

Available online at www.sciencedirect.com

Applied Mathematics Letters

Applied Mathematics Letters 21 (2008) 786-790

www.elsevier.com/locate/aml

Permanental Mates: Perturbations and Hwang's conjecture

S. Maria Arulraj^a, K. Somasundaram^{b,*}

^a Selvamm Arts and Science College, Namakkal-637 003, India ^b Department of Mathematics, Amrita Vishwa Vidyapeetham, Coimbatore-641 105, India

Received 28 November 2005; received in revised form 15 July 2007; accepted 14 August 2007

Abstract

Let Ω_n denote the set of all $n \times n$ doubly stochastic matrices. Two unequal matrices A and B in Ω_n are called permanental mates if the permanent function is constant on the line segment tA + (1 - t)B, $0 \le t \le 1$, connecting A and B. We study the perturbation matrix A + E of a symmetric matrix A in Ω_n as a permanental mate of A. Also we show an example to disprove Hwang's conjecture, which states that, for $n \ge 4$, any matrix in the interior of Ω_n has no permanental mate. (© 2007 Elsevier Ltd. All rights reserved.

Keywords: Perturbation matrix; Doubly stochastic matrix; One matching matrices; Permanent; Permanental mates

1. Introduction

Let Ω_n be the set of all $n \times n$ doubly stochastic matrices. Given a function f whose domain is the set of doubly stochastic matrices, two doubly stochastic matrices A and B, $A \neq B$, are called f-mates if f(tA+(1-t)B) is constant for all t in [0, 1]. That is, f is constant on the line segment connecting A and B. Wang [6] took f as the permanent of a doubly stochastic matrix and defined permanental mates as follows. $A, B \in \Omega_n, A \neq B$, are said to be permanental mates if per[tA+(1-t)B] is constant for all t in [0, 1]. If A = B then A and B are trivial mates, otherwise nontrivial mates. Here mates refer to nontrivial permanental mates. From the definition of mates, the matrices in Ω_2 have no permanental mates. It is proved in [2] that $\begin{pmatrix} x & 1-x \\ 1-x & x \end{pmatrix} \oplus 1$, $0 \le x \le 1$, has no permanental mate in Ω_3 , where \oplus denotes the direct sum. Karuppanchetty and Maria Arulraj [4] characterized the set of all matrices Ω_3 and Ω_4 having their transposes as permanental mates.

Let A^{T} denote the transpose of A and let trace of A be denoted by tra(A). For integers r, n $(1 \le r \le n)$, let $Q_{r,n}$ denote the set of all sequences (i_1, i_2, \ldots, i_r) such that $1 \le i_1 < \cdots < i_r \le n$. For fixed $\alpha, \beta \in Q_{r,n}$, let $A(\alpha/\beta)$ be the submatrix of A obtained by deleting the rows α and columns β of A, let $A[\alpha/\beta]$ denote the submatrix of A formed by rows α and columns β of A and A_i denote the first n - 3 rows of the *i*th column of A. We denote A + E as \tilde{A} , a perturbation of a matrix $A \in \Omega_n$.

For brevity, let us use the notation M(a,b;c,d) to denote the 3×3 doubly stochastic matrix $\begin{pmatrix} a & b & 1-a-b \\ c & d & 1-c-d \\ 1-a-c & 1-b-d & a+b+c+d-1 \end{pmatrix}$ and $E = \begin{pmatrix} 0 & \varepsilon & -\varepsilon \\ -\varepsilon & 0 & \varepsilon \\ \varepsilon & -\varepsilon & 0 \end{pmatrix}$, $\varepsilon > 0$. An $n \times n$ doubly stochastic matrix $A = (a_{ij})$ is

^{*} Corresponding author. Tel.: +91 422 2656422; fax: +91 422 2656247.

E-mail address: s_sundaram@ettimadai.amrita.edu (K. Somasundaram).

^{0893-9659/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2007.08.005

called a *k*-matching matrix, if there exists precisely one k $(1 \le k \le n)$ such that $a_{kj} = a_{jk}$ for j = 1, 2, ..., n. Let $M_{4,k}$ denote the set of all *k*-matching matrices in Ω_4 .

In this paper, we frequently use the following results (Minc [5]).

If $A = (a_{ij})$ and $B = (b_{ij})$ are $n \times n$ matrices, then

$$\operatorname{per} A = \sum_{\beta \in Q_{r,n}} \operatorname{per} A[\alpha/\beta] \operatorname{per} A(\alpha/\beta), \quad \text{for } \alpha \in Q_{r,n},$$
(1)

$$\sum_{\alpha,\beta\in Q_{r,n}} \operatorname{per} A[\alpha/\beta] \operatorname{per} A(\alpha/\beta) = \binom{n}{r} \operatorname{per} A \quad \text{and}$$
(2)

$$\operatorname{per}(A+B) = \sum_{r=o}^{n} S_r(A, B), \quad \text{where } S_r(A, B) = \sum_{\alpha, \beta \in Q_{r,n}} \operatorname{per} A[\alpha/\beta] \operatorname{per} B(\alpha/\beta)$$
(3)

 $\operatorname{per} A[\alpha/\beta] = 1$ when r = 0 and $\operatorname{per} B(\alpha/\beta) = 1$ when r = n.

The Eq. (1) is called the Laplace expansion for permanents.

In the next section, we prove a necessary and sufficient condition for a symmetric matrix in Ω_n having a permanental mate with its perturbation matrix and a counter example is also given to disprove the Hwang's conjecture [3].

2. Permanental mates

Brenner and Wang [1] have obtained a necessary and sufficient condition for A and B in Ω_n to be permanental mates, which is given below.

per
$$A$$
 = per B and $S_k(A, B) = \binom{n}{k}$ per $A = S_{n-k}(A, B)$. (4)

Theorem 2.1 (*Hwang* [3]). For $A, B \in \Omega_n$, the following are equivalent:

- 1. A and B form a permanental pair.
- 2. $\sum_{\alpha,\beta\in Q_{r,n}} \operatorname{per} A[\alpha/\beta] \operatorname{per} B(\alpha/\beta) = \binom{n}{r} \operatorname{per} A$, for all $r = 0, 1, \ldots, n$.
- 3. $\sum_{\alpha,\beta\in Q_{r,n}} \operatorname{per} A[\alpha/\beta] \operatorname{per} [B(\alpha/\beta) A(\alpha/\beta)] = 0$, for all $r = 0, 1, \ldots, n-1$.

Theorem 2.2. Let $A = (a_{ij}) \in \Omega_n$ be a symmetric matrix, let $E_1 = \mathbf{O}_{n-3 \times n-3} \oplus E$, $\mathbf{O}_{n-3 \times n-3}$ be the zero matrix of order n-3, such that the perturbation $\tilde{A} = A + E_1 \in \Omega_n$. Then A and \tilde{A} are permanental mates if and only if

$$\left(\sum_{i,j=n-2}^{n} a_{ij} - 2\sum_{i=n-2}^{n} a_{ii}\right) \operatorname{per} X + \sum_{i,j=1}^{n-3} \left(\sum_{k,r=n-2}^{n} a_{ir}a_{jk} - 2\sum_{k=n-2}^{n} a_{ik}a_{jk}\right) \operatorname{per} X(i/j) = 0,$$
(5)

where $X = (a_{ij})_{n-3 \times n-3}$ is a submatrix of A formed by taking first n-3 rows and n-3 columns of A.

Proof. From the Theorem 2.1, a necessary and sufficient condition for A and \tilde{A} to be permanental mates is

$$S_r(A, E_1) = \sum_{\alpha, \beta \in Q_{r,n}} \operatorname{per} A[\alpha/\beta] \operatorname{per} E_1(\alpha/\beta) = 0, \quad r = 0, 1, \dots, n-1.$$

It is easy to see that $S_r(A, E_1) = 0$ for r = 0, 1, ..., n - 3 and $S_{n-1}(A, E_1) = 0$, since A is symmetric. Now,

$$S_{n-2}(A, E_1) = \varepsilon^2 \sum_{\substack{i,j=n-2\\i\neq j}}^n \operatorname{per} \begin{pmatrix} X & A_j \\ A_i^{\mathsf{T}} & a_{ij} \end{pmatrix} - \varepsilon^2 \sum_{i=n-2}^n \operatorname{per} \begin{pmatrix} X & A_i \\ A_i^{\mathsf{T}} & a_{ii} \end{pmatrix}.$$

Taking the permanent through the last row, we get

$$S_{n-2}(A, E_1) = \varepsilon^2 \left\{ \left(\sum_{\substack{i, j=n-2\\i\neq j}}^n a_{ij} - \sum_{\substack{i=n-2\\i\neq j}}^n a_{ii} \right) \operatorname{per} X + \sum_{i=1}^{n-3} \sum_{\substack{j=n-2\\j\neq r}}^n \left(\sum_{\substack{r=n-2\\j\neq r}}^n a_{ri} \operatorname{per}(X(i)A_j) - a_{ji} \operatorname{per}(X(i)A_j) \right) \right\},$$

where $(X(i)A_j)$ is a submatrix of order n - 3 formed by deleting the *i*th column of X and includes the *j*th column of A.

Now, taking permanent of $(X(i)A_j)$ by expanding along the column A_j we get,

$$S_{n-2}(A, E_1) = \varepsilon^2 \left\{ \left(\sum_{i,j=n-2}^n a_{ij} - 2\sum_{i=n-2}^n a_{ii} \right) \operatorname{per} X + \sum_{i,j=1}^{n-3} \left(\sum_{k,r=n-2}^n a_{ir} a_{jk} - 2\sum_{k=n-2}^n a_{ik} a_{jk} \right) \operatorname{per} X(i/j) \right\}.$$

Hence the necessary and sufficient condition for *A* and \tilde{A} to be permanental mates is $(\sum_{i,j=n-2}^{n} a_{ij} - 2\sum_{i=n-2}^{n} a_{ii})$ per $X + \sum_{i,j=1}^{n-3} (\sum_{k,r=n-2}^{n} a_{ir}a_{jk} - 2\sum_{k=n-2}^{n} a_{ik}a_{jk})$ perX(i/j) = 0.

Let A be a symmetric matrix in Ω_4 , we define,

$$T(A) = 4a_{kk}^2 - 2a_{kk}\operatorname{tra}(A) + 1 - 2\sum_{\substack{i=1\\i\neq k}}^4 a_{ki}^2, \quad k = 1, 2, 3, 4.$$

Corollary 2.3. Let A be a symmetric matrix in Ω_4 and choose $\varepsilon > 0$ such that the perturbation $\tilde{A} = A + E_1 \in \Omega_4$, where $E_1 = 0 \oplus E$. A and \tilde{A} are permanental mates if and only if T(A) = 0.

Proof. Let $X = (a_{11})$. From (3), perX(1/1) = 1. Now, the condition (5) becomes,

$$\begin{pmatrix} \sum_{i,j=n-2}^{n} a_{ij} - 2\sum_{i=n-2}^{n} a_{ii} \end{pmatrix} \operatorname{per} X + \sum_{i,j=1}^{n-3} \begin{pmatrix} \sum_{k,r=n-2}^{n} a_{ir}a_{jk} - 2\sum_{k=n-2}^{n} a_{ik}a_{jk} \end{pmatrix} \operatorname{per} X(i/j)$$

$$= a_{11}(3 - (a_{21} + a_{31} + a_{41}) - 2(a_{22} + a_{33} + a_{44})) + a_{12}(1 - a_{11})$$

$$+ a_{13}(1 - a_{11}) + a_{14}(1 - a_{11}) - 2(a_{12}^2 + a_{13}^2 + a_{14}^2)$$

$$= a_{11}(2 + 3a_{11} - 2\operatorname{tra}(A)) + (1 - a_{11})(1 - a_{11}) - 2(a_{12}^2 + a_{13}^2 + a_{14}^2)$$

$$= (4a_{11}^2 - 2a_{11}\operatorname{tra}(A) + 1 - 2(a_{12}^2 + a_{13}^2 + a_{14}^2))$$

$$= T(A). \quad \Box$$

Construct a symmetric matrix $A = (a_{ij}) \in \Omega_4$ as follows: Let $a_{11} = x$, $a_{1j} = y$, for j = 2, 3, 4 and $\operatorname{tra}(A) = \frac{10x^2 + 4x + 1}{6x}$. Choose arbitrary small x, x > 0, such that $y = \frac{1-x}{3} > 0$. It is easy to see that T(A) = 0, hence by the Corollary 2.3, A and $\tilde{A} = A + E_1$ are permanental mates in Ω_4 .

In particular, if we take $x = y = \frac{1}{4}$, then

$$A = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{2} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{2} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} \end{pmatrix}, \quad 0 < \varepsilon < \frac{1}{8} \quad \text{and} \quad T(A) = 0.$$

$$(6)$$

Therefore A and \tilde{A} form permanental mates in Ω_4 . Hence for some symmetric matrices $A \in \Omega_4$, we can find an infinite number of perturbation matrices, which are permanental mates of A in Ω_4 .

Let A be a symmetric matrix in Ω_4 . Then the perturbation matrix $\tilde{A} \in M_{4,1}$, where $M_{4,1}$ denote the set of all one matching matrices in Ω_4 . As $\tilde{A} \neq \tilde{A}^T$ and $T(\tilde{A}) = T(A) = 0$, by the Theorem 2.2 in [4], \tilde{A} and \tilde{A}^T are permanental mates in Ω_4 . Hence the pairs (A, \tilde{A}) and (\tilde{A}, \tilde{A}^T) are permanental mates in Ω_4 . The Theorem 2.2 is only for a symmetric matrix in Ω_n . We can extend to an asymmetric matrix in Ω_3 .

Theorem 2.4. Let $A = M(a, b; c, d), c \neq b$, be in Ω_3 and choose $\varepsilon > 0$ such that $\tilde{A} = A + E \in \Omega_3$. A and the perturbation \tilde{A} are permanental mates if and only if $\operatorname{tra}(A) = \frac{3}{2}$.

Proof. Necessary and sufficient condition for A and \tilde{A} to be permanental mates is $S_2(A, E) = 0 = S_1(A, E)$, since per E = 0.

 $S_2(A, E) = 0$ and $S_1(A, E) = 0$ if and only if $tra(A) = \frac{3}{2}$.

Suppose c = b in A = M(a, b; c, d) then $S_2(A, E) = 0$. In this case also A and \tilde{A} are permanental mates if and only if tra $(A) = \frac{3}{2}$, which is easily verified from the Theorem 2.2.

Consider a matrix

$$A = M\left(\frac{1}{2}, \frac{1}{8}; \frac{3}{8}, \frac{1}{2}\right) \in \Omega_3$$
(7)

and choose $0 < \varepsilon < \frac{3}{8}$ such that $\tilde{A} = A + E \in \Omega_3$, A and \tilde{A} are permanental mates, since tra(A) = $\frac{3}{2}$.

In [3], Hwang discussed some nontrivial permanental mates of doubly stochastic matrices. Mte(A) denotes the set of all mates of A for $A \in \Omega_n$. Let Int Ω_n denote the interior of Ω_n . In concluding remarks, Hwang [3] asked the question whether there exists an $A \in \text{Int } \Omega_n$ with a nontrivial permanental mate. We established such a matrix (7) in Ω_3 . The matrices \tilde{A} and A are permanental mates, since $\text{tra}(A) = \frac{3}{2}$. $A \in \text{Int}\Omega_3$ and $\tilde{A} = A + E \in \text{Mte}(A)$ for all ε , $0 < \varepsilon < \frac{3}{8}$. In Ω_4 , consider the matrix (6),

$$A \in \operatorname{Int}\Omega_4$$
 and $\tilde{A} = A + E_1 \in \operatorname{Mte}(A)$ for all ε , $0 < \varepsilon < \frac{1}{8}$.

For larger *n*'s, Hwang thought that an affirmative answer to the question regarding the existence of matrices in Int Ω_n having nontrivial mates seems to be not possible. Therefore, Hwang proposed a conjecture, which states that, "for $n \ge 4$, if $A \in \text{Int } \Omega_n$, then Mte(A) is a trivial set".

Karuppanchetty and Maria Arulraj [4] disproved this conjecture by proving necessary and sufficient conditions for $A = \begin{pmatrix} X & U \\ U^T & Y \end{pmatrix} \in \Omega_n$ and that A^T are permanental mates, where X is a symmetric matrix and of order $(n-3) \times (n-3)$, U is $(n-3) \times 3$, and Y is $3 \times 3(Y \neq Y^T)$. Here we have shown the perturbation matrix \tilde{A} as a permanental mate of a symmetric matrix A in Ω_n , which will also disprove the Hwang's conjecture.

Construct a symmetric matrix $A = (a_{ij}) \in \Omega_n$ as follows,

 $a_{ij} = x$, for i, j = 1, 2, ..., n - 3 and $a_{ij} = y$, for i = 1, 2, ..., n - 3 and j = n - 2, n - 1, n.

Choose arbitrary small x, x > 0, such that $y = \frac{1 - (n-3)x}{3} > 0$. Choose the 3 × 3 bottom right sub matrix $(a_{ij}), i, j = n - 2, n - 1, n$, such that

$$\left(\sum_{i,j=n-2}^{n} a_{ij} - 2\sum_{i=n-2}^{n} a_{ii}\right) = \frac{-3(n-3)y^2}{x}.$$

Therefore, per $X = (n - 3)!x^{n-3}$, per $(X(i/j)) = (n - 4)!x^{n-4}$ and

$$\sum_{i,j=1}^{n-3} \left(\sum_{k,r=n-2}^{n} a_{ir} a_{jk} - 2 \sum_{k=n-2}^{n} a_{ik} a_{jk} \right) = 3(n-3)^2 y^2$$

It is easy to verify the condition (5) of the Theorem 2.2,

$$\left(\sum_{i,j=n-2}^{n} a_{ij} - 2\sum_{i=n-2}^{n} a_{ii}\right) \operatorname{per} X + \sum_{i,j=1}^{n-3} \left(\sum_{k,r=n-2}^{n} a_{ir}a_{jk} - 2\sum_{k=n-2}^{n} a_{ik}a_{jk}\right) \operatorname{per} X(i/j)$$
$$= \frac{-3(n-3)y^2}{x}(n-3)!x^{n-3} + 3(n-3)^2y^2(n-4)!x^{n-4} = 0.$$

By the Theorem 2.2, A and the perturbation $\tilde{A} = A + E_1 \in \Omega_n$ are permanental mates. Hence for $A \in \text{Int } \Omega_n$, there exist infinitely many perturbation matrices, which are permanental mates of A in Ω_n .

If A and B have permanental mates with C and D respectively then $A \oplus B$ and $C \oplus D$ are permanental mates. In particular, if A and A^{T} are permanental mates in Ω_{n_1} , B and B^{T} are permanental mates in Ω_{n_2} then $A \oplus B$ and $A^{T} \oplus B^{T}$ are permanental mates in Ω_n , where $n = n_1 + n_2$.

From the definition of permanental mates, we observed the fact that, if a permanent function is constant on the line segment connecting A and B, then it is constant on its line subsegment connecting a given convex combination of two with any other convex combination. Hence, the convex combination of two permanental mates has a permanental mate.

References

[1] J.L. Brenner, E.T.H. Wang, Permanental pairs of doubly stochastic matrices. II, Linear Algebra Appl. 28 (1979) 39-41.

- [2] P.M. Gibson, Permanental polytopes of doubly stochastic matrices, Linear Algebra Appl. 32 (1980) 87-111.
- [3] S.G. Hwang, Some nontrivial permanental mates, Linear Algebra Appl. 140 (1990) 89-100.
- [4] C.S. Karuppanchetty, S. Maria Arulraj, Permanental mates and Hwang's conjecture, Linear Algebra Appl. 216 (1995) 225-237.
- [5] H. Minc, Permanents, in: Encyclopedia Math. Appl., vol. 6, Addison-Wesley, Reading, MA, 1978.
- [6] E.T.H. Wang, Permanental pairs of doubly stochastic matrices, Amer. Math. Monthly 85 (1978) 188–190.