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THE PAPER EXTENDS EXIT THEOREMS OF FREIDLIN AND WENTZELL 

TO DEGENERATE DIFFUSIONS. IT USES EXTENSIVELY GENERAL, 

EXPONENTIAL ESTIMATES DUE TO AZENCOTT 

1. INTRODUCTION 

It is of everyday experience that stable dynamical systems deteriorate or 
destabilize after operating for some, usually rather long, time. This is often 
due to the persistent influence of small random perturbations. The question 
of describing accurately the process of destabilization has been studied in 
the scientific literature, mainly probabilistic, as the so-called exit problem. 
Basic results on the exit problem belong to Freidlin and Wentzell and can 
be found in their monograph [6]. As was pointed out in [ 121 and [3] 
some of the conditions imposed in [6] on the studied model limited the 
number of applications considerably. An attempt to remove some of the 
restrictions was made in [12]. In the present paper we go much further 
than in [12] and we also make the control theoretic aspect of the subject 
more apparent. More specifically we are concerned here with the exit 
problem for solutions X-‘,” of the general stochastic equation 

dX=f(X) dt + Ed dW,, X(0) =x, & 3 0 (1) 

without making any non-degeneracy assumptions on the diffusion term in 
(1). The assumption that the matrix a(x) = C(X) a*(x), XE R” is positive 
definite has been made in all derivations of the exit theorems known to the 
author see [6, 10, 111. Moreover we do not impose neither smoothness 
assumptions on the boundary aD of the basic reference set D nor 
invariance properties of D. The main technical tool of the paper is the 
Azencott’s generalization, see [ 11, of the exponential estimates for 
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solutions of (1). In our proofs we impose some conditions on the control 
system 

dy=f(y)dt+cJ(y)udt, y(0) =.x (2) 

As a rule they are weak and easy to check although it is possible that even 
weaker conditions suffice for the results to hold true, see Section 6 for com- 
ments. Contrary to the non-degenerate case 16, II] the quasi-potential 
associated with (2) is no longer continuous. 

Probabilistic considerations of Section 3 to Section 5 follow those of the 
book by Freidlin and Wentzell [6] and CBMS Notes of Varadhan [ 111. 
They are included in the paper to make it self-sufficient and also because it 
was not always clear that the considerations of [6, 111 do generalize to the 
situation studied here. Similar extensions should be possible for systems 
with more equilibria. The case of invariant measures for (1 ) as F JO is 
treated in 191. Some results for the infinite dimensional systems have been 
obtained in [4] and [13]. 

2. FORMULATION OF THE RESULTS 

We assume that j’ and r~ are C’ functions defined on R” with values 
respectively in R” and in the space L(R”, R”‘) of n x m matrices. Then 
Eq. (1) has a unique solution X‘.” defined up to the explosion time 7(X'.' 1. 
In a similar way, for arbitrary x and a square integrable function u( .). 
Eq. (2) has a unique solution JI\-.~ defined up to the explosion time 7( J-‘.I'). 

Define, for arbitrary YE R” and number TV> 0 following subset ;“(rl) 
of R”. 

y‘(q) = closure ~ER”;I’=J ‘,“( r ) for some 1 < t( ,b,‘.“) 

and control u such that i 1’ lu(.s)i’ (i.~ d q 
0 

Thus y‘(q) is the ball with the centre at .Y and of radius ts’G with respect to 
the following quasi-distance d : 

The distance is not in general finite and commutative but it satisfies the 
triangle inequality, see [2, 71 for more details. 
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We impose the following crucial hypothesis on system (2): 

(HI ) For arbitrary q > rj b 0 and 6 > 0 there exists r > 0 such that 

~‘(rl)n B(aD, r) c B(~~(ul), a), for all x, 1x1 < r. 

In the above definition, B(K, 6) stands for the &neighbourhood of a set K. 
Before going further we give sufficient, easy to check, conditions which 

imply (Hl ). The proofs are relegated to Section 3. In the formulation of the 
condition (iii), V will stand for the so-called quasipotential defined as 
follows 

P’(a, h) =k inf 1’ /u(s)l’ ds; y”.“(O) = a, y”+(T) = b, T3 0 a, b E R”. 
0 

with the inf Qr = +co. 

PROPOSITION 1. Hypothesis (Hl ) is satisfied if one of the fillowing con- 
ditions hold: 

(i) For arbitrary 9 > 0 there exists r > 0 such that 

Y”(V) = B(O, r) 

(ii) Rank[B, A&.., A”+‘B] =n where 

A =f,(O) and B = a(0) 

(iii) There exists r > 0 such that the quasipotential V(., .) is continuous 
on 

B(0, r) x B(aD, r). 

(iv) System (2) is linear: f(x) = Ax, cr.(x) E 0, x E R” and A is a stable 
matrix. 

Let D c R” be an open, bounded set containing the origin. Set D is our 
basic reference set which is assumed to be uniformly attracted by the 
system 

i= f(z), z(0) =x (3) 

to 0 in the sense that: 

(H2) For arbitrary r > 0 there exists T> 0 such that for all x E D and 
t>T 

I?( t)l < r. (4) 
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In (4) z’(.) stands for the solution of problem (3). It is clear that the set 

Do = {x E D; z.‘(t) E D for all t 3 0} 

contains an open neighbourhood of 0 provided that (H2) is satisfied. 
Finally let us define the exit time rY,’ 

r’,“= inf{ t>O; X’,‘(~)E ?Di. 

Our main results are given in the following two theorems: 

THEOREM 1. Under hypotheses (Hl ) and (H2) the @lowing estimatu 
hold: 

(i) For allxED 

limlkitrp E* In E(P) 6 sup { ‘I; :‘I)( ye) c D ) 

(ii) For all XE D,,. 

hmLtrfs21n iE(~‘.')3sup(~;i"(~)lDi 

Let us define 

It is clear that rj < +a if and only if the following controllability 
assumption is satisfied: 

(H3) There exists a square integrable control u(.) which transfers 0 
to a point in D’; (for some t > 0, y’,“(t) E D ). 

If f < +CC then the following set E is well defined and as we will see later 
non-empty 

E = r?D n f’(q). 

THEOREM 2. Assume that (H 1 )-(H3) hold then .for urhitrary x E D,, ana 
6 > 0, 

lim P(p(Xr,‘(Pi’), E) > 6) = 0. 
i. 1 0 
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In the formulation of Theorem 2 the letter p stands for the Euclidian dis- 
tance between a point and a set. The symbol pr will be used in the sequel 
as the standard metric in the space C[O, T, R”] of continuous functions 
from [0, T] into R”. 

Remark 1. It will follow from the proofs that hypothesis (Hl) has to be 
required only for all q 6 f + 6 where 6 is a positive number. Also the proof 
of the estimate (i) in Theorem 1 does not require (Hl). 

3. SOME DETERMINISTIC RESULTS 

In this section we gather some results on the deterministic system (2) 
needed in the sequel. We will prove also Proposition 1. 

3.1. Properties of the distance A 

Let us remark that sets y’;(q) defined as in Section 2 but without the 
closure operation are not in general closed. To see this it is enough to con- 
sider the example of system (2) with a(x) = 0 for all x E R”. It is also impor- 
tant to note that all sets y-‘(q), XE R”, n > 0 are invariant for (3). The 
following two propositions are less obvious. 

PROPOSITION 2. For arbitrary compact set Fc R” separated from 0 and 
uniformly attracted by (3) to 0, there exist M> 0 and T, > 0 such that if 
T> T, and y’,“(t)EFfor all t< T then 

;c,: lu(s)l’ds>M(t- T,), for all tE [T,, TJ. 

Proof. Since F is a bounded set and f if of class C’ one can assume that 
f satisfies Lipschitz condition: 

Ifb-f(v)1 dk Ix-YL 

for some k > 0 and all X, y E R”. Then for all t < T: 

I v’“(t) --z’(t)1 

<k/’ I y.““(s) - z-‘(s)1 ds + sup 
0 

s’ a( y”+(r)) u(r) dr 
s<:r 0 

Consequently, 

SUP Iy~'~"(s)-zz-'(s)l <ekr sup a( y”‘“(r)) u(r) dr . 
s c f 
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Since la( y)I 6 I for some I > 0 and all y E F therefore 

Let T,, > 0 be a number such that 

I-‘(t)1 6 h/2 for all .Y E F and t 3 To 

where S=p(F,O). Then for all ~E[T~, T] and XEF 

In particular taking t = To, 

By a simple induction, for arbitrary ,j = 1, 2,... such that jT, 6 T one has 

and this implies the result. 

PROPOSITION 3. Let F he u compact set invariant for (3) contained in cm 
open set G such that C? is un[formly attracted by (3) to 0. Then there exists 
6 > 0 such thut for arbitrary u E F and b E G’ and a control u(. ) transferring a 
to b in time T 3 0 one has 

Proof: Without any loss of generality one cas assume that F contains a 
neighbourhood of 0. 

Define H = G-F and let us assume that the proposition is not true. 
Then one can construct sequences of points (a,). controls (u,) and positive 
numbers (T,) with the properties: 

a,~ Hn F, 1 = 1, 2,... and a,-+aEF (5) 

.P”‘( t ) E H for t 6 T,, and y”‘-‘( T, ) E G’, I = 1, 2,... (6) 

I ,I! lu,(s)12ds+0 as I++K (7) 
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It follows from Proposition 2 that the sequence (T,) is bounded. So 
suitably constructing a subsequence one can claim that T, + T, < + co. 
Let c1 and j3 be positive numbers such that for all XE G”, and t < c(, 
p(z”(t), F) 2 p. Let, in addition, 1, be a natural number such that for I > I,,, 
1 T,- T,l < CI. Extending all u,(.), I= I,,... to the interval [0, T, + a] by 
setting u,(t) = 0 for t E [T,, T, + a] one has that SOT,, + X lu,(s)l 2 ds + 0 and 
consequently y”‘+‘(.) -+ z”(*) uniformly on [0, T, + M]. Since a E F and the 
set F is invariant for (3) therefore z”(T, + CI)E F. However for all 
I= l,..., y”““‘( T,) E G’ and therefore ,o(y”‘+‘(T, + Co, F) > B. Thus 
p(z”( T, + CI), F) 2 p > 0 a contradiction. 

We will need also the following lemma: 

LEMMA 1. If a compact set F is uniformly attracted to 0 by (3) then there 
exists 6 > 0 such that the 6-neighbourhood B(F, 6) of F is also uniformly 
attracted to 0. 

Prooj Let r > 0 be a fixed number. Since F is uniformly attracted to 0 
and solutions of (3) depend continuously on the initial condition therefore, 
for arbitrary x E F there exists a neigbourhood B(x) of x and a number 
T(x) > 0 such that for all ye B(x) and t 3 T(x), /z-“(t)1 6 r. Since the set F 
is compact, it can be covered by a finite number of B(x) say FX U,“=, B(x,). 
If now a &neighbourhood of F is contained in U;“=, B(x;) and 
T3maxjc, 
the result: 

T(xi) then for ye B(F, 6) and r> T, lz”(t)l dr. This implies 

The following theorem summarizes some basic properties of y’(q), 
XER”, rj>O. 

THEOREM 3. (i) For arbitrary x E R” and v] > 0 

Y’(v)= tJ Y’(V) 
ri<V 

(ii) If for some x E R” and q > 0 the set y”(q) is compact and uniformly 
attracted to 0, then 

m)= n ~77) 
ii>rl 

(iii) Assume (H2). Then for arbitrary r > 0 there exist r0 > 0 and 
q0 > 0 such that if (xl < r,, and q < qO, then 

Y.‘(V) = B(O, r). 

Proof: (i) Assume that for a control u(.), $Jc lu(s)12 ds < 9, y”,“(T) = y. 
If $~~lu(s)12ds<rl then YEU~<~YY$. If tS~Iu(s)12ds=q and 
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$j{) lu(s)l” d.Ss<~ f or all t<T then Y~.“(~)EU~~~Y’(V) and as r?T, 
y““(t)-+~. If F denotes lJ<,,y’(q) then ~EF. Let T’=inf{t<T, 
$j;, lu(s)l’ A = q} < T. Then y’,“( T’) = I” E F by the revious argument and 
since the set F is invariant for (3) therefore also J = 2 “‘(T- T’) E F as well. 

(ii) By Lemma 1 for sufficiently small 6 >O the set @y’(q), 6) is 
uniformly attracted to 0. Consequently, Proposition 3 implies that for Q 
sufficiently close to II, r’(4) c B(g’(q), 6). Since ;,‘(e) I ;j’(q) the result 
follows. 

(iii) The hypotheses (H2) implies that for Y > 0 there exists r. > 0 
such that for all X, Ix/ dr,, and t30, Iz’(r)l dr. Let F= {;E R”; z=:‘(f) 
for some t 20 and IX 6 Y()). It is easy to see that F is a compact set 
invariant for (3). Without any loss of generality one can assume that 
B(0, 2r)c D. Proposition 3 gives that there exists cx > 0 such that if for 
some control u(.), T>O, .YE F and Ihl 32r, ~3‘.“(T)=h, then 
${A \u(s)l’ (is > r. Thus for all X, 1.~1 <Y,), 7’(a/2) c &O, 2r) the desired 
result. 

COROI.I.ARY 1. Fur urhitrury x E D, ‘;‘(Cj) G D und E = (?D n y’(q) = 
CD n (7? ., ,I ~()(~). This identity will be useful in the proof of Theorem 2. 

C~R~LI.ARY 2. Ah7y.s rj > 0. 

3.2. Proof’ of Proposition I 

(i) Let q > Q > 0 be given. There exists r > 0 such that 
;l”(rl- 4) 3 B(0, r). If 1.~1 <r and boy’ then there exist sequences of 
points (.\-/,). (~3~) and controls (u,), (uk) and positive numbers ( Tk), (S,) 
such that sh -+ .Y and .r’k + y as k -+ +K and for k = 1, 2 . . . . 

If a control )I.~(.) is defined as 

M.l(t) = uk(l) for t 6 T, and 

= vk( I - Tk) for Tk < t < Tk + S, then 

J +‘.“‘“( T, + S,) = .)‘A 
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Consequently y E y’(q) and therefore for 1x1 < r 

Y”(f) c YOh) 

which is stronger property than (Hl). 
(ii) See also [S, 121. Let y, ,..., y,? be solutions of the linear equations 

pi =fJO) y, + a(O)u,, i = l,..., n such that y,(O) = 0 i= I,..., n, vectors 
y,(T),..., Y,~( T) are linearly independent and functions u,(.),..., u,,(.) are 
continuous on [0, T]. Existence of functions Us,..., U, such that 
the corresponding y, ,..., yn have the desired properties for some T> 0 
follows from the controllability condition given in (ii). For arbitrary 
5 = (r’,..., 4”) E R” define ~(5, t) = t/u,(t) + . . . + (‘*u,,(l) and let ~(5,) be the 
unique solution of 

If X(t) is the Jacobian of the transformation 5 + ~(5, t) at r = 0, then 

m =f,(O) X(t) + @)Cu,(t),..., %(t)l 

Therefore the matrix X(T) consists of linearly independent columns 
y,(T),..., y,(T) and therefore det X(T) # 0. The implicit function theorem 
implies that the transformation r + v(<, T) transforms an arbitrary 
neighbourhood of 0 onto a neighbourhood of 0. Since for some /I > 0 and 
all 5 E R” +JT lu([, t)12 dt d /? ItI2 therefore, for all x of the form x = y(t, T) 
where 1 <I < (q - fi//?)“‘, one has 

which implies the desired inquality even with 6 = 0. 
(iii) Continuity of the function V implies that for 6 > 0, 6 <v-ii 

there exists Y, <r such that V(0, y)--6 d V(x, y) for 1x1 <r, and 
y E B(dD, r). Now 

y’(Q)nB(dD,r)E (~EB(JD,Y); V(x, y)dV} 

G {ye B(JD, r); V(0, y) d fj + 6) 

s y’(ij + 6) n B(6D, r) 

c y’(v) n B(JD, r) 

which proves (iii). 
(iv) Solution to the Eq. (2) is of the form 

y”,“(t)=S(t)x+ ‘s(t-s)cm(s)ds 
s 0 
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where S(r)=expt A and for some M>O and x>O, \,‘S(t)( <Mexp(--cct), 
r > 0. Consequently for arbitrary t 2 0 and a square integrable u 

1 y ‘Jy t) - y()Jy t)l < 6 

provided that 1x1 <3/M and this proves the result. 

3. SOME AUXILIARY PROBABILISTIC RESULTS 

From now on we make the simplifying assumption that .f’ and CJ vanish 
for sufhciently large arguments. This assumption implies that solutions X‘.’ 
and .I”.” exist globally. We first quote the following uniform estimates due 
to Azencott [ 11. For their formulation we need however some more 
notation: 

I-;(q)= ~‘.“EC[O, T;R+j” lu(.s)(*dsbg 
i 0 

7 j.(y) = closure of ( y E R”; 1’ = I.‘.~( t) 

for some t d T and .I,‘.” E T;(q) ) 

Note that y‘(q) = closure lJTaO s;(q). 

PROPOSITION 4 [ 11. For arhitrar-v compact set Kc R” and constants 
T > 0, q > 0, r > 0, and fi > 0 there exists 8,) > 0 such that ,for all x E K and 
ud’[O, T; R”‘], ~j~1u(.s)12d.s<q one has 

provided x E K and E < c,,. 

PROPOSITION 5 [ 11. For arbitrary compact set Kc R” and constants 
T > 0, q > 0, u > 0, and [I > 0 there exists E,) > 0 such that ,for all 0 < I: < E,, 
andsEK 

We vt’ill need also the ,following result: 

PROPOSITION 6. For arbitrary 6 > 0, T> 0 

P(sup Ix-‘J(s) - ZY(S)i < (5) + 1 
\<7 

as E 10 kformly on compact sets. 
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ProoJ: One can assume that f satisfies the Lipschitz condition with a 
constant L > 0 and that la(.)1 is bounded by M. Therefore 

Lwt) - z”(t)1 <L .r,’ IX’+) - zi(s)l ds + sup Im(s)l 
s 22 I 

where m(t) = St, c~(X-‘,~(.s)) &V(s). From Gronwall’s inequality it follows 
that 

sup IJ?“(s) - ZX(S)l d & eL’ sup /m(s)/. 
.Y < , \<I 

Doob’s inequality applied to the continuous martingale m(.) implies 

P(sup /J?‘(s) - z”(s)1 3 6) 
F<, 

dP(sup Im(s)l +++“lE Im(t)l. 
S<, 

But IE [m(t)1 6 ([E({h a*(Y.“(s)) d~))‘/~ d M J’;. The result follows. 
The following result is of independent interest. Its proof uses Prop. 2 and 

Prop. 5 in the same way as in [6]. 

PROPOSITION 7. Let F he an arbitrary compact set separated from 0 and 
uniformly attracted to 0. Then -for arbitrary K > 0 there exist T> 0 and 
.~,>Osuch thatforallxEFandO<.z<e,, 

p(X’,“(t)E Ffor all t < T) <emm”ii.*‘K 

Proof: Let F, be a compact set also separated from 0 and uniformly 
attracted to 0 and such that F, 3 B(F, 6) for some positive 6 > 0. By 
Proposition 2 for arbitrary K, > 0 one can find T> 0 such that if 
sl lu(s)l* ds < K, and x E F, then for some t < T, y.‘,“(t) E F;. Applying 
Proposition 5 one gets in turn that for ,!I > 0 there exists Q, > 0 such that 

forall xEFands<s,,. 

Since the event 

{X’,“(t) E F for all t < T} 

is contained in 
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therefore for all x E F and E < s0 

lP(J?“(t)E Ffor all t< T) c”““(~I -li). 

It is enough to put K, -/i’= K. 

4. PROOF OF THEOREM 1 

With the results of Section 2 and 3 we can prove Theorem 1 similarly as 
in [6]. 

(i) Without any loss of generality one can assume that ?j + a. If 
q > q then there exist T> 0 and control u(.) such that $lL lu(s)l’ ds d yl and 
the trajectory y”.“’ j(t), t < T is not contained in B. One can therefore 
require that JJ”.~’ ‘(T) = h E D‘. Since solutions to Eq. (2) depend con- 
tinuously on initial data therefore there exist Y, > 0, rz > 0, such that 
B(b, r2) c 6” and for all x, 1x1 < rl y\-+( ‘(T) E P(h, rJ2). Let 6 < r,/2 and 
J >O. By Proposition 4 there exists co>0 such that for all E <a0 and 
1.~1 6 r, 

IFD(sup I‘Y(t)-J-‘,“(t)l <6)3e (l/C~)(l,Z)~~lU(.,l/*d., +p, >r tI’~.2lfq+a) 
, 

r<7 

Since the event { T’.” < T} contains (sup,, <I IX’,E(.~) - J,‘.‘( l(s)] < 6 1, 
therefore 

It follows from Proposition 6 that for arbitrary p E (0, 1) one finds T, > 0 
such that for all x E iJ and sufficiently small e, say E < E, 

P(lXr~c(T,)l <r,)>,p. 

Markov property implies that for all x E B and I: < &, A I:~ 

p(T’.‘:< T+ T,)ape (1 E2j(rl+f:l 

or equivalently that 

Wtr,C 
> T+ T,) < 1 _ pe (ltJ.‘)rV+8’ 

By a simple induction argument and Markov property, for li = 1,2,... 

P(r-Y,&>k(r+z,)),<(l -pe “+“q+‘y 

409:125/2-I8 
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But l/(T+ T,)lE(t”,“) < Cz=y IF’(?> k( T+ T,)) d Ck+$( 1 -pe- (1’c2)(V+B))k 
< (l/p)e-w”*K~+D) and E* In E( tX,‘) 6 E* ln( T + T, )/p + (II + B) conse- 7 
quently hmCl 0 s2 In E(?) < q + 8. Passing with M and /I to q and 0 respec- 
tively one gets (i). 

(ii) To simplify notation we make an assumption slightly stronger 
than (Hl ) namely that for arbitrarily q > rj > 0 and 6 > 0 there exists r > 0 
such that 

Y”(ri) = B(YOh), 6) for all x, 1x1 <r. (8) 

In the proof only those points from y Jq) which are close to 8D matter. 
Let q >O be a number such that y’(q) c D. Then for some 6 >O, 

p(y’(r]), D”) >, 6. Moreover for +j < q one can find r > 0 such that for all x, 
1x1 6 r 

Y’(e9C B Yom?; . ( 1 
Let r1 > r. > 0 be arbitrary numbers smaller than r. For arbitrary x, 1x1 = rl 
one defines stopping times T; < K-F < r; < K; d . . . as follows: 

r.;‘” = inf{ t 3 0; Y’“(t) E dD or IJ?“(t)l = ro} 

i~;*“=inf{t>z;; IX’.“(1)1 =rl}. 

And for arbitrary k = 1, 2,... 

We estimate first 

Note that for arbitrary T>O 

~,~P(IX’,“(s)l>r,foralls~Tandz~>T) 

+ p(z-;,& 6 T and 7;‘” = P) 

< P(JP(s) E Ffor all s < T) + P(?-’ < T), 

where 

F= D\B(O, ro). 
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By Proposition 7 there exists T > 0 and s0 > 0 such that for E < a(, and x E F 

P(X’.‘(s) E Ffor all s d T) d e ” “I4 

However {T’.“< T} c {pT(.Yc, f;(Q)) > (612)) and therefore 

P(T‘,‘:< T) 6 P pT(x’,‘, f;.(q)) >p 
I 

From Proposition 5 there exists E, > 0 such that for E < E, and 1.~1 = I’, 

Consequently one can assume that for E < c0 A c,, 1.~1 = r, 

If A;.” = { JX’.‘js,l~“)l = r Oi, then the strong Markov property implies 

[FD(A‘.‘.n nA;.‘.)>(l -p i”‘l(V /,,)A 

for 1x1 = Y, and E < a0 A c,. Consider now X, 1.~1 = r. and define 

r^;.‘:=inf {r>O; IX”‘:(s)/ =r, forsomesE [0, r] and 

IX’,‘j t)l = r. or JY( t) E r?D ) 

i;.;, = inf{ t > ?‘.‘, IXY.“(s)l = r, for some .s E [s’;,‘, t] and 

IX’.‘:( t)l = r. or J?(t) E c7ZI ), 

.,j>I, = { lX’.‘~(~;~“)l = yo}, k = 1, 2,.... 

One can assume, see the proof of (i), that 

P(IX*,L(t)l = r, for some t) = 1 

for 1x1 = r. and therefore for arbitrary k = l,... one gets also that 
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Without any loss of generality one can assume that there exists a con- 
stant M>O such that for E<E~A E, and jxl=rO, lE(@“)2M. Con- 
sequently 

[E(+“)3M+M c [FD(&Jn . . . ,A;,“,)bMe-‘ll”2)(rj--B) 
k=2 

for all x, 1x1 = r. and E < a0 A E,. Thus if 1x1 = r. then 

lim$rifc21n E(z’,“)~~-/I 

Passing with q and /I to q and 0 respectively one gets that for 1x1 d r,, 

lim$f s2 In E(r’,“) > r] 

where q was an arbitrary number smaller than I], and therefore 

lim$f c2 In E(r-‘2”) 3~, I.4 d ro. 

If now xeDO then z”(t)~D for all t30 and for some T>O, lz’(T)I <r,. 
Taking into account sufficiently small tube around z”(t), t d T and 
Proposition 6 one gets that (ii) holds true for all x E Do. 

5. PROOF OF THEOREM 2 

The proof is an adaptation of that given in [ 11, Section 73. 
Let 6 > 0 be a fixed number and let 

E,= {x~dD;p(x, E)<6}, Ei=x~dD;p(x, E)36}. 
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Let moreover A”,” and II’,” be the following events 

A”.” = {X’,C(TyxE) E E,}, B’,‘. = (Jy(*I.E) E Ek}. 

Assumption (H3) implies that for E > 0 small enough and x E D 

see the proof of Theorem 1, (i). Our aim is to show that P(A-‘3”) -+O as E JO 
for all x E D,. Without any loss of generality one can assume that the set ,!?; 
is nonempty. 

Let us fix Y, > y0 > 0 and T> 0 and define Markov times 2.;” 

r;:” = infj t 3 T, iX’~“(t)l = r0 or X‘,“(t) E (:D) 

Moreover let 

A ;:” = { T.‘J < 5 ;” and J”.‘( 7 ‘J’) E E, } 

B ,.,i: _ 
T -i’ 

T.E < +” and J’yT 1.1.) E 4, ) 

We will show first that one can choose ro, Y, , and T such that 

SUP1.Y =r, P(V) --f o 
int,,, =T, P(A;‘:) 

as ~10 

Remark that 

P(A;c)> P(T’.& < T and X’qTr.L) E E,), 

and for arbitrary T, > 0, 

~(B~“)~IFD((-;I”dT+T,}nB-~“)+P(r~”>T+T,) 

dP(X’,“(t)~E:,forsomer<T+T,) 

+P(X’~“(t)~Fforallt~[T, T+T,]) 

where F= D\,B(O, rO). We will need the following lemma. 

LEMMA 2. There exist r > 0, Q > ij, 6, > 0, ~3~ > 0 such thut if 1x1 d r then 

P(B(Y’(ri), 6, )T -qs) 3 62 (9) 

Proof: From the very definition of the set E and Corollary 1, Section 3 
it follows that the lemma is true for x = 0. Because of (H 1) it is true for all 
x close enough to 0. 
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To estimate further the three probabilities of interest let us fix numbers 
q, > 0, 8, > 0, qz > 0, f12 > 0 as follows 

From the very definition of f and Lemma 2 there exist T> 0, 6, > 0, r, > 0, 
P, > Y and control UE L*[O, T, R”] such that for all x, 1x1 Gr,: 

and P( Y-Y T), D) a 6, 

Let y0 be an arbitrary positive number such that y0 < r, . It follows from 
Proposition 7 that there exists T, >O and E, > 0 such that for all 
xeF=D\{x: 1x1 <ro} and E<E, 

~(J?“(s) E F for all s < T,) 6 e p(“EZ)(a2 h) 

The Markov property implies in turn that for all x E F and E < E, 

~(X’~“(s)EFforallsE [T, T+ T,])dep”‘“2”q2pP2’ 

Moreover, if 1x1 d r, < r, then 

P(r’,” 6 Tand X-‘,‘(Z.‘,~) E E,) 

>,P(sup ~X-Y~“(s)-y’~“(s)l b& A 6,). 
s< T 

This is because y”,“(s) E y”(q ,) c y.‘(q) and lemma. Consequently for all x, 
1x1 <r, and E < s2, s2 > 0 suitably chosen 

p(rli.’ d T and X.r,c(~-Y.E) E E,) 
>e~“l”*““/2’So’lu’.s)l~~.~+BI)~,~’~/~*~~rl,+81) , 

In a similar way for E < s3, 

The first estimate follows from the fact that the set covered by all trajec- 
tories from F;, + 72(1/2) is contained in yJ(q2) c y”(Q). Summing up all the 
obtained estimates one has for E < E, A s2 A E*. 
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However, again by an easy application of the strong Markov property 
for all .X E D and E > 0 

Consequently P(A ‘.‘) -+ 1 as E 10 for all x, I-Y/ = Y,. The case of all x E D,, 
one gets in the same way as at the end of the proof of Theorem 1, (ii). 

6. COMMENTS AND OPEN QUESTIONS 

In this final section we make some comments on the imposed conditions 
and obtained results and we pose some questions. 

6.1. Hypotheses (H 1 ))( H 3 ) 

Hypothesis (H2) is natural as our main concern was to study behaviour 
of perturbed systems in a neighbourhood of a stable equilibrium. Condition 
(H3) is also natural. If all controlled trajectories y’,“(.) are contained in D 
then, it follows from support theorems of Stroock-Varadhan, that 
stochastic trajectories x0,‘,(.), XE D, are also contained in D and the exit 
problem looses its meaning. Condition (Hl)-being a kind of smoothness 
property of the metric d--is of a more special character. First it is not at 
all obvious that (H3) does not follow from the fact that J‘ and CJ are of class 
c”. Proposition 8 below shows that it is not the case. Moreover the same 
proposition implies that Theorem 1 and Theorem 2 hold true, in some 
special cases, without (Hl ). The following question is therefore of some 
interest. 

Qurstion 1. Are Theorem 1 and Theorem 2 true if ,f‘ and 0 are of class 
C’ and only the conditions (H2) and (H3) are satisfied? 

Proposition 8 concerns a two dimensional system 

dX, = -X, dt + c dW; 

dX, = -sgn(Xz) J$ dt + &XI dW;’ 
(10) 

and the reference set D=((;;)ER’; --a<.~~ <a, -h<x,<h} where u 
and h are arbitrary positive numbers. 

PROPOSITION 8. For system (10) conclusions of Theorem 1 and Theorem 
2 hold true, hypotheses (H2) and (H3) are .wtisJed hut hypothesis (H 1) is 
tGoluted. 
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ProoJ: Let 

r;@ = inf{ t 2 0; IX-;“(t)1 > a}, 

r;2.“=inf{t>0; IX:“(t)1 ab} 

where x = (“,;) E D. Let y:l+* and y, X2+2 be solutions of the associated con- 
trolled systems: 

dy, = -y, dt+u, dt, Y,(O) = XI (11) 

dy, = -sgn(y,) 14 dt + u2 Y, & Y2(0) =x27 (12) 

and let y;‘(q), y?(q) be the quasi balls corresponding to the one dimen- 
sional systems (11) and (12) respectively. It is easy to calculate, see, e.g., 
[12], that 

Thus 

YY(yI) = C-J?, J?l and 

and 

E={( ,“)y (;)}. 
Note that conclusions of Theorem 1 and Theorem 2 are certainly true for 
initial conditions (-;) E D because system (11) satisfies all the requirements. 
Let now x = (c;) E D and x2 # 0, say x2 > 0 and let 6 > 0 be a fixed number. 
Without any loss of generality we can assume that x2 < 6. From standard 
formulae the probability 4(x2, E) of the event A(x,, E) that trajectory X-?” 
will never hit {S} is 

(e (2/c2)D _ ewcw/(ewcv _ 1) 

and does converge to 1 as ~10. But 

Thus 

lim s2 In lE(P) = lim t2 In E(r-fl,&) = a’, 
El0 Cl0 
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and since P(p(P, E) < 6) >, q(x,, E), therefore 

lim P(p(X”,“, E) < 6) = 1. 
c 1 0 

To see that (Hl) does not hold let us assume that x = (,“,), x2 > 0 and 
consider feedback law u2 = 2y, for the system (12). Direct computations 
lead to the conclusion that 

Therefore y’(q)= I(;;); -,/;;Gz, <A, z~=o}, 

and we see that condition (Hl ) can not be satisfied for system (1 1 )-( 12). 

6.2 

In general g # yI. To see this it is enough to consider linear system 
$= -y+u in R”, ~32 and D=B(O, l)\{xR”; $<x,< I}. Since 
y’(v) = B(0, A), therefore g= 4 and 6 = 1. 

6.3 

Finally we want to pose some questions related to the size of E. 
It was shown in the paper [6] that for nth order systems n = 2,3 

$‘) + a, ,(n I’+ ‘.. +a,,z=dv (13) 

the exist set relative to the unit ball B(0, 1) was, with only one exception, a 
two point set. The situation in the case of n 3 4 is not clear. 

Question 2. Is it so that generically all n-dimensional systems (13) have 
two point exit sets? 

Question 3. Do generically all systems (1) have exit sets composed of 
finite number of points? 
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