+αV )2

0 p −c

⎞
⎟⎠ .

For the solution P(t), Eq. (2.10) becomes

Ẇ1 = −
(

δ − a + d + 2a

Tmax
T + βV

1 + αV

)
W1 + βT

(1 + αV )2
(W2 + W3),

Ẇ2 = pW1 +
(

a − d − 2a

Tmax
T − βV

1 + αV
− c

)
W2,

Ẇ3 = βV
W2 − (c + δ)W3. (2.11)
1 + αV
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To prove that Eq. (2.11) is asymptotically stable, we shall use the following Lyapunov function,
which is similar to the one found in [14] for the SEIR model,

L
(
W1(t),W2(t),W3(t), T (t), I (t),V (t)

) =
∥∥∥∥
(

W1(t),
I (t)

V (t)
W2(t),

I (t)

V (t)
W3(t)

)∥∥∥∥,

where ‖ · ‖ is the norm in R3 defined by∥∥(W1,W2,W3)
∥∥ = sup

{|W1|, |W2| + |W3|
}
.

From Theorem 2.4, we obtain that the orbit of P(t) remains at a positive distance from the
boundary of Ω . Therefore

I (t) � η, V (t) � η, η = min{I ,V } for all large t.

Hence, the function L(t) is well defined along P(t) and

L(W1,W2,W3;T , I,V ) � η

M

∥∥(W1,W2,W3)
∥∥. (2.12)

Along a solution (W1,W2,W3) of the system (2.11), L(t) becomes

L(t) = sup

{∣∣W1(t)
∣∣, I (t)

V (t)

(∣∣W2(t)
∣∣ + ∣∣W3(t)

∣∣)}.

Then we have the following inequalities:

D+
∣∣W1(t)

∣∣ � −
(

δ − a + d + 2a

Tmax
T + βV

1 + αV

)∣∣W1(t)
∣∣

+ βT

(1 + αV )2

(∣∣W2(t)
∣∣ + ∣∣W3(t)

∣∣),
D+

∣∣W2(t)
∣∣ � −

(
c − a + d + 2a

Tmax
T + βV

1 + αV

)∣∣W2(t)
∣∣ + p

∣∣W1(t)
∣∣,

D+
∣∣W3(t)

∣∣ � −(c + δ)
∣∣W3(t)

∣∣ + βV

1 + αV

∣∣W2(t)
∣∣. (2.13)

From (2.13), we get

D+
I

V

(|W2| + |W3|
) =

(
İ

V
− I V̇

V 2

)(|W2| + |W3|
) + I

V
D+

(|W2| + |W3|
)

�
(

İ

I
− V̇

V

)
I

V

(|W2| + |W3|
) + pI

V
|W1|

−
(

c − a + d + 2a

Tmax
T

)
I

V
|W2| − (c + δ)

I

V
|W3|.

Thus, we can obtain

D+L(t) � sup
{
g1(t), g2(t)

}
L(t), (2.14)

where

g1(t) = −δ + a − d − 2a

Tmax
T − βV

1 + αV
+ βT V

I (1 + αV )2
,

g2(t) = pI

V
+ İ

I
− V̇

V
− G1,

G1 = min{c − a + d + 2aT /Tmax, c + δ}.
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From the second equation of system (1.4), we have

g1(t) = −δ + a − d − 2a

Tmax
T − βV

1 + αV
+ βT V

I (1 + αV )2

� −δ + a − d − 2a

Tmax
T − βV

1 + αV
+ βT V

I (1 + αV )

= a − d − 2a

Tmax
T − βV

1 + αV
+ İ

I
.

If (iii) holds, then −δ < a − d − 2aT /Tmax < 0, that is, G1 = c − a + d + 2aT /Tmax. Then
we get

g2(t) = a − d − 2a

Tmax
T + İ

I
.

Hence,

sup
{
g1(t), g2(t)

}
� a − d − 2a

Tmax
T + İ

I
� −μ + İ

I
, (2.15)

where μ > 0 is such that a − d − 2aT /Tmax � −μ < 0.

If (iv) holds, then a − d − 2aT /Tmax � −δ, that is G1 = c + δ. Then we get

g2(t) = c − c − δ + İ

I
= İ

I
− δ.

Hence,

sup
{
g1(t), g2(t)

}
� İ

I
− δ. (2.16)

Let μ1 = min{μ,δ}. Then, from (2.15) and (2.16), we have

sup
{
g1(t), g2(t)

}
� −μ1 + İ

I
. (2.17)

Therefore, from (2.14) and Gronwall’s inequality, we obtain

L(t) � L(0)I (t)e−μ1t � L(0)Me−μ1t ,

which implies that L(t) → 0 as t → +∞. By (2.12) it turns out that(
W1(t),W2(t),W3(t)

) → 0, as t → +∞.

This implies that the linear system equation (2.11) is asymptotically stable and therefore the
periodic solution is asymptotically orbitally stable. This proves Proposition 2.1. �

As noted before, this result proves Theorem 2.6.

Theorem 2.7. Suppose that

(i) R0 > 1,

(ii) cδR0(R0 − 1) + R2
0(s/T̄ + aT̄ /Tmax)(s/T̄ + aT̄ /Tmax + c + δ) <

βcδV̄
c+δ

.

Then system (1.4) has an orbitally asymptotically stable periodic solution.
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Proof. A change of variables z1 = −T , z2 = I and z3 = −V transforms (1.4) as

ż1 = −s − dz1 + az1(1 + z1/Tmax) + βz1z3

1 − αz3
,

ż2 = βz1z3

1 − αz3
− δz2,

ż3 = −pz2 − cz3. (2.18)

If we write this system as ż = f (z), the Jacobian matrix of f at z is given by

J (z) =
⎛
⎜⎝

−d + a + 2az1/Tmax + βz3
1−αz3

0 βz1

(1−αz3)
2

βz3
1−αz3

−δ
βz1

(1−αz3)
2

0 −p −c

⎞
⎟⎠ .

Define set E by

E = {
(z1, z2, z3): z1 � 0, z2 � 0, z3 � 0

}
.

Since J (z) has non-positive off-diagonal elements at each point of E, (2.18) is competitive at E.
Set z∗ = (−T ∗, I ∗,−V ∗). It is easy to see that z∗ is unstable and detJ (z∗) < 0. Furthermore,
it follows from Theorem 2.4 that there exists a compact set B in the interior of E such that for
each z0 ∈ intE, there exists T (z0) > 0 such that z(t, z0) ∈ B for all t > T (z0). Consequently,
by Theorem 1.2 of [11], the system has an orbitally asymptotically stable periodic solution. The
proof of Theorem 2.7 is complete. �
3. The drug effectiveness under the saturation infection

We consider the following model

Ṫ = s − dT + aT (1 − T/Tmax) − (1 − η)β
T V

1 + αV
,

İ = (1 − η)β
T V

1 + αV
− δI,

V̇ = (1 − ε)pI − cV, (3.1)

where η = efficiency of drug therapy in preventing new infections; ε = efficiency of drug therapy
in inhibiting viral production; and the other parameters are defined as in Eq. (1.4). Before IFN
therapy, ε = η = 0. Once therapy is initiated, 0 < ε < 1 or 0 < η < 1 or both.

In this section, we are following the approach of Perelson and Nelson [6]. Before therapy
begins, viral loads are relatively constant. Thus dV/dt = 0, which implies

(1 − ε)pI0 = cV0, ε = η = 0, (3.2)

where the subscript 0 is used to denote a pretreatment quasi-steady state value. Because V is
relatively constant for weeks before therapy, this implies that I must also be relatively constant
(assuming that the various model parameters ε,p and c are also constant). For I to be constant,
we assume dI/dt = 0 on this same time scale, and thus

(1 − η)βT0V0 = δI0(1 + αV0), ε = η = 0. (3.3)

Generally, the concentration of productively infected cells, I , is not measured in patients. How-
ever, T cell counts and viral loads are monitored, and it is reasonable to assume that the CD4+
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T cell concentration and the viral load are known. The vast majority of cells susceptible to HIV
infection are CD4+ T cells [15], and we shall assume that T0 is equal to the CD4+ T count at
the start of therapy. Using Eq. (3.3) one can then determine I0. Thus, for patients in quasi-steady
state before antiretroviral therapy begins, V0, T0 and I0 provide initial conditions for Eq. (3.1).

The T cell count changes in HIV-1 infected patients, but on a time scale of years. If we assume
that on a scale of weeks the T cell count as well as V and I do not change, we can compute a full
pretreatment steady state. Equations (3.2) and (3.3) imply that for I0 and T0 to be in quasi-steady
state,

I0 = cV0

(1 − ε)p
, T0 = cδ + cδαV0

(1 − η)β(1 − ε)p
, ε = η = 0.

V0 satisfies the following equality:

s − dT0 + aT0(1 − T0/Tmax) − (1 − η)β
T0V0

1 + αV0
= 0, ε = η = 0.

If we assume that for a short period after therapy is initiated, T = constant = T0, ε > 0 or
η > 0 or both, I and V vary according to the last two equations of system (3.1), then the sys-
tem (3.1) becomes the following system:

İ = (1 − η)βT0
V

1 + αV
− δI,

V̇ = (1 − ε)pI − cV . (3.4)

The possible non-negative equilibria of system (3.4) are O(0,0),E(I ∗,V ∗), where

I ∗ = (1 − ε)p(1 − η)βT0 − cδ

αδ(1 − ε)p
, V ∗ = (1 − ε)p

c
I ∗.

The characteristic equation of equilibrium O(0,0) is

λ2 + (c + δ)λ + cδ − (1 − ε)p(1 − η)βT0 = 0.

In the general case, when cδ �= (1 − ε)p(1 − η)βT0, the O(0,0) is a stable fixed point if cδ >

(1 − ε)p(1 − η)βT0 and a saddle point if cδ < (1 − ε)p(1 − η)βT0.
The characteristic equation of equilibrium E(I ∗,V ∗) is

λ2 + (c + δ)λ + cδ
(1 − ε)p(1 − η)βT0 − cδ

(1 − ε)p(1 − η)βT0
= 0.

Hence, the E(I ∗,V ∗) is a stable fixed point if cδ < (1 − ε)p(1 − η)βT0 and the E(I ∗,V ∗) does
not exist if cδ > (1 − ε)p(1 − η)βT0.

If cδ > (1 − ε)p(1 − η)βT0, then O(0,0) is asymptotically stable, and the solution of one
order linear approximation equation of system (3.4), with T constant, is

V (t) = V0
[
Ae−λ1(t−t0) + (1 − A)e−λ2(t−t0)

]
, t > t0,

where

λ1,2 = (c + δ) ±
√

(c + δ)2 + 4[(1 − η)β(1 − ε)pT0 − cδ]
2

= (c + δ) ±
√

(c − δ)2 + 4(1 − η)β(1 − ε)pT0
.

2
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For example, we choose T0 = cδ
(1−η)βp

< cδ
(1−ε)p(1−η)β

, the origin is a stable point, and according
to

V (t = t0) = V0,
dV

dt

∣∣∣∣
t=t0

= −εcV0.

We can obtain

λ1,2 = (c + δ) ±
√

(c − δ)2 + 4(1 − ε)cδ

2
, A = (εc − λ2)/(λ1 − λ2).

From the above discussion, we can obtain the threshold value parameter

R02 = (1 − ε)p(1 − η)βT0

cδ
.

If R02 < 1, the virus is cleared and the disease dies out; if R02 > 1, then virus persists in the host.

4. Discussion

In this paper, we consider the classical mathematical model with saturation response of the
infection rate. By stability analysis we obtain sufficient conditions on the parameters for the
global stability of the infected steady state and the infection-free steady-state. We also show that
periodic oscillations in the viral load and T cell populations are possible. Biologically, it implies
that some of the parameter values can cause the cell and virus population to fluctuate.

Our analysis establishes that the global dynamics of T cells are completely determined by a
basic reproductive ratio R0. If R0 < 1, the virus is cleared and the disease dies out. If R0 > 1,
then virus persists in the host, solutions approaching either a chronic disease steady state E2 or a
periodic orbit.

For system (1.3) with the simple mass-action infection term, it is known that the basic
reproductive ratio is given by R01. Obviously, there are very large differences of the basic re-
productive ratio between the linear infection rate and saturation infection rate. If α → 0, then
T̄ → (cδ)/(pβ), R0 → 1; if α → ∞, then T̄ → T̂ , R0 → R01. Hence, the system (1.3) with the
simple mass-action infection term is an extreme case of the HIV model (1.4) in this paper.

Let (T̄1, Ī1, V̄1) be the infected steady-state of system (1.3) when R01 > 1, where

T̄1 = cδ

pβ
, Ī1 = 1

δ

[
s − dT̄1 + aT̄1(1 − T̄1/Tmax)

]
,

V̄1 = p

cδ

[
s − dT̄1 + aT̄1(1 − T̄1/Tmax)

]
.

We have T̄ > T̄1, V̄ < V̄1, R0 < R01. Thus, although the threshold behavior and dynamic be-
havior of system (1.4) in this paper are similar to those of system (1.3), the basic reproductive
ratio R0 of system (1.4) is less than R01, the virus level of the endemic equilibrium state is less
than those of (1.3).

In the range of parameters that was found to be realistic, we find with model (1.4) the next
behaviors (1)–(4).

(1) For the following parameter values, d = 0.002, δ = 0.24, c = 2.0, a = 3, Tmax = 1500,
s = 10, β = 0.0027, α = 0.000001, p = 2.4, the conditions (i), (ii) of Theorem 2.1 are satisfied.
Then the positive equilibrium E2 of Eq. (1.4) is locally asymptotically stable (see Fig. 1(a)).
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(2) For the following parameter values, d = 0.002, δ = 0.24, c = 1.32, a = 3, Tmax = 1500,
s = 10, β = 0.0027, α = 0.000001, p = 2.4, the conditions (i), (ii) of Theorem 2.7 are satisfied.
Then the system (1.4) has an orbitally asymptotically stable periodic solution (see Fig. 1(b)).

(a)

(b)

Fig. 1.
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(a)

(b)

Fig. 2.

(3) For the following parameter values, d = 0.01, δ = 4, c = 9, a = 4, Tmax = 1300, s = 4,
β = 0.0002, α = 0.001, p = 400, the conditions (i)–(iii) of Theorem 2.6 are satisfied. Then the
positive equilibrium E2 of Eq. (1.4) is globally asymptotically stable (see Fig. 2(a)).

(4) For the following parameter values, d = 0.01, δ = 5, c = 9, a = 10, Tmax = 1300, s = 5,
β = 0.0002, α = 0.0001, p = 400, the conditions (i), (ii) and (iv) of Theorem 2.6 are satisfied.
Then the positive equilibrium E2 of Eq. (1.4) is globally asymptotically stable (see Fig.2(b)).
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Appendix A

In this appendix, we shall give the definition of an additive compound matrix. A survey of
properties of additive compound matrices together with their connections to differential equa-
tions may be found in [13,14].

We start by recalling the definition of a kth exterior power or multiplicative compound of a
matrix.
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Definition A.1. Let A be an n × m matrix of real or complex numbers. Let ai1,...,ik,j1,...,jk
be the

minor of A determined by the rows (i1, . . . , ik) and the columns (j1, . . . , jk), 1 � i1 < i2 < · · · <
ik � n, 1 � j1 < j2 < · · · < jk � m. The kth multiplicative compound matrix A(k) of A is the(
n
k

) × (
m
k

)
matrix whose entries, written in lexicographic order, are ai1,...,ik,j1,...,jk

.

In particular, when A is an n × k matrix with columns a1, a2, . . . , ak,A
(k) is the exterior

product a1 ∧ a2 ∧ · · · ∧ ak.

In the case m = n, the additive compound matrices are defined in the following way.

Definition A.2. Let A be an n × n matrix. The kth additive compound A[k] of A is the
(
n
k

) × (
m
k

)
matrix given by

A[k] = D(I + hA)(k)
∣∣
h=0. (A.1)

If B = A[k], then the following formula for bi,j can be deduced from Eq. (A.1). For any
integer i = 1, . . . ,

(
n
k

)
, let (i) = (i1, i2, . . . , ik) be the ith member in the lexicographic ordering

of all k-tuples of integers such that 1 � i1 < i2 < · · · < ik � n. Then

bi,j =

⎧⎪⎨
⎪⎩

ai1,i1 + · · · + aik,i+k if (i) = (j),

(−1)r+sais ,jr if exactly one entry is in (i) does not occur in (j)

and jr does not occur in (i),

0 if (i) differs from (j) in two or more entries.

In the extreme cases when k = 1 and k = n, we have A[1] = A and A[n] = tr(A). For n = 3, the
matrices A[k] are as follows:

A[1] = A, A[2] =
(

a11 + a22 a23 −a13
a32 a11 + a33 a12

−a31 a21 a22 + a33

)
, A[3] = a11 + a22 + a33.
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