Permanental Mates: Perturbations and Hwang's conjecture

S. Maria Arulraj ${ }^{\text {a }}$, K. Somasundaram ${ }^{\text {b,* }}$
${ }^{a}$ Selvamm Arts and Science College, Namakkal-637 003, India
${ }^{\mathrm{b}}$ Department of Mathematics, Amrita Vishwa Vidyapeetham, Coimbatore-641 105, India

Received 28 November 2005; received in revised form 15 July 2007; accepted 14 August 2007

Abstract

Let Ω_{n} denote the set of all $n \times n$ doubly stochastic matrices. Two unequal matrices A and B in Ω_{n} are called permanental mates if the permanent function is constant on the line segment $t A+(1-t) B, 0 \leq t \leq 1$, connecting A and B. We study the perturbation matrix $A+E$ of a symmetric matrix A in Ω_{n} as a permanental mate of A. Also we show an example to disprove Hwang's conjecture, which states that, for $n \geq 4$, any matrix in the interior of Ω_{n} has no permanental mate. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Perturbation matrix; Doubly stochastic matrix; One matching matrices; Permanent; Permanental mates

1. Introduction

Let Ω_{n} be the set of all $n \times n$ doubly stochastic matrices. Given a function f whose domain is the set of doubly stochastic matrices, two doubly stochastic matrices A and $B, A \neq B$, are called f-mates if $f(t A+(1-t) B)$ is constant for all t in $[0,1]$. That is, f is constant on the line segment connecting A and B. Wang [6] took f as the permanent of a doubly stochastic matrix and defined permanental mates as follows. $A, B \in \Omega_{n}, A \neq B$, are said to be permanental mates if per $[t A+(1-t) B]$ is constant for all t in $[0,1]$. If $A=B$ then A and B are trivial mates, otherwise nontrivial mates. Here mates refer to nontrivial permanental mates. From the definition of mates, the matrices in Ω_{2} have no permanental mates. It is proved in [2] that $\left(\begin{array}{cc}x & 1-x \\ 1-x & x\end{array}\right) \oplus 1,0 \leq x \leq 1$, has no permanental mate in Ω_{3}, where \oplus denotes the direct sum. Karuppanchetty and Maria Arulraj [4] characterized the set of all matrices Ω_{3} and Ω_{4} having their transposes as permanental mates.

Let A^{T} denote the transpose of A and let trace of A be denoted by $\operatorname{tra}(A)$. For integers $r, n(1 \leq r \leq n)$, let $Q_{r, n}$ denote the set of all sequences $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ such that $1 \leq i_{1}<\cdots<i_{r} \leq n$. For fixed $\alpha, \beta \in Q_{r, n}$, let $A(\alpha / \beta)$ be the submatrix of A obtained by deleting the rows α and columns β of A, let $A[\alpha / \beta]$ denote the submatrix of A formed by rows α and columns β of A and A_{i} denote the first $n-3$ rows of the i th column of A. We denote $A+E$ as \tilde{A}, a perturbation of a matrix $A \in \Omega_{n}$.

For brevity, let us use the notation $M(a, b ; c, d)$ to denote the 3×3 doubly stochastic matrix $\left(\begin{array}{ccc}a & b & 1-a-b \\ c & d & 1-c-d \\ 1-a-c & 1-b-d & a+b+c+d-1\end{array}\right)$ and $E=\left(\begin{array}{ccc}0 & \varepsilon & -\varepsilon \\ -\varepsilon & 0 & \varepsilon \\ \varepsilon & -\varepsilon & 0\end{array}\right), \varepsilon>0$. An $n \times n$ doubly stochastic matrix $A=\left(a_{i j}\right)$ is

[^0]called a k-matching matrix, if there exists precisely one $k(1 \leq k \leq n)$ such that $a_{k j}=a_{j k}$ for $j=1,2, \ldots, n$. Let $M_{4, k}$ denote the set of all k-matching matrices in Ω_{4}.

In this paper, we frequently use the following results (Minc [5]).
If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are $n \times n$ matrices, then

$$
\begin{align*}
& \operatorname{per} A=\sum_{\beta \in Q_{r, n}} \operatorname{per} A[\alpha / \beta] \operatorname{per} A(\alpha / \beta), \quad \text { for } \alpha \in Q_{r, n}, \tag{1}\\
& \sum_{\alpha, \beta \in Q_{r, n}} \operatorname{per} A[\alpha / \beta] \operatorname{per} A(\alpha / \beta)=\binom{n}{r} \operatorname{per} A \quad \text { and } \tag{2}\\
& \operatorname{per}(A+B)=\sum_{r=o}^{n} S_{r}(A, B), \quad \text { where } S_{r}(A, B)=\sum_{\alpha, \beta \in Q_{r, n}} \operatorname{per} A[\alpha / \beta] \operatorname{per} B(\alpha / \beta)
\end{align*}
$$

$\operatorname{per} A[\alpha / \beta]=1$ when $r=0$ and $\operatorname{per} B(\alpha / \beta)=1$ when $r=n$.
The Eq. (1) is called the Laplace expansion for permanents.
In the next section, we prove a necessary and sufficient condition for a symmetric matrix in Ω_{n} having a permanental mate with its perturbation matrix and a counter example is also given to disprove the Hwang's conjecture [3].

2. Permanental mates

Brenner and Wang [1] have obtained a necessary and sufficient condition for A and B in Ω_{n} to be permanental mates, which is given below.

$$
\begin{equation*}
\operatorname{per} A=\operatorname{per} B \quad \text { and } \quad S_{k}(A, B)=\binom{n}{k} \operatorname{per} A=S_{n-k}(A, B) . \tag{4}
\end{equation*}
$$

Theorem 2.1 (Hwang [3]). For $A, B \in \Omega_{n}$, the following are equivalent:

1. A and B form a permanental pair.
2. $\sum_{\alpha, \beta \in Q_{r, n}} \operatorname{per} A[\alpha / \beta] \operatorname{per} B(\alpha / \beta)=\binom{n}{r}$ per A, for all $r=0,1, \ldots, n$.
3. $\sum_{\alpha, \beta \in Q_{r, n}} \operatorname{per} A[\alpha / \beta] \operatorname{per}[B(\alpha / \beta)-A(\alpha / \beta)]=0$, for all $r=0,1, \ldots, n-1$.

Theorem 2.2. Let $A=\left(a_{i j}\right) \in \Omega_{n}$ be a symmetric matrix, let $E_{1}=\mathbf{O}_{n-3 \times n-3} \oplus E, \mathbf{O}_{n-3 \times n-3}$ be the zero matrix of order $n-3$, such that the perturbation $\tilde{A}=A+E_{1} \in \Omega_{n}$. Then A and \tilde{A} are permanental mates if and only if

$$
\begin{equation*}
\left(\sum_{i, j=n-2}^{n} a_{i j}-2 \sum_{i=n-2}^{n} a_{i i}\right) \operatorname{per} X+\sum_{i, j=1}^{n-3}\left(\sum_{k, r=n-2}^{n} a_{i r} a_{j k}-2 \sum_{k=n-2}^{n} a_{i k} a_{j k}\right) \operatorname{per} X(i / j)=0, \tag{5}
\end{equation*}
$$

where $X=\left(a_{i j}\right)_{n-3 \times n-3}$ is a submatrix of A formed by taking first $n-3$ rows and $n-3$ columns of A.
Proof. From the Theorem 2.1, a necessary and sufficient condition for A and \tilde{A} to be permanental mates is

$$
S_{r}\left(A, E_{1}\right)=\sum_{\alpha, \beta \in Q_{r, n}} \operatorname{per} A[\alpha / \beta] \operatorname{per} E_{1}(\alpha / \beta)=0, \quad r=0,1, \ldots, n-1
$$

It is easy to see that $S_{r}\left(A, E_{1}\right)=0$ for $r=0,1, \ldots, n-3$ and $S_{n-1}\left(A, E_{1}\right)=0$, since A is symmetric.
Now,

$$
S_{n-2}\left(A, E_{1}\right)=\varepsilon^{2} \sum_{\substack{i, j=n-2 \\
i \neq j}}^{n} \operatorname{per}\left(\begin{array}{cc}
X & A_{j} \\
A_{i}^{\mathrm{T}} & a_{i j}
\end{array}\right)-\varepsilon^{2} \sum_{i=n-2}^{n} \operatorname{per}\left(\begin{array}{cc}
X & A_{i} \\
A_{i}^{\mathrm{T}} & a_{i i}
\end{array}\right) .
$$

Taking the permanent through the last row, we get

$$
\begin{aligned}
S_{n-2}\left(A, E_{1}\right)= & \varepsilon^{2}\left\{\left(\sum_{\substack{i, j=n-2 \\
i \neq j}}^{n} a_{i j}-\sum_{i=n-2}^{n} a_{i i}\right) \operatorname{per} X\right. \\
& \left.+\sum_{i=1}^{n-3} \sum_{j=n-2}^{n}\left(\sum_{\substack{r=n-2 \\
j \neq r}}^{n} a_{r i} \operatorname{per}\left(X(i) A_{j}\right)-a_{j i} \operatorname{per}\left(X(i) A_{j}\right)\right)\right\},
\end{aligned}
$$

where $\left(X(i) A_{j}\right)$ is a submatrix of order $n-3$ formed by deleting the i th column of X and includes the j th column of A.

Now, taking permanent of $\left(X(i) A_{j}\right)$ by expanding along the column A_{j} we get,

$$
S_{n-2}\left(A, E_{1}\right)=\varepsilon^{2}\left\{\left(\sum_{i, j=n-2}^{n} a_{i j}-2 \sum_{i=n-2}^{n} a_{i i}\right) \operatorname{per} X+\sum_{i, j=1}^{n-3}\left(\sum_{k, r=n-2}^{n} a_{i r} a_{j k}-2 \sum_{k=n-2}^{n} a_{i k} a_{j k}\right) \operatorname{per} X(i / j)\right\} .
$$

Hence the necessary and sufficient condition for A and \tilde{A} to be permanental mates is ($\sum_{i, j=n-2}^{n} a_{i j}-2 \sum_{i=n-2}^{n} a_{i i}$) $\operatorname{per} X+\sum_{i, j=1}^{n-3}\left(\sum_{k, r=n-2}^{n} a_{i r} a_{j k}-2 \sum_{k=n-2}^{n} a_{i k} a_{j k}\right) \operatorname{per} X(i / j)=0$.

Let A be a symmetric matrix in Ω_{4}, we define,

$$
T(A)=4 a_{k k}^{2}-2 a_{k k} \operatorname{tra}(A)+1-2 \sum_{\substack{i=1 \\ i \neq k}}^{4} a_{k i}^{2}, \quad k=1,2,3,4 .
$$

Corollary 2.3. Let A be a symmetric matrix in Ω_{4} and choose $\varepsilon>0$ such that the perturbation $\tilde{A}=A+E_{1} \in \Omega_{4}$, where $E_{1}=0 \oplus E$. A and \tilde{A} are permanental mates if and only if $T(A)=0$.
Proof. Let $X=\left(a_{11}\right)$. From (3), $\operatorname{per} X(1 / 1)=1$. Now, the condition (5) becomes,

$$
\begin{aligned}
& \left(\sum_{i, j=n-2}^{n} a_{i j}-2 \sum_{i=n-2}^{n} a_{i i}\right) \operatorname{per} X+\sum_{i, j=1}^{n-3}\left(\sum_{k, r=n-2}^{n} a_{i r} a_{j k}-2 \sum_{k=n-2}^{n} a_{i k} a_{j k}\right) \operatorname{per} X(i / j) \\
& =a_{11}\left(3-\left(a_{21}+a_{31}+a_{41}\right)-2\left(a_{22}+a_{33}+a_{44}\right)\right)+a_{12}\left(1-a_{11}\right) \\
& \quad+a_{13}\left(1-a_{11}\right)+a_{14}\left(1-a_{11}\right)-2\left(a_{12}^{2}+a_{13}^{2}+a_{14}^{2}\right) \\
& = \\
& =a_{11}\left(2+3 a_{11}-2 \operatorname{tra}(A)\right)+\left(1-a_{11}\right)\left(1-a_{11}\right)-2\left(a_{12}^{2}+a_{13}^{2}+a_{14}^{2}\right) \\
& = \\
& =T\left(A a_{11}^{2}-2 a_{11} \operatorname{tra}(A)+1-2\left(a_{12}^{2}+a_{13}^{2}+a_{14}^{2}\right)\right)
\end{aligned}
$$

Construct a symmetric matrix $A=\left(a_{i j}\right) \in \Omega_{4}$ as follows: Let $a_{11}=x, a_{1 j}=y$, for $j=2,3,4$ and $\operatorname{tra}(A)=\frac{10 x^{2}+4 x+1}{6 x}$. Choose arbitrary small $x, x>0$, such that $y=\frac{1-x}{3}>0$. It is easy to see that $T(A)=0$, hence by the Corollary 2.3, A and $\tilde{A}=A+E_{1}$ are permanental mates in Ω_{4}.

In particular, if we take $x=y=\frac{1}{4}$, then

$$
A=\left(\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \tag{6}\\
\frac{1}{4} & \frac{1}{2} & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{8} & \frac{1}{2} & \frac{1}{8} \\
\frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{1}{2}
\end{array}\right), \quad 0<\varepsilon<\frac{1}{8} \quad \text { and } \quad T(A)=0
$$

Therefore A and \tilde{A} form permanental mates in Ω_{4}. Hence for some symmetric matrices $A \in \Omega_{4}$, we can find an infinite number of perturbation matrices, which are permanental mates of A in Ω_{4}.

Let A be a symmetric matrix in Ω_{4}. Then the perturbation matrix $\tilde{A} \in M_{4,1}$, where $M_{4,1}$ denote the set of all one matching matrices in Ω_{4}. As $\tilde{A} \neq \tilde{A}^{\mathrm{T}}$ and $T(\tilde{A})_{\tilde{A}}=T(A)=0$, by the Theorem 2.2 in [4], \tilde{A} and \tilde{A}^{T} are permanental mates in Ω_{4}. Hence the pairs (A, \tilde{A}) and $\left(\tilde{A}, \tilde{A}^{\mathrm{T}}\right)$ are permanental mates in Ω_{4}. The Theorem 2.2 is only for a symmetric matrix in Ω_{n}. We can extend to an asymmetric matrix in Ω_{3}.

Theorem 2.4. Let $A=M(a, b ; c, d), c \neq b$, be in Ω_{3} and choose $\varepsilon>0$ such that $\tilde{A}=A+E \in \Omega_{3}$. A and the perturbation \tilde{A} are permanental mates if and only if $\operatorname{tra}(A)=\frac{3}{2}$.
Proof. Necessary and sufficient condition for A and \tilde{A} to be permanental mates is $S_{2}(A, E)=0=S_{1}(A, E)$, since per $E=0$.

$$
S_{2}(A, E)=0 \quad \text { and } \quad S_{1}(A, E)=0 \quad \text { if and only if } \operatorname{tra}(A)=\frac{3}{2}
$$

Suppose $c=b$ in $A=M(a, b ; c, d)$ then $S_{2}(A, E)=0$. In this case also A and \tilde{A} are permanental mates if and only if $\operatorname{tra}(A)=\frac{3}{2}$, which is easily verified from the Theorem 2.2.

Consider a matrix

$$
\begin{equation*}
A=M\left(\frac{1}{2}, \frac{1}{8} ; \frac{3}{8}, \frac{1}{2}\right) \in \Omega_{3} \tag{7}
\end{equation*}
$$

and choose $0<\varepsilon<\frac{3}{8}$ such that $\tilde{A}=A+E \in \Omega_{3}, A$ and \tilde{A} are permanental mates, since $\operatorname{tra}(A)=\frac{3}{2}$.
In [3], Hwang discussed some nontrivial permanental mates of doubly stochastic matrices. Mte(A) denotes the set of all mates of A for $A \in \Omega_{n}$. Let Int Ω_{n} denote the interior of Ω_{n}. In concluding remarks, Hwang [3] asked the question whether there exists an $A \in \operatorname{Int} \Omega_{n}$ with a nontrivial permanental mate. We established such a matrix (7) in Ω_{3}. The matrices \tilde{A} and A are permanental mates, since $\operatorname{tra}(A)=\frac{3}{2} . A \in \operatorname{Int} \Omega_{3}$ and $\tilde{A}=A+E \in \operatorname{Mte}(A)$ for all $\varepsilon, 0<\varepsilon<\frac{3}{8}$. In Ω_{4}, consider the matrix (6),

$$
A \in \operatorname{Int} \Omega_{4} \quad \text { and } \quad \tilde{A}=A+E_{1} \in \operatorname{Mte}(A) \quad \text { for all } \varepsilon, 0<\varepsilon<\frac{1}{8} .
$$

For larger n 's, Hwang thought that an affirmative answer to the question regarding the existence of matrices in Int Ω_{n} having nontrivial mates seems to be not possible. Therefore, Hwang proposed a conjecture, which states that, "for $n \geq 4$, if $A \in \operatorname{Int} \Omega_{n}$, then $\operatorname{Mte}(A)$ is a trivial set".

Karuppanchetty and Maria Arulraj [4] disproved this conjecture by proving necessary and sufficient conditions for $A=\left(\begin{array}{cc}X & U \\ U^{\mathrm{T}} & Y\end{array}\right) \in \Omega_{n}$ and that A^{T} are permanental mates, where X is a symmetric matrix and of order $(n-3) \times(n-3)$, U is $(n-3) \times 3$, and Y is $3 \times 3\left(\mathrm{Y} \neq \mathrm{Y}^{\mathrm{T}}\right)$. Here we have shown the perturbation matrix \tilde{A} as a permanental mate of a symmetric matrix A in Ω_{n}, which will also disprove the Hwang's conjecture.

Construct a symmetric matrix $A=\left(a_{i j}\right) \in \Omega_{n}$ as follows,

$$
\begin{aligned}
& a_{i j}=x, \quad \text { for } i, j=1,2, \ldots, n-3 \text { and } \\
& a_{i j}=y, \quad \text { for } i=1,2, \ldots, n-3 \text { and } j=n-2, n-1, n .
\end{aligned}
$$

Choose arbitrary small $x, x>0$, such that $y=\frac{1-(n-3) x}{3}>0$.
Choose the 3×3 bottom right sub matrix $\left(a_{i j}\right), i, j=n-2, n-1, n$, such that

$$
\left(\sum_{i, j=n-2}^{n} a_{i j}-2 \sum_{i=n-2}^{n} a_{i i}\right)=\frac{-3(n-3) y^{2}}{x} .
$$

Therefore, per $X=(n-3)!x^{n-3}, \operatorname{per}(X(i / j))=(n-4)!x^{n-4}$ and

$$
\sum_{i, j=1}^{n-3}\left(\sum_{k, r=n-2}^{n} a_{i r} a_{j k}-2 \sum_{k=n-2}^{n} a_{i k} a_{j k}\right)=3(n-3)^{2} y^{2} .
$$

It is easy to verify the condition (5) of the Theorem 2.2,

$$
\begin{aligned}
& \left(\sum_{i, j=n-2}^{n} a_{i j}-2 \sum_{i=n-2}^{n} a_{i i}\right) \operatorname{per} X+\sum_{i, j=1}^{n-3}\left(\sum_{k, r=n-2}^{n} a_{i r} a_{j k}-2 \sum_{k=n-2}^{n} a_{i k} a_{j k}\right) \operatorname{per} X(i / j) \\
& \quad=\frac{-3(n-3) y^{2}}{x}(n-3)!x^{n-3}+3(n-3)^{2} y^{2}(n-4)!x^{n-4}=0
\end{aligned}
$$

By the Theorem 2.2, A and the perturbation $\tilde{A}=A+E_{1} \in \Omega_{n}$ are permanental mates. Hence for $A \in \operatorname{Int} \Omega_{n}$, there exist infinitely many perturbation matrices, which are permanental mates of A in Ω_{n}.

If A and B have permanental mates with C and D respectively then $A \oplus B$ and $C \oplus D$ are permanental mates. In particular, if A and A^{T} are permanental mates in $\Omega_{n_{1}}, B$ and B^{T} are permanental mates in $\Omega_{n_{2}}$ then $A \oplus B$ and $A^{\mathrm{T}} \oplus B^{\mathrm{T}}$ are permanental mates in Ω_{n}, where $n=n_{1}+n_{2}$.

From the definition of permanental mates, we observed the fact that, if a permanent function is constant on the line segment connecting A and B, then it is constant on its line subsegment connecting a given convex combination of two with any other convex combination. Hence, the convex combination of two permanental mates has a permanental mate.

References

[1] J.L. Brenner, E.T.H. Wang, Permanental pairs of doubly stochastic matrices. II, Linear Algebra Appl. 28 (1979) 39-41.
[2] P.M. Gibson, Permanental polytopes of doubly stochastic matrices, Linear Algebra Appl. 32 (1980) 87-111.
[3] S.G. Hwang, Some nontrivial permanental mates, Linear Algebra Appl. 140 (1990) 89-100.
[4] C.S. Karuppanchetty, S. Maria Arulraj, Permanental mates and Hwang's conjecture, Linear Algebra Appl. 216 (1995) $225-237$.
[5] H. Minc, Permanents, in: Encyclopedia Math. Appl., vol. 6, Addison-Wesley, Reading, MA, 1978.
[6] E.T.H. Wang, Permanental pairs of doubly stochastic matrices, Amer. Math. Monthly 85 (1978) 188-190.

[^0]: * Corresponding author. Tel.: +91 422 2656422; fax: +91 4222656247.

 E-mail address: s_sundaram@ettimadai.amrita.edu (K. Somasundaram).

