Generalization of the Power Means and Their Inequalities

JOSIP E. PEČARIĆ

Faculty of Technology, University of Zagreb,
Ive Lole Ribara 126, 41000 Zagreb, Yugoslavia

Submitted by J. L. Brenner
Received December 8, 1989

In this paper we gave a generalization of power means which include positive nonlinear functionals. For these means we obtained generalizations of fundamental mean inequality, Hölder’s and Minkowski’s, and their converse inequalities.

1. INTRODUCTION

Let \(E \) be a nonempty set and let \(L \) be a class of nonnegative functions \(f: E \to \mathbb{R} \). We shall consider functionals \(A: L \to \mathbb{R} \) which satisfy the following conditions:

1. \(f \in L \Rightarrow A(f) \geq 0 \),
2. \(f \in L, \lambda > 0 \Rightarrow \lambda f \in L \) and \(A(\lambda f) = \lambda A(f) \),
3. \(1 \in L \), that is, if \(f(t) \equiv 1 \ (t \in E) \), then \(f \in L \) and \(A(1) = 1 \),
4. \(f, g \in L \) with \(f(t) \leq g(t) \ (\forall t \in E) \Rightarrow A(f) \leq A(g) \).

Let \(p \in \mathbb{R} \setminus \{0\} \). We shall consider the following generalization of the power means:

\[
M_p(f) = A(f^p)^{1/p},
\]
where \(f \) and \(A \) satisfy the above conditions. It is indeed mean since a simple consequence of (1°)–(4°) is the following implication:

5. \(a \leq f(t) \leq b \ (\forall t \in E, a, b \geq 0) \Rightarrow a \leq M_p(f) \leq b \).

In Section 2 we shall give some inequalities for this generalization of power means. Section 3 contains related results for the above means but in the case when \(A \) satisfies additional supposition

6. \(A(f + g) \leq A(f) + A(g) \ (f, g \in L \Rightarrow f + g \in L) \)
or

\[(7^o) \quad A(f + g) \geq A(f) + A(g).\]

We suppose that all expressions are well-defined.

2. Inequalities for a General Class of Means

Theorem 1. Let \(r \) and \(s \) be two real numbers such that \(r \leq s, r \neq 0, s \neq 0 \).

If \(0 < a \leq f(t) \leq b \ (\forall t \in E), f \in L, \) then the following inequalities are valid:

(i) If \(r > 0, \) then

\[
(b/a)^{1-s/r} M_s(f) \leq M_r(f) \leq (a/b)^{1-s/r} M_s(f). \tag{1}
\]

If \(r < 0 \) the reverse inequalities in (1) are valid.

(ii) If \(s > 0, \) then

\[
(a/b)^{1-r/s} M_s(f) \leq M_r(f) \leq (b/a)^{1-r/s} M_s(f). \tag{2}
\]

If \(s < 0 \) the reverse inequalities in (2) are valid.

Proof. From \(f \geq a, \) and \(M_s \leq b \) it follows that \(bf \geq aM_s(f), \) i.e.,

\[
bf/(aM_s(f)) \geq 1. \tag{3}
\]

Similarly we get

\[
bf/(aM_s(f)) \geq 1. \tag{4}
\]

From \(M_r \geq a \) and \(f \leq b \) it follows that \(af \leq bM_r(f), \) i.e.,

\[
0 < af/(bM_r(f)) \leq 1. \tag{5}
\]

Similarly we get

\[
0 < af/(bM_s(f)) \leq 1. \tag{6}
\]

Using the monotonic character of exponential functions we obtain

\[
(bf/(aM_r))^r \leq (bf/(aM_r))^r, \tag{7}
\]

\[
(bf/(aM_s))^r \leq (bf/(aM_r))^r, \tag{8}
\]

\[
(af/(bM_r))^r \leq (af/(bM_r))^r, \tag{9}
\]

\[
(af/(bM_s))^r \leq (af/(bM_s))^r. \tag{10}
\]
In the following we use (7):

\[A(f^r) = A\left(\left(\frac{bf}{aM_r}\right)^r \left(\frac{a/b}{M_r}\right)^r\right) = \left(\frac{a/b}{M_r}\right)^s A\left(\frac{bf}{aM_r}\right)^r \geq (a/b)^s M_r(f)^r A\left(\frac{bf}{aM_r}\right)^r = (a/b)^{r-s} M_r(f)^r. \]

Analogous consequences of (8)–(10) are

\[A(f^r) \leq (a/b)^{r-s} M_s(f)^r, \quad A(f^s) \leq (b/a)^{s-r} M_s(f)^s \]

and

\[A(f^r) \geq (b/a)^{r-s} M_s(f)^r. \]

Now, (1) and (2) are simple consequences of these results.

Theorem 2. If \(g_1, g_2 \in L, 0 < m_i \leq g_i(t) \leq M_i (\forall t \in E), i = 1, 2, A: L \to R \) satisfy (1°)–(4°), \(1/k + 1/k' = 1/r \), we write

\[T(g_1, g_2) = M_r(g_1 g_2)/(M_k(g_1) M_k(g_2)), \]

then we have

\[(m_1/M_1)^{r/k'} (m_2/M_2)^{r/k} \leq T(g_1, g_2) \leq (M_1/m_1)^{r/k'} (M_2/m_2)^{r/k} \] (11)

when \(k, k'>0 \);

\[(M_1/m_1)^{r/k'} (m_2/M_2)^{r/k} \leq T(g_1, g_2) \leq (m_1/M_1)^{r/k'} (M_2/m_2)^{r/k} \] (12)

when \(r, k>0, k'<0 \);

\[(m_1/M_1)^{r/k'} (M_2/m_2)^{r/k} \leq T(g_1, g_2) \leq (M_1/m_1)^{r/k'} (m_2/M_2)^{r/k} \] (13)

when \(r, k'<0, k>0 \);

\[(m_1/M_1)^{r/k'} (M_2/m_2)^{r/k} \leq T(g_1, g_2) \leq (M_1/m_1)^{r/k'} (M_2/m_2)^{r/k} \] (14)

when \(k, k'<0 \).

Proof. The following result is a simple consequence of Theorem 1.

If \(0 < a \leq x \leq b, y > 0, x, y \in L, A: L \to R \) is defined as in the above with \(A(y) = 1 \), then for \(r \geq 1 \),

\[(a/b)^{1-1/r} A(xy) \leq A(xy)^{1/r} \leq (b/a)^{1-1/r} A(xy). \] (15)

If \(r \in (0, 1] \), the reverse inequalities in (15) are valid.
Now we obtain (11) in the following way. Let

\[r - \frac{k}{r}, \quad x = g_1'^r g_2'^{-k} (A(g_2^r))^r/k, \quad y = g_2^k/(A(g_2^r)), \]

\[a = m_1'^r M_2'^{-k} (A(g_2^r))^r/k, \quad b = M_1'^r m_2'^{-k} (A(g_2^r))^r/k, \]

then (15) becomes

\[(m_1'/M_1')^{r/k'} (m_2'/M_2')^{r/k} A(g_1^r g_2'^r)/(A(g_j^r))^r/k', \]

\[\leq (A(g_1^r))^r/k \leq (M_1'/m_1')^{r/k'} (M_2'/m_2')^{r/k} A(g_1^r g_2'^r)/(A(g_j^r))^r/k', \]

i.e., (11).

Inequalities (12) can be proved in a similar way. Let

\[x = m_1^{r^j} m_2'^{-k} (A(g_2^r))^r/k, \quad b = M_1'^r M_2'^{-k} (A(g_2^r))^r/k, \]

and \(r, x, y \) be the same as above when \(r, k > 0 \) and \(k' < 0 \); then we use the reverse inequalities in (15).

Similarly we can prove (13) and (14).

Theorem 3. If \(g_1, g_2, \ldots, g_n \in L, 0 < m_i \leq g_i(t) \leq M_i (\forall t \in E), i = 1, 2, \ldots, n, \)

\(A: L \to R \) satisfies \((1')-(4''), k_1, k_2, \ldots, k_n \) are all positive numbers such that

\[\frac{1}{k_1} + \frac{1}{k_2} + \cdots + \frac{1}{k_n} = 1/r, \]

let \(\frac{1}{k_i'} = 1/r - 1/k_i, i = 1, 2, \ldots, n; \)

let

\[\prod_{i=1}^{n} \left(\frac{m_i}{M_i} \right)^{r/k_i} \leq M_s(g_1 g_2 \cdots g_n)/(\prod_{i=1}^{n} M_{k_i}(g_i)) \]

\[\leq \prod_{i=1}^{n} \left(\frac{M_i/m_i}{M_j/m_j} \right)^{r/k_i}; \]

(16)

Proof. Let us use induction on \(n \). By inequality (11), we obtain inequality (16) in the case \(n = 2 \).

Suppose now that the results hold for \(n = m \); we shall prove that this implies that it holds for \(n = m + 1 \). Since \(1/k_{m+1} + 1/k_{m+1} = 1/r \) and

\[m_1 m_2 \cdots m_m \leq g_1 g_2 \cdots g_m \leq M_1 M_2 \cdots M_m, \]

using inequality (11) (the result in the case \(n = 2 \)) for \(g_1, g_2, \ldots, g_m, g_{m+1} \) and exponents \(k_{m+1}, k_{m+1} \), respectively, we have

\[((m_1 m_2 \cdots m_m)/(M_1 M_2 \cdots M_m))^{r/k_m+1} (m_{m+1}/M_{m+1})^{r/k_{m+1}} \]

\[\leq M_s((g_1 g_2 \cdots g_m) \cdot g_{m+1})/(M_{k_{m+1}}(g_1 g_2 \cdots g_m) M_{k_{m+1}}(g_{m+1})) \]

\[\leq ((M_1 M_2 \cdots M_m)/(m_1 m_2 \cdots m_m))^{r/k_m+1} (M_{m+1}/m_{m+1})^{r/k_{m+1}}. \]

(17)
But since \(\frac{1}{k_1} + \frac{1}{k_2} + \cdots + \frac{1}{k_m} = \frac{1}{k_{m+1}} - \frac{1}{k_j} \), \(j = 1, 2, \ldots, m \); by hypothesis, we have

\[
\prod_{j=1}^{m} \left(\frac{m_j}{M_j} \right)^{r/k_j} \leq M_{k_{m+1}} \left(g_1 g_2 \cdots g_m \right)^{r/k_j} \prod_{j=1}^{m} M_{k_j} (g_j)
\]

\[
\leq \prod_{j=1}^{m} \left(\frac{M_j/m_j}{r/k_j} \right)^{r/k_j}.
\]

(18)

Since \(r/k_{m+1} + r/k_j = r(1/k_j - 1/k_j) = r/k'_j \), \(j = 1, 2, \ldots, m \), multiplying (17) by (18), we get

\[
\left(\frac{m_j}{M_j} \right)^{r/k_j} \leq M_r \left(g_1 \cdots g_m g_{m+1} \right)^{r/k_j} \prod_{j=1}^{m+1} M_{k_j} (g_j)
\]

\[
\leq \prod_{j=1}^{m+1} \left(\frac{M_j/m_j}{r/k_j} \right)^{r/k_j},
\]

which means that the results holds for \(n = m + 1 \).

Hence, by induction, the theorem is true for all \(n \geq 2 \).

3. Fundamental Mean Inequality, Hölder's, Minkowski's, and Related Inequalities

Theorem 4. If \(g_1, g_2 \in L \), \(A: L \to R \) satisfy \((1^o)\)-(4") and \((6")\), \(1/k + 1/k' = 1/r \), and \(T(g_1, g_2) \) is defined as in Theorem 2, then we have

\[
T(g_1, g_2) \leq 1 \quad \text{when either} \quad k, k' > 0 \text{ or } r, k' < 0, k > 0, \quad (19)
\]

and

\[
T(g_1, g_2) \geq 1 \quad \text{when either} \quad r, k > 0, k' < 0 \text{ or } k, k' < 0. \quad (20)
\]

Proof. If \(u > 0, v > 0, 1/u + 1/v = 1, a > 0, b > 0 \), then

\[
ab \leq (1/u)a^u + (1/v)b^v. \quad (21)
\]

By substitutions, \(u = r/k \), \(v = r/k' \), \(a = g_1^k/M_k(g_1)' \), \(b = g_2^k/M_k(g_2)' \), we get from (21)

\[
g_1^k g_2^k/(M_k(g_1) M_k(g_2))'
\]

\[
\leq (r/k)(g_1^k/A(g_1^k)) + (r/k')(g_2^k/A(g_2^k)).
\]
Now, using properties \((4^o)\) and \((6^o)\) we get

\[
A(g_1 g_2/(M_k(g_1) M_k(g_2)))^r \\
\leq (r/k) A(g_1^r)/A(g_1^r) + (r/k') A(g_2^r)/A(g_2^r) = 1,
\]
i.e., \((19)\), if \(k, k' > 0\), and \((20)\) if \(k, k' < 0\).

Since \(1/k = 1/r + 1/(-k')\) and \(r > 0, -k' > 0\), using \((19)\) (for \(k, k' > 0\)) we get \((20)\) for \(r, k > 0, k' < 0\). Similarly, using \((20)\) for \(k, k' < 0\) we get \((19)\) for

\[r, k' < 0, k > 0.\]

By mathematical induction (as in the proof of Theorem 3) we can prove:

Theorem 5. If \(g_1, g_2, \ldots, g_n \in L, A: L \rightarrow R\) satisfies \((1^o)-(4^o)\) and \((6^o)\), \(k_1, k_2, \ldots, k_n\) are all positive numbers such that \(1/k_1 + 1/k_2 + \cdots + 1/k_n = 1/r\), then

\[
M_r(g_1 g_2 \cdots g_n) \left(\prod_{i=1}^n M_{k_i}(g_i)\right) \leq 1. \tag{22}
\]

Theorem 6. If \(g_1, g_2, \ldots, g_n \in L, A: L \rightarrow R\) satisfies \((1^o)-(4^o)\) and \((6^o)\), \(r > 0, k_1 > 0, k_2 < 0, \ldots, k_n < 0\) are real numbers such that \(1/k_1 + 1/k_2 + \cdots + 1/k_n = 1/r\), then the reverse inequality in \((22)\) holds.

*Proof.\) By substitutions, \(r \rightarrow k_1, k_1 \rightarrow r, k_i \rightarrow -k_i\) \((i = 2, \ldots, n)\)

\[g_1 \rightarrow g_1 g_2 \cdots g_n, \quad g_i \rightarrow g_i^{-1}\]

\((i = 2, \ldots, n)\), we obtain Theorem 6 from Theorem 5.

Theorem 7. Let \(r\) and \(s\) be two real numbers such that \(r \leq s, r \neq 0, s \neq 0\). Then, for \(f \in L, \) and \(A: L \rightarrow R\) which satisfies \((1^o)-(4^o)\) and \((6^o)\),

\[
M_r(f) \leq M_s(f). \tag{23}
\]

*Proof.\) This is a simple consequence of Theorem 4 for \(g_1 = f, g_2 = 1\).

Theorem 8. Let \(f, g \in L, \) and \(A: L \rightarrow R\) satisfies \((1^o)-(4^o)\) and \((6^o)\). If \(p > 1\), then

\[
M_p(f + g) \leq M_p(f) + M_p(g). \tag{24}
\]

*Proof.\) As in the proof of the ordinary Minkowski inequality, we write

\[(f + g)^p = f(f + g)^{p-1} + g(f + g)^{p-1}.\]

Applying \(A\) to this, \((19)\) then yields

\[A((f + g)^p) \leq \{A(f^p)^{1/p} + A(g^p)^{1/p}\} A((f + g)^p).\]

Hence, \((24)\) follows.
Of course, results for Hölder's and Minkowski's inequalities can be formulated without conditions $A(1) = 1$, i.e., for nonnormalized functional $A: L \to R$. For example, the following result is a special case of (19).

If $0 < \lambda < 1$, then

$$A(f^\lambda g^{1-\lambda}) \leq A(f)^\lambda A(g)^{1-\lambda}. \quad (25)$$

For $f \to f^r$, $g \to f^s$, we get

$$A(f^{r\lambda} g^{1-r\lambda}) \leq A(f)^r A(g)^{1-r}, \quad (0 \leq \lambda \leq 1).$$

Hence the function $G(r) = A(f^r)$ is logarithmically convex (and so is convex) on R if $A: L \to R$ satisfies the conditions (1'), (2'), (4'), and (6').

This result is a generalization of a result from [2]. In fact all previous results are generalizations of some results from [1, 4]. Similarly we can prove the following generalizations of some results from these papers:

1. Let p and x be two real n-tuples such that $\sum_{i=1}^n p_i = 0$, and for $k = 1, ..., n$, $\sum_{i=1}^n p_i |x_i - x_k| \geq 0$. Then

$$1 \leq A(f^{x_1})^{p_1} \cdots A(f^{x_n})^{p_n}. \quad (26)$$

2. Let

$$g(x) = \prod_{j=1}^n A \left(f_{q_j} \left(\prod_{k=1}^n f_{q_k}^{x} \right)^{-q_j} \right)^{1/q_j},$$

where $q_i > 0$ ($i = 1, ..., n$) with $1/q_1 + \cdots + 1/q_n = 1$, $r \in R$. If $|x| \leq |y|$ $(xy > 0)$, then

$$g(x) \leq g(y). \quad (27)$$

3. Denote by $S_r(g) := A(g^r)^{1/r}$ ($r \neq 0$). If $A(1) = 1$ we have $S_r(g) = M_r(g)$. Liapunov's inequality now becomes

$$S_t(g) \leq S_s(g)^{(r/s)/(r-s)/(r-t)} S_r(g)^{(t/s)/(s-r)/(r-t)} \quad (0 < t < s < r). \quad (28)$$

Hence, by the arithmetic-geometric mean inequality

$$S_t(g) \leq \frac{r-s}{s-r} S_r(g) + \frac{t-s}{s-r} S_s(g)$$

or for $S_r(g) < S_s(g)$

$$\frac{S_r(g) - S_s(g)}{S_r(g) - S_s(g)} \leq \frac{s(r-t)}{t(r-s)} \quad (0 < t < s < r), \quad (29)$$

and reverse inequality for $S_r(g) < S_s(g)$.
Also we have that the function \(f(s) = S_{1/s}(g) \) is logarithmically convex (hence convex) for \(s > 0 \).

Remark. In fact (2) is a generalization of a result from [5].

As in [3] we can prove the following results.

Theorem 9. Let \(f, g \in L \) and \(A: L \to R \) satisfies conditions \((1^o), (2^o), (4^o), (6^o)\). If
\[
g_0^2 > A(g^2) > 0 \quad \text{(or } f_0^2 > A(f^2) > 0)\text{,}
\]
where \(g_0, f_0 \) are real numbers, then
\[
(f_0 g_0 - A(fg))^2 \geq (f_0^2 - A(f^2))(g_0^2 - A(g^2)).
\]

Theorem 10. Let \(f, g \in L \) and \(A: L \to R \) satisfies conditions \((1^o), (2^o), (4^o), (6^o)\). If \(p > 1 \), \(p^{-1} + q^{-1} = 1 \), and \(f_0, g_0 \) are positive numbers such that
\[
g_0^p > A(g^p) > 0 \quad \text{and} \quad f_0^p > A(f^p) > 0,
\]
then
\[
(f_0^p - A(f^p))^{1/p} (g_0^q - A(g^q))^{1/q} \leq f_0 g_0 - A(fg).
\]
In case \(p < 1 \) (\(p \neq 0 \), \(p^{-1} + q^{-1} = 1 \)) the inequality (31) is reversed.

Theorem 11. Let \(f, g \in L \) and \(A: L \to R \) satisfies conditions \((1^o), (2^o), (4^o), (6^o)\). If \(p > 1 \) and if \(f_0, g_0 \) are positive numbers such that
\[
g_0^p > A(g^p) > 0 \quad \text{and} \quad f_0^p > A(f^p) > 0
\]
then
\[
(f_0^p - A(f^p))^{1/p} + (g_0^p - A(g^p))^{1/p} \\
\leq ((f_0 + g_0)^p - A((f + g)^p))^{1/p}.
\]

These results are a generalization of the well-known Aczel, Popoviciu, and Bellman inequalities.

Now, as in [3], we can consider the function \(P(r) = f_0^r - A(f^r) \), positive on an interval \(J \). This function is logarithmically concave on \(J \), and we can give some applications of this result similar to results given in (1)–(3).

A very important functional which satisfies \((1^o), (2^o), (4^o), (6^o)\) is an increasing gauge in the vector space of numerical functions (see [4]).

In the case when \((7^o)\) (instead \((6^o)\)) is valid we have the following results.
THEOREM 12. Let \(f, g \in L \), and \(A: L \to R \) satisfies (1'), (2'), (4'), (7'). If either (i) \(p, q, r > 0 \), or (ii) \(p, -q, -r > 0 \), or (iii) \(-p, q, -r > 0 \) is valid and if \(0 < m \leq f(x)^p g(x)^q \leq M \) for \(x \in E \), then

\[
A(f^p g^q)^{1/r} \leq |p|^{1/p} |q|^{1/q} |r|^{-1/r} \frac{(M - m)^{1/p} |mM^{p/r} - Mm^{p/r}|^{1/q}}{|M^{p/r} - m^{p/r}|^{1/r}} \times A(f^p g^q)^{1/q}, \tag{33}
\]

and if either (iv) \(p, q, r < 0 \), or (v) \(-p, q, r > 0 \), or (vi) \(p, -q, r > 0 \), is valid then the reverse inequality in (33) is valid.

In the case when either (i), or (ii), or (iv), or (v) is valid then

\[
(M - m) A(f^p) + (mM^{p/r} - Mm^{p/r}) A(g^q) \leq (M^{p/r} - m^{p/r}) A(f^p g^q), \tag{34}
\]

and the reverse inequality is valid if either (iii) or (vi) holds.

Proof. If \(0 < m \leq x^p y^{-q/r} \leq M \), then, for example, in the case \(p, q, r > 0 \), the following inequality is valid (see [3]):

\[
(M - m)x^p + (mM^{p/r} - Mm^{p/r}) y^q \leq (M^{p/r} - m^{p/r})x^p y^q.
\]

Put in this inequality \(x \to f(t) \) and \(y \to g(t) \), and apply \(A \), we get (34). (Other cases can be proved similarly.) Now, rewrite (34) in the form

\[
\frac{(r/p)((p/r)(M - m) A(f^p)) + (r/q)((q/r)(mM^{p/r} - Mm^{p/r}) A(g^q))}{\leq (M^{p/r} - m^{p/r}) A(f^p g^q)},
\]

and apply the arithmetic-geometric means inequality on the left-hand side and we get (33). The proof is similar in the other cases.

For \(g \equiv 1 \) (\(\forall t \in E \)), we get the well-known conversion of fundamental mean inequality.

THEOREM 13. Let \(f \in L \), and \(A: L \to R \) satisfies conditions (1')-(4') and (7'). If \(r \leq s, r \neq 0, s \neq 0, 0 < m \leq f(t) \leq M \) (\(\forall t \in E \)), \(\lambda = M/m \), then

\[
M_s(f)/M_r(f) \leq \left(\frac{s - r}{\lambda^s - \lambda^r} \right)^{1/r - 1/s} \left(\frac{\lambda^{s-1}}{s} \right)^{1/r} \left(\frac{r}{\lambda^{r-1}} \right)^{1/s}. \tag{35}
\]

Also, we have

\[
(M' - m')(M_s(f))^r - (M_s - m') (M_r(f))^s \leq M'm^s - M^s m'
\]

if \(0 < r < s \), or \(r < 0 < s \), and the opposite inequality if \(r < s < 0 \).
REFERENCES

