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Abstract

The exact symmetry identities among four-point tree-level amplitudes of bosonic open string theory as 
derived by G.W. Moore are re-examined. The main focuses of this work are: (1) Explicit construction of 
kinematic configurations and a new polarization basis for the scattering processes. These setups simplify 
greatly the functional forms of the exact symmetry identities, and help us to extract easily high-energy limits 
of stringy amplitudes appearing in the exact identities. (2) Connection and comparison between D.J. Gross’s 
high-energy stringy symmetry and the exact symmetry identities as derived by G.W. Moore. (3) Observation 
of symmetry patterns of stringy amplitudes with respect to the order of energy dependence in scattering 
amplitudes.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Given many tremendous progresses and miraculous achievements, string theory as we know it 
today is still a beautiful work under construction [1,2]. While the lack of a full non-perturbative 
background-independent definition [3,4] may await for an unexpected breakthrough, the current 
formulation does not follow the wisdom of previous paradigms such as Einstein’s general theory 
of relativity or the standard model of the particle physics. Nevertheless, one can hardly imagine 
that a symmetry principle would be irrelevant under a proper formulation of string theory. To this 
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end, many people have addressed this issue over past decades. See, for example, [5]. Notable 
examples are the high-energy symmetry as proposed by D.J. Gross [6,7] and the exact symmetry 
identities derived by G.W. Moore [8]. In the former context, one observes linear relations among 
high-energy scattering amplitudes among stringy excitations at the same level, and inter-level 
symmetry patterns for leading four-point tree-level amplitudes were proposed in [9]. In the latter 
context, based on a well-defined algebraic algorithm (described by a bracket operation defined 
in Section 2), one establishes exact identities among inter-level stringy scattering amplitudes.

The basic idea behind high-energy symmetry as envisioned by Gross et al. [6] is to view 
string theory as a higher-spin gauge theory with spontaneous symmetry breakdown. Here all 
higher-level stringy excitations gain their masses through a higher-spin generalization of Higgs 
mechanism [5]. Furthermore, if we combine both the master formula [9] of tree-level stringy 
amplitudes for all transverse-polarized highest spin states at given mass levels, together with the 
linear relations among leading high-energy scattering amplitudes, these patterns strongly suggest 
an underlying structure of string theory as that of equivalent theorem in the electroweak theory 
[10]. The fact that we are able to deduce linear relations among the stringy scattering amplitudes 
[9] provides further evidences that the high-energy symmetry is a reflection of global symmetry 
associated with the would-be Goldstone particles in the unbroken phase of string theory.

In contrast, the advantages of the identities of Moore are: (1) the derivation of the identities 
is based on a clear algebraic structure of symmetry, some subsectors of the bracket states and 
their bracket relations, based on the bracket operation, can be described in explicit mathematical 
frameworks, e.g. [11]. (2) While there are infinitely many exact relations one can write down 
based on bracket algebra, these are not totally independent identities. In fact, one of the special 
features of these exact symmetry relations is that, it almost realizes a “bootstrap” scenario which 
allows us to derive infinite many scattering amplitudes among massive stringy excitations based 
on the Veneziano amplitude. (3) These are exact identities among stringy amplitudes, no special 
kinematic limits are taken (either high-energy [12] or Regge limits [14]).

On the contrary, to display the contents of these exact identities, especially in terms of all 
explicit kinematics (momenta, polarizations) are definitely not a trivial task. There are several 
immediate issues which demand special efforts. For instance: (1) What are the physical char-
acteristics (momenta, polarizations) of a state generated by bracket computation (referred to as 
a bracket state henceforth)? (2) From the structure of bracket computation (to be reviewed in 
Section 2), it is clear that the exact identities generally relate stringy excited states at differ-
ent levels. In order to view all stringy states and their scattering amplitudes as representations 
of a huge symmetry underlying string theory, it is natural to ask if bracket states generate full 
stringy spectrum? (3) Note that due to the “dressing” of the deformer to various seed operators 
(to be defined in Section 2), the stringy amplitudes as related by the exact symmetry identi-
ties in general have different kinematic configurations. Specifically, all amplitudes involved in 
a given symmetry identity describe different scattering processes, in which participant particles 
may have different spins and momenta. In application to four-point scattering amplitudes, for ex-
ample, while we know that the explicit form of any Lorentz invariant four-point amplitudes must 
be a function of two Mandelstam variables (s, t), there is no guarantee that all four four-point 
amplitudes appearing in an exact symmetry identity share the same set of Mandelstam variables.

In view of these, the symmetry identities as derived from the bracket algebra not only are 
generic inter-level symmetry relations but also connect amplitudes with different kinematic con-
figurations. Clearly, these relations are based on a well-defined infinite-dimensional symmetry 
algebra and may cover a wider energy region as compared with, say, high-energy symmetries à la 
Gross. Nevertheless, from a physicist’s point of view, if we believe that all scattering amplitudes
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form representations of the grand symmetry of string theory, one would like to have explicit ac-
tions on the scattering amplitudes as explicit functions of Mandelstam variables. Indeed, while 
neither symmetry relations mentioned above cover complete patterns of the stringy amplitudes, 
it is still of interest and importance to see if we can make connections between these two ap-
proaches. To achieve this goal, we need to pin down the explicit kinematic dependence of the 
exact identities and study their high-energy behaviors. In this paper, we begin the first explo-
ration of such a connection/unification based on a couple of case studies. We make a detailed 
comparison of the spectrum of stringy scattering states as generated from bracket algebra and 
identify a new kinematic basis for the decomposition of the polarization tensors. Most impor-
tantly, through the choice of proper basis of the string state Fock space (Verma module), we 
obtain much-simplified representations of the exact identities which allow us to extract high-
energy limits easily. Though we have worked out two specific cases, they already provide a 
couple of essential and generic features of these exact/high-energy relations. We therefore believe 
that the study worked out here will be a good starting point toward more general understanding 
of Moore’s relation.

This paper is organized as follows: we first give a brief review of Moore’s derivation of exact 
identities among string amplitudes in Section 2. Then we discuss the condition of conformal 
invariance on the bracket states and study their spectrum in Section 3. In order to examine 
the explicit kinematic dependence of the stringy amplitudes, we give a detailed study of the 
4-point kinematic configuration in Section 4. Here we also construct a new basis set for the 
helicity vector/tensor (q-orthonormal basis) which leads to improved expressions of exact iden-
tities. In Section 5, we investigate how the physical bracket states are related to the conventional 
positive-norm states as well as light-cone like physical states based on Del Giudice, Di Vec-
chia, and Fubini (DDF) operators [15,1] (referred to as DDF states). It is also discussed that the 
derivations of the exact symmetry identities of the stringy tree amplitudes with explicit kinematic 
dependence. Two explicit cases are used to illustrate our idea. Finally, based on the explicit con-
structions, we study the high-energy expansions of the exact identities and compare them with 
previous work in Section 6. Section 7 consists of summary and the discussion of future directions 
related to this work.

To streamline our discussion, we only use simple examples in the main text for various expla-
nations. Some technical details and further illustrative examples are collected in the appendices
for reference. Appendix A aims at supplying discussion about necessary and sufficient condi-
tions to make bracket operators conformally invariant. We give a simple explanation and useful 
formulas of DDF states in Appendix B. Finally, we discuss some subtleties regarding the choice 
of reference kinematic variables in the study of high-energy limits of Moore’s exact identities in 
Appendix C.

2. A brief review of G.W. Moore’s derivation

2.1. Outline of the basic idea

Let us first begin with a brief review of the argument of Moore [8]. Throughout this paper we 
use convention Xμ(w)Xν(z) ∼ −2α′ημν log(w − z) for string world-sheet propagators. Starting 
with dimension 1 chiral currents J (q, w) (referred to as the deformer) and V (k, z) (referred to 
as the seed operator) which carry the momenta qμ and kμ respectively, we define a new operator 
by
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V br(k̃, z) = {
J (q),V (k, z)

}≡
∮
z

dw

2πi
J (q,w)V (k, z), (2.1)

where J (q) is the integrated operator of the current J (q, w), and k̃ = k + q is a deformed 
momentum associated with this new operator which we call a bracket operator. This expression 
is well-defined when J (q) and V (k, z) are mutually local, 2α′q · k ∈ Z. When J (q, w) and 
V (k, z) are primary, it is easy to see that V br(k̃, z) is also primary and defines a physical vertex 
operator. We shall revisit physical state conditions later, and temporarily we assume that both 
V (k, z) and V br(k̃, z) are primary.

Now we look at four-point tree-level amplitudes of bosonic open string theory,

A
[{
Vi (ki)

}]=
1∫

0

dx
〈
V1(k1, x)V2(k2,0)V3(k3,1)V4(k4,∞)

〉
, (2.2)

where Vi (ki) are again integrated vertex operators. On the right hand side, we did not write 
explicitly the ghost part which should be understood in a standard way. It should be noted that 
the string scattering amplitude includes integration over the other domains, −∞ < x < 0 and 1 <
x < ∞, and also the contribution from the different ordering of the vertex operators. However, 
the relations among the scattering amplitudes we deal with in this paper are already manifest in 
this part, as we will see, so we concentrate on this part of the scattering amplitudes. The scattering 
amplitude is given as a function of independent momentum invariants, ki · kj , which we choose 
as the standard Mandelstam variables,

s = −(k1 + k2)
2, t = −(k1 + k3)

2, (2.3)

for the four-point scattering amplitudes, as well as an independent set of polarization invariants, 
such as ζi · kj or ζi · ζj .

Now let us turn to unintegrated correlation functions with deformed operators. We may con-
sider the second operator at z = 0 to be deformed by the action of J (q) operator,〈

V1(k1, x)
{
J (q),V2(k2,0)

}
V3(k3,1)V4(k4,∞)

〉
. (2.4)

It should be noted that the momentum conservation condition now includes qμ,

qμ +
4∑

i=1

k
μ
i = 0. (2.5)

By deforming the contour and integrating x from 0 to 1, we obtain a relation among scattering 
amplitudes,

0 =A
[
V1(k1)Vbr

2 (k̃2)V3(k3)V4(k4)
]

+ (−1)2α′q·k1A
[
Vbr

1 (k̃1)V2(k2)V3(k3)V4(k4)
]

+ (−1)2α′q·(k1+k3)A
[
V1(k1)V2(k2)Vbr

3 (k̃3)V4(k4)
]

+ (−1)2α′q·(k1+k3+k4)A
[
V1(k1)V2(k2)V3(k3)Vbr

4 (k̃4)
]
. (2.6)

Recall that the position of the unintegrated vertex operator V1(k1, x) is 0 < x < 1 < ∞. For 
this procedure to be well-defined, all 2α′q · ki have to be integral, while each pair of ki and kj

does not need to be mutually local. In [8], this relation has been employed to derive functional 
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equations for scattering amplitudes, which turn out to suffice for determining tachyon scattering 
amplitudes up to a constant. This is an intriguing result, but in this article we revisit these relations 
from the viewpoint of the standard scattering amplitudes in the center-of-momentum frame and 
their linear relations at high energy.

To make this point clearer, we look closer to the deformation of vertex operators and also recall 
a (fixed-angle) high-energy limit in the string scattering amplitudes. For four-point scattering 
amplitudes, we may prepare momenta ki and an extra momentum qμ to satisfy the following

k2
i = −m2

i , q2 = −m2
q, 2α′q · ki = ni (ni ∈ Z), (2.7)

where the momentum conservation condition (2.5) is also imposed. These conditions lead to a 
consistency condition,

4∑
i=1

ni = 2α′m2
q . (2.8)

The deformed momenta satisfy mass-shell conditions,

α′k̃2
i = α′(ki + q)2 = −α′m2

i + ni − α′m2
q ≡ −α′m̃2

i , (2.9)

where α′m̃2
i are again integers. Therefore the level of the vertex operator Vi(k) is shifted by 

α′m2
q − ni . It is easy to see from the bracket computation that if the deformed mass α′m̃2

i ≤ −2, 
the deformed operator identically vanishes. The Mandelstam variables for the physical momenta 
in the second amplitude in (2.6) are defined as

s ≡ −(k̃1 + k2)
2 = −(k1 + k2)

2 − 1

2α′ (n1 + n2) + m2
q,

t ≡ −(k̃1 + k3)
2 = −(k1 + k3)

2 − 1

2α′ (n1 + n3) + m2
q, (2.10)

Following similar definitions, we obtain the relations between Mandelstam variables in various 
scattering amplitudes related by a exact symmetry identity.

Now we look at, for example, the second amplitude in (2.6),

A
[
Vbr

1 (k̃1)V2(k2)V3(k3)V4(k4)
]
. (2.11)

If we take a high-energy limit,1 α′s → ∞ with t/s fixed, then each component of each mo-

mentum also goes to infinity; for example, k̃0
1, |
̃k1| → ∞, where 
̃

k1 is the spatial part of 
26-momentum k̃μ

1 . The same is true for the other momenta. On the other hand, the inner products 
of qμ with these momenta, and also itself, are all constant. Therefore, each component of qμ is 
O(1) or less. This means that the deformation due to qμ becomes negligible in the high-energy 
limit, and we can obtain a high-energy relation among the usual scattering amplitudes with the 
same external momenta. The purpose of this article is to make this observation more precise, and 
demonstrate how the high-energy relations are obtained by use of a couple of concrete exam-
ples. We shall examine the bracket relation in terms of conventional scattering amplitudes, and 
also explore the relation to the amplitudes based on Del Giudice, Di Vecchia and Fubini (DDF) 

1 In the high-energy regime, the string scattering amplitudes are extremely soft and damped exponentially. In this 
paper, we compare the high-energy limit of the amplitudes up to a common exponentially damping part. See (5.6) in 
Section 5.1.
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operators. The DDF operators are spectrum generating operators in string theory, and play an 
important role, for example, in proving the no-ghost theorem. The DDF states spanned by the 
action of the DDF operators thus form a convenient basis of the positive norm states. The DDF 
amplitudes, associated with these DDF states, have an advantage that the patterns of the energy 
hierarchy are much more transparent than those of conventional amplitudes. They therefore prove 
to be a particularly convenient basis when we discuss high-energy asymptotic relations among 
scattering amplitudes [13,16,17], as we will briefly explain in Section 6.1.

2.2. Mass and level parameters in our case studies

In the following sections, we investigate the properties of the bracket states and kinematics. 
We shall first write down the expressions of vertex operators

V(3)(k, z; ζ ) = :
[ −iζμνρ

(2α′)3/2
∂Xμ∂Xν∂Xρ − ζμ;ν

2α′ ∂2Xμ∂Xν + iζμ∂3Xμ

2
√

2α′

]
eik·X: (z), (2.12)

V(2)(k, z; ζ ) = :
(−ζμν

2α′ ∂Xμ∂Xν + i√
2α′ ζμ∂2Xμ

)
eik·X: (z), (2.13)

V(1)(k, z; ζ ) = iζ · ∂X√
2α′ eik·X(z), V(0)(k, z) = :eik·X: (z), (2.14)

where the subscript of V(	)(ki), (	), denotes the level of the vertex operator; (0) is for a tachyon, 
(1) for a massless state, and so on. In the argument of V(n)(k, z; ζ ), ζ schematically stands for the 
set of polarization tensors. A deformer at level n is represented by J(n)(q, w) = V(n)(q, w; ζq), 
and its polarization tensors are usually denoted as ζq otherwise specified. As in (2.1), bracket op-
erators are written with the superscript “br”, V br

(n)(k̃, z; ζ̃ ). The deformation of bracket operation 
appears as a special form of the polarization tensors (as well as the shift of the momentum by q), 
as we are about to see.

We will mainly consider the following example,

m2
1 = m2

q = 0, m2
2 = m2

3 = m2
4 = −1/α′, n1 = n2 = −1, n3 = n4 = 1,

which implies m̃2
1 = 1/α′ and m̃2

2 = 0. It also gives ñ1 = 2α′k̃1 · q = −1 and ñ2 = 2α′k̃2 ·
q = −1. Namely, we prepare the following deformer operator J(1)(q, w) and seed operators, 
V(1)(k1, z; ζ1) and V(0)(ki, z) (i = 2, 3, 4). This choice of the parameters leads to

A
[
Vbr

(2)(k̃1)V(0)(k2)V(0)(k3)V(0)(k4)
]=A

[
V(1)(k1)Vbr

(1)(k̃2)V(0)(k3)V(0)(k4)
]
. (2.15)

Since m̃2
3 = m̃2

4 = −2/α′, the corresponding operators identically vanish, and the relation in-
volves only these two amplitudes. The explicit expressions of the polarization tensors of the 
bracket operators, V br

(2)
(k̃1, z; ζ (2)) and V br

(1)
(k̃2, z; ζR) in terms of the seed and the deformer are 

(for simplicity, α′ = 1/2 in these expressions)

ζ (2)
μν (ζ1, ζq) = (ζq · k1)q(μζ1ν) − (ζ1 · q)q(μζqν) + ζq(μζ1ν)

+ 1

2

(
(ζq · ζ1) − (ζq · k1)(ζ1 · q)

)
qμqν, (2.16)

ζ (2)
μ (ζ1, ζq) = −(ζ1 · q)ζqμ + 1

2

(
(ζq · ζ1) − (ζq · k1)(ζ1 · q)

)
qμ, (2.17)

ζRμ(ζq) = (ζq · k2)qμ + ζqμ. (2.18)
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In the relation, we call the left hand side A[2̃000] amplitude and the right hand side A[11̃00] by 
using the sequences of the levels. The tilde for the level number stands for deformed (bracket) 
operators. In later sections, we frequently refer to this example as “Case study I: A[2̃000] =
A[11̃00]”. The Mandelstam variables for A[2̃000] side are defined by s[2̃000] = −(k̃1 + k2)

2 and 

t[2̃000] = −(k̃1 +k3)
2. On the other hand, on A[11̃00] side, they are given as s[11̃00] = −(k1 + k̃2)

2

and t[11̃00] = −(k1 + k3)
2. Using the mass-shell conditions and the values of q · ki , one can find 

that these two variables are equivalent, s[2̃000] = s[11̃00] and t[2̃000] = t[11̃00]. We therefore simply 
write them as s and t , and the relation between the amplitudes is understood as the relation of 
functions of these s and t , A[2̃000](s, t) = A[11̃00](s, t).

In another example we will consider, we prepare a massive deformer operator J(2)(q, w), and 
the same set of seed operators, V(1)(k1, z; ζ1) and V(0)(ki, z). With the following choice of the 
parameters,

m2
1 = 0, m2

q = 1/α′,

m2
2 = m2

3 = m2
4 = −1/α′, n1 = n2 = −1, n3 = n4 = 2,

we obtain the following relation,

A
[
Vbr

(3)(k̃1)V(0)(k2)V(0)(k3)V(0)(k4)
]= A

[
V1(k1)Vbr

(2)(k̃2)V(0)(k3)V(0)(k4)
]
. (2.19)

This example will be referred to as “Case study II: A[3̃000] = A[12̃00]”. Note that m̃2
1 =

2/α′, ñ1 = −3, m̃2
2 = 1/α′ and ñ2 = −3. The explicit forms of the polarization tensors of 

V br
(3)(k̃1, z; ζ (3)) and V br

(2)(k̃2, z; ζR) are spelled out as (again α′ = 1/2)

ζ (3)
μνρ(ζq, ζ̃q; ζ1) = ζq(μνζ1ρ) + 2q(μζ1ν(ζq · k1)ρ) − (ζ1 · q)

[
ζq(μνqρ) + (ζq · k1)(μqνqρ)

]
+ q(μqν(ζq · ζ1)ρ) + 1

2
Ξ1q(μqνζ1ρ) − 1

6
Ξ2qμqνqρ, (2.20)

ζ
(3)
μ;ν(ζq, ζ̃q; ζ1) = ζ̃qμζ1ν + 2(ζq · k1)μζ1ν

− (ζ1 · q)
[
2ζqμν + 2(ζq · k1)μqν + qμ(ζq · k1)ν + ζ̃qμqν

]
+ 2(ζq · ζ1)μqν + qμ(ζq · ζ1)ν + 1

2
Ξ1qμζ1ν − 1

2
Ξ2qμqν, (2.21)

ζ (3)
μ (ζq, ζ̃q; ζ1) = 2(ζq · ζ1)μ − 2(ζ1 · q)(ζq · k1)μ − 2(ζ1 · q)ζ̃qμ − 1

3
Ξ2qμ, (2.22)

Ξ1 = (k1 · ζq · k1) − (ζ̃q · k1),

Ξ2 = (k1 · ζq · k1)(ζ1 · q) − (ζ̃q · k1)(ζ1 · q) − 2(ζ1 · ζq · k1) + 2(ζ̃q · ζ1),

ζRμν(ζq, ζ̃q) = ζqμν + 2q(μζqν)ρk
ρ
2 + 1

2
(k2 · ζq · k2 − ζ̃q · k2)qμqν, (2.23)

ζRμ(ζq, ζ̃q) = ζ̃qμ + 2ζqμνk
ν
2 + 1

2
(k2 · ζq · k2 − ζ̃q · k2)qμ. (2.24)

Here, the polarization tensors of the deformer are represented as ζqμν and ζ̃qμ for distinction. 
One can check that the Mandelstam variables of both hands sides coincide also in this case, and 
we write them as s and t .
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3. The bracket operators and the spectrum analysis

As we have explained in Section 2, the basic idea underlying the derivation of exact identities 
among n-point scattering amplitudes is to deform the contour of the bracket operator in a null 
n + 1 point scattering amplitude into separate “dressing” of the n individual seed vertex opera-
tors. The bracket algebra leads to a relation among n n-point scattering amplitudes, where each 
amplitude includes one deformed operator and other n − 1 seed operators. While it is natural to 
demand that all seed operators are conformal invariant, the nature of the bracket operator requires 
some explanations. In particular, we will examine the following questions in this section:

• What are necessary and sufficient conditions for the bracket operators to be conformal in-
variant?

• Do bracket operators at a fixed level generate the complete positive-norm spectrum?

3.1. Conformal invariance of the bracket operators

In order for the relation (2.6) to make sense as a relation among string scattering amplitudes, 
the deformed operator V br has to be a decent vertex operator. If J (q, w) is a primary operator 
of dimension 1, the integrated one, J (q), is a dimension zero operator and commutes with the 
Virasoro generators. Therefore if a seed operator V (k, z) is also a dimension 1 primary operator, 
the resultant bracket operator will be a dimension 1 primary operator. Let J (q) and V(k) be the 
integrated operators,

J (q) =
∮

dw

2πi
J (q,w), V(k) =

∮
dz

2πi
V (k, z). (3.1)

The state constructed by the action of V br is written, by state–operator correspondence through 
the action of the commutator on the momentum vacuum, as [J (q), V(k)]|0; 0〉. The physical 
state condition is

0 = [
Ln,

[
J (q),V

]
(k)

]|0;0〉 = ([
J (q), [Ln,V](k)

]− [
V(k),

[
Ln,J (q)

]])|0;0〉,
for n ≥ 1 where we have used Jacobi’s identity. Ln represents a Virasoro generator. Therefore it is 
easy to see that a sufficient condition for V br to be a physical vertex operator is both J (q, w) and 
V (k, z) being physical. The question is what are necessary conditions. Let us take the bracket 
operator in [2̃000] amplitude as an example. The bracket states corresponding to V br

(2)(k̃, z) is 
(here k represents k1 in the example)[

(ζq · k)(q · α−1)(ζ · α−1) − (ζ · q)(q · α−1)(ζq · α−1) + (ζq · α−1)(ζ · α−1)

−(ζ · q)ζq · α−2 + 1

2

(
(ζq · ζ ) − (ζq · k)(ζ · q)

)(
(q · α−1)

2 + q · α−2
)]|0; k̃〉, (3.2)

and the physical state conditions are

0 = (ζ · q)(ζq · q),

0 = (ζq · q)ζμ + (ζ · k)ζqμ + [
(ζ · k)(ζq · k) − (ζ · q)(ζq · q)

]
qμ. (3.3)

The first condition requires ζ · q = 0 or ζq · q = 0. When ζq · q = 0, the second condition says 
ζ ·k = 0 or ζμ

q = −(ζq ·k)qμ. It is easy to see that when ζq ∝ q , the bracket state (3.2) identically 
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vanishes. So a sensible condition is ζ · k = 0. On the other hand, if we take ζ · q = 0, the second 
condition is

(ζq · q)ζμ + (ζ · k)ζμ
q + (ζ · k)(ζq · k)qμ = 0. (3.4)

Contraction with qμ leads to (ζ · k)(ζq · q) = 0. ζq · q = 0 coincides with the previous choice, 
while with ζ · k = 0, (3.4) implies ζq · q = 0 unless ζμ = 0 identically. Therefore, the physical 
state conditions for the bracket state lead to the conditions, ζ · k = ζq · q = 0, which are nothing 
but the physical state conditions for each Jq and V (k). So in this case, the sufficient conditions 
are also the necessary conditions.

However this may not be a general feature. Indeed, in the case of α′q2 = −1, we find physical 
bracket states generated by a deformer operator with an unphysical choice of polarizations. The 
details of this example are presented in Appendix A. However, such physical states seem quite 
special, and in the following discussion we confine ourselves in considering physical bracket 
states generated by physical deformer and seed operators.

3.2. Spectrum analysis of the bracket states

As seen, possible physical states obtained through the bracket operator is governed by the 
physical polarizations for the deformer operator Jq and the seed operator.

In the previous example, there are 25 choices for each ζμ and ζqμ. It is easy to see that the 
bracket state (3.2) are symmetric under the exchange of ζ and ζq when physical; As seen, ζq = q

makes (3.2) trivially vanish, while it is not difficult to check that ζ = k gives a null state. Since 
q2 = k2 = 0 and k · q = −1, k and q are linearly independent, which implies ζ · q = ζq · k = 0
for physical states of positive norm, and the statement follows. Both ζμ and ζqμ are transverse to 
both k and q , and then this choice of seed and deformer operators generates at most 300 physical 
states, while the total number of positive norm states at level 2 is 324.

This counting will be more vividly illustrated by considering the simplest case; namely, both 
seed and deformer operators are tachyons, J(0)(q, w) and V(0)(k, z) with q2 = k2 = 2 (α′ = 1/2). 
The bracket operator {J(0)(q), V(0)(k, z)} is not trivial for q · k ≤ −1, and a first few choices of 
q · k lead to

: eik̃·X : (q · k = −1), iζ1 · ∂Xeik̃·X (q · k = −2),

: [−ζ2μν∂Xμ∂Xν + iζ2μ∂2Xμ
]
eik̃·X : (q · k = −3), · · · (3.5)

where ζ1μ = qμ, ζ2μν = qμqν/2, and ζ2μ = qμ/2. These polarization tensors satisfy the physical 
state conditions and then the bracket operators are physical. In this case, we have only one state 
at each level.

In general, the number of physical states of a given bracket operator is restricted by the num-
bers of physical states of the seed and deformer operators and is not much larger than the product 
of these two numbers.2 However, as seen from construction, in order to generate a bracket opera-
tor at a given level, there are infinitely many possible choices of seed and deformer operators with 
q · k suitably chosen. Therefore, missing physical states from a choice of seed and deformer op-
erators will be obtained from another choice. These two different choices are in general involved 

2 When necessary conditions agree with sufficient ones, the product gives an upper bound. If not, there can be some 
extra physical states, but the number of them does not seem so large. See Appendix A.
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in different sets of exact relations. Through a possible overlap of states, scattering amplitudes are 
related to one another in a complicated way and then are highly constrained.

We have observed that Moore’s relation is quite powerful to relate infinitely many scattering 
amplitudes in a very nontrivial way, and these relations hopefully provide some trails of stringy 
symmetries. As stated in the introduction, we will carry out a first concrete analysis by use of a 
couple of specific cases. When we come to the consideration in massive inter-level relations, there 
appear another complication in the choice of momenta and also physical polarizations. In the 
following sections, we consider the simplest choice of the physical bracket operators and physical 
states; namely, the ones from physical seed and deformer operators, and the corresponding states. 
The more systematic analysis will be reserved for future study.

4. Kinematics of the four-point amplitudes

4.1. Kinematic configuration

In this section, we shall give explicit solutions of the kinematic configuration both in the rest 
frame (of the first particle) and the center-of-momentum frame. All components of seed/bracket 
momenta can be expressed as functions of the Mandelstam variables s and t , and this will help 
us in constructing various polarization vectors needed for higher-spin amplitudes.

We start with the kinematic configuration of the scattering processes in the rest frame of the 
first massive particle (m̃2

1 �= 0). For the sake of convenience, we take α′ = 1/2 in the following 
discussion. The following setup is the most economical ansatz which is compatible with the 
momentum conservation.

q = (c0, c1, c2, c3, 
0), (4.1)

k̃1 = k1 + q = (
k̃0

1,0,0,0, 
0), (4.2)

k2 = (
k0

2, k1
2,0,0, 
0), (4.3)

k3 = (
k0

3, k1
3, k2

3,0, 
0), (4.4)

k4 = (
k0

4, k1
4, k2

4,0, 
0)= −k̃1 − k2 − k3. (4.5)

In this rest-frame configuration, we can embed the seed and bracket momenta into a (1 +
3)-dimensional space–time, while the relevant physical momentum(k̃1, k2 ∼ k4) are confined 
within the (1 + 2)-dimensional scattering plane. Aside from the fourth momentum k4 which is 
fixed by momentum conservation, we have ten unknown components to be solved from the five 
on-shell conditions (k̃2

1 = −m̃2
1, ki = −m2

i (i = 2, 3, 4), and q2 = m2
q ) and the three level number 

constraints (ñ1 = k̃1 · q = n1 − m2
q , n2 = k2 · q , and n3 = k3 · q (n4 condition is trivial due to 

the consistency condition (2.8) when momentum conservation is satisfied)). Hence it is natural 
to expect that we can solve all momenta in terms of two Mandelstam variables, s = −(k̃1 + k2)

2

and t = −(k̃1 + k3)
2. We also define s̃ = k̃1 · k2 and t̃ = k̃1 · k3 for convenience.

Through some algebraic manipulations, we find

k̃0
1 = m̃1, (4.6)

k0
2 = s̃

2m̃1
, k1

2 = δ1
√

K1(s)

2m̃1
, (4.7)

k0
3 = t̃

2m̃
, k1

3 = δ1K3(s, t)√ , k2
3 = δ2

2m̃

√
K1(s)K2(t) − [K3(s, t)]2

K (s)
, (4.8)
1 2m̃1 K1(s) 1 1
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where we have defined K1(s) = s̃2 − 4m̃2
1m

2
2, K2(t) = t̃2 − 4m̃2

1m
2
3, and K3(s, t) = 2m̃2

1(s̃ + t̃ +
m̃2

1 + m2
2 + m2

3 − m2
4) + s̃ t̃ to make the equations brief. δi = ±1 (i = 1, 2, 3) are introduced for 

the sign ambiguity. On the other hand, the components of the bracket momenta q are:

c0 = − ñ1

m̃1
, c1 = δ1

2n2m̃
2
1 − s̃ñ1

m̃1
√

K1(s)
, (4.9)

c2 = δ2

m̃1

K1(s)(2m̃2
1n3 − t̃ ñ1) − (2n2m̃

2
1 − s̃ñ1)K3(s, t)√

K1(s)[K1(s)K2(t) − (K3(s, t))2] , (4.10)

c3 = δ3

√
−m2

q + c2
0 − c2

1 − c2
2. (4.11)

Note that if we demand that all physical momenta have real components, then the items inside 
the square root should be positive. Hence, we have the following inequalities,

K1(s) ≥ 0, K1(s)K2(t) ≥ (
K3(s, t)

)2
, c2

0 ≥ m2
q + c2

1 + c2
2. (4.12)

Having obtained the expressions of various momenta in the rest frame we can derive the 
kinematic configuration in the center-of-momentum (CM) frame, k̃1′

1 +k1′
2 = 0, by boosting along 

x1 direction with velocity β = K1(s)/(s̃ + 2m̃2
1). For δ1,2,3 = 1 choice, we find (assuming s > 0)

k̃
(CM)
1 = 1

2
√

s

(
s + m̃2

1 − m2
2,−

√
K1(s),0,0, 
0), (4.13)

k
(CM)
2 = 1

2
√

s

(
s − m̃2

1 + m2
2,
√

K1(s),0,0, 
0), (4.14)

k
(CM)
3 =

(
− s̃ + m̃2

1 + m2
2 + m2

3 − m2
4

2
√

s
, k

(CM)1
3 , k2

30, 
0
)

, (4.15)

q(CM) =
(

− ñ1 + n2√
s

,
−s̃(ñ1 − n2) − 2m2

2ñ1 + 2m̃2
1n2√

s
√

K1(s)
, c2, c3, 
0

)
(4.16)

where

k
(CM)1
3 = 1

2
√

s
√

K1(s)

[
s̃2 + 2s̃ t̃ + s̃

(
3m̃2

1 + m2
2 + m2

3 − m2
4

)+ 2t̃
(
m̃2

1 + m2
2

)
+ 2m̃2

1

(
m̃2

1 + m2
2 + m2

3 − m2
4

)]
, (4.17)

and k2
3 , c2, and c3 are the same as the rest frame configuration, (4.8), (4.10) and (4.11).

Our main interest is to examine the relations between high-energy symmetry à la Gross and the 
exact identities as derived from bracket algebra. In the case of fixed-angle high-energy scattering, 
we take s, t → ∞, and keep t/s fixed, and consequently,

s̃ = s +O(1), t̃ = t +O(1) = − s

2
(1 − cos θCM) +O(1), (4.18)

where θCM is the scattering angle in the CM frame. The leading-order expressions are given by 
(with the sign factors δi restored)

k̃
(CM)
1 =

√
s

2
(1,−δ1,0,0, 
0), k

(CM)
2 =

√
s

2
(1, δ1,0,0, 
0), (4.19)

k
(CM)
3 =

√
s (−1, δ1 cos θCM, δ2

√
1 − cos2 θCM,0, 
0), (4.20)
2
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q(CM) = −1√
s

(
ñ1 + n2, δ1(ñ1 − n2),−δ2

(n2 − ñ1)(1 − cos θCM) + 2n3 + 2ñ1√
1 − cos2 θCM

,

− δ3
√

s

√
−m2

q, 
0
)

. (4.21)

One can see that δ1 and δ2 are responsible for covering all the kinematic range by use of this 
parametrization, while δ3 has no physical importance. Note that the third spatial component of 
the momentum q becomes pure imaginary in this limit, when m2

q > 0. However, all physical 
momenta are real.

4.2. Complex momenta and Lorentz transformations

As seen in (4.19)–(4.21), in the high-energy limit s → ∞, the momenta k̃1, k2, k3, and k4
posses real components for generic choices of masses and q · ki , while q will develop a complex 
component when it corresponds to a massive state. One uses k̃1, k2, k3, and k4 as the momenta for 
external particles to calculate a scattering amplitudes, and the amplitude is regarded as a physical 
scattering process in a high energy regime. In the calculation of scattering amplitudes, q appears 
only through polarization tensors for bracket states.

Moore’s prescription relates a set of scattering amplitudes in which different operators are 
deformed, and each amplitude carries different sets of momenta. For examples discussed in the 
paper, one of them has k̃1 = k1 + q , k2 = k2, k3, and k4 and the other k1, k̃2 = k2 + q , k3, and 
k4. Thus, k1 and k̃2 may become complex in the high-energy limit. In view of Moore’s relation 
as an identity among analytic functions of momenta and polarization invariants, it is not a prob-
lem. However, one may be worried about whether the relation is understood as a relation among 
physical amplitudes, at least in an asymptotic regime of our main interest. The latter momentum 
set is characterized by the masses m1, m̃2, m3, m4, mq and the integers n1, ñ2, n3, n4. Since the 
general formulas (4.13)–(4.16) defines real external momenta for the given set of the parameters, 
we may work with these momenta to compute physical scattering amplitudes. Since the ampli-
tude is a function of Lorentz invariants, such as ki · kj or ζ · ki , it defines an equivalent amplitude 
if the invariants are the same. This condition is satisfied if there is a “Lorentz transformation” 
SO(1, 25; C) (or SO(1, 3; C) in practice) that relates these two configurations. For the kinematic 
configuration in the case of A[3̃000] =A[12̃00], we have shown it by explicitly constructing the 
transformation matrix, and we conclude that the exact symmetry identities indeed relate various 
physical scattering amplitudes with real momenta.

4.3. Scattering and q-orthonormal helicity bases for polarizations

We first present a general discussion of constructing a new orthonormal basis which is suitable 
for the study of Moore’s relation, based on the helicity representation with respect to the first 
particle. Assume that k̃1 is a momentum for a massive state. Let eP , eL, eT , eI , and eJi be the 
helicity vectors with respect to k̃1 in the CM frame. Here, eP ∝ k̃1 is the momentum direction of 
the first particle. eL is the longitudinal vector, namely a unit vector parallel to k̃1 on the scattering 
plane. eT is the transverse vector lying on the scattering plane. eI is one of the other transverse 
vectors which has an overlap with q . eJi (i = 1, · · · , 22) are the rest of the transverse vectors, 
chosen so that they are orthogonal to all the momenta in question. The completely transverse 
vectors eJi are not relevant for the discussion here, and we neglect them for the time being.

Since these vectors serve a natural basis for polarization tensors when we discuss scattering 
amplitudes in the CM frame, we call them the scattering helicity basis. They are also convenient 
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basis to analyze the physical state conditions for the massive first particle [21]. However, when 
the first particle corresponds to a bracket operator as for our examples, the physical state condi-
tions are more neatly written down by use of a basis regarding the deformation momentum q as 
we shall see. k̃1 and q have the following expression on the scattering helicity basis,

k̃1 =
√

m̃2
1e

P , q = cP eP + cLeL + cT eT + cI e
I , (4.22)

where cP is determined by the condition q · k̃1 = ñ1 as cP = −ñ1/

√
m̃2

1, while the other co-
efficients depend on the choice of k2, k3, and k4, as we have just seen. We are now going to 
define a new set of orthonormal basis vectors with which q takes the following simple form, 
q = cP eP + cQeQ, with eQ being a unit vector defined simply by cQeQ = cLeL + cT eT + cI e

I

and c2
Q =

√
c2
L + c2

T + c2
I = c2

P − m2
q . In the subspace spanned by eL, eT and eI , we define 

another two unit vectors orthogonal to eQ; we choose eTq to be purely spatial and eIq is the 
orthogonal complement to eQ and eTq in this subspace. The sign ambiguity has no physical im-
portance. eTq , eIq , and eQ, together with eP , form a new orthonormal basis which we call the 
q-orthonormal basis. On this basis, k1 and q are represented as

k1 =
(√

m̃2
1 − cP

)
eP − cQeQ, q = cP eP + cQeQ, (4.23)

and then the physical state conditions for the seed operator V (k1, z) and the deformer J (q, z)
are written down by use of “longitudinal-like” eQ and “transverse” unit vectors eTq and eIq (and 
also completely transverse vectors eJi ). In this basis, eP is not the momentum direction of q and 
then eQ is not really longitudinal. However, it turns out to be convenient to keep eP dependence 
explicitly, since eP is directly related to decoupling states from bracket operators.

In summary, we have defined a new set of the unit orthogonal vectors

eA′ =
∑

a′=L,T ,I

CA′
a′ea′

, (4.24)

where A′ = Tq, Iq, Q and the explicit form of the transformation matrix CA′
a′ is

CTq
L = 0, CTq

T = cI√
c2
T + c2

I

, CTq
I = −cT√

c2
T + c2

I

, (4.25)

CIq
L =

√
c2
T + c2

I

cQ

, CIq
T = −cLcT

cQ

√
c2
T + c2

I

, CIq
I = −cLcI

cQ

√
c2
T + c2

I

, (4.26)

CQ
L = cL

cQ

, CQ
T = cT

cQ

, CQ
I = cI

cQ

. (4.27)

Since the both (eL, eT , eI ) and (eIq , eTq , eQ) are orthonormal with the positive metric, the trans-
formation matrix is orthogonal, namely∑

a′=L,T ,I

CA′
a′CB ′

a′ = δA′B ′
,

∑
A′=Iq ,Tq ,Q

CA′
a′CA′

b′ = δa′b′ , (4.28)

where A′, B ′ = Iq, Tq, Q and a′, b′ = L, T , I . In later sections we shall see the advantage of this 
new basis to represent usual scattering amplitudes in the CM frame and also DDF amplitudes.
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4.4. Kinematics for case studies

Based on the general discussion so far, we write down the explicit kinematic configurations 
for the examine we examine in this paper, for reference.

4.4.1. Case study I: A[2̃000] =A[11̃00]
In this case, the scattering helicity basis with respect to k̃1 (m̃2

1 = 2) is given by

eP = 1

2
√

2s

(
s + 4,−

√
s2 + 16,0,0

)
, (4.29)

eL = 1

2
√

2s

(√
s2 + 16,−(s + 4),0,0

)
, (4.30)

eT = (0,0,1,0), eI = (0,0,0,1). (4.31)

The momenta in A[2̃000] side are obtained by the general formulas (4.13)–(4.16) and the auxil-
iary vector q is represented in this basis as

q = 1√
2
eP − s − 4√

2
√

s2 + 16
eL + 4(s + 2t + 4)√

s2 + 16
√

f1(s, t)
eT + 2

√
f2(s, t)√
f1(s, t)

eI , (4.32)

where f1(s, t) = 32 − st (s + t + 4) and f2(s, t) = −4 − t (s + t + 4). The basis vectors of the 
q-orthonormal basis are obtained from the transformation formulas (4.24)–(4.27) in the previous 
subsection.

For the right hand side (RHS), A[11̃00], we need to prepare another scattering helicity basis 
with respect to k1 and k̃2 = k2 + q . Let eP1 , eP2, eTR , eIR , and eJi be basis vectors in question. 
eP1 and eP2 are momentum polarization with respect to k1 and k̃2 respectively. Since they are 
null, there are no L-directions. eTR is on the RHS scattering plane (now spanned by 
k1 and 
k3) 
and orthogonal to k1. eIR is a unit vector perpendicular to the RHS scattering plane. The purely 
transverse directions eJi are common on both hands sides, and we use the same basis vectors. By 
use of q-orthonormal basis, they are represented as

eP1 = 1√
2
eP − 1√

2
eQ, eP2 = s + 2

2
√

2
eP + s − 2

2
√

2
eQ − √

seIq , (4.33)

eTR = eTq , eIR = −
√

2√
s
eP +

√
2√
s
eQ + eIq . (4.34)

It is straightforward to check that eIR is orthogonal to eP1 and eP2 .

4.4.2. Case study II: A[3̃000] =A[12̃00]
The momenta for the case are obtained from the general formulas (4.13)–(4.16). The helicity 

basis with respect to k̃1 is

eP = 1√
m̃2

1

k̃1 = 1

4
√

s

(
s + 6,−√F3(s),0,0

)
, (4.35)

eL = 1

4
√

s

(√
F3(s),−(s + 6),0,0

)
, (4.36)

eT = (0,0,1,0), eI = (0,0,0,1), (4.37)
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and the coefficients of q in this basis are obtained by cA = ±eA
μqμ for A = P, L, T , I (the 

negative sign is for eP ). Through cA one can generate q-orthonormal basis easily. The helicity 
basis with respect to k1 for A[12̃00] side is constructed in a similar way to the previous example, 
in the q-orthonormal basis, as

eP2 = 1√
2
k̃2 = −

√
2(s + 4)

8
eP − 3

√
2(s − 4)

8
eQ +

√
F2(s)

2
eIq ,

eL2 = −√
2(s2 + 2s − 16)

8(s − 2)
eP +

√
2(3s2 − 18s + 32)

8(s − 2)
eQ −

√
F2(s)

2
eIq ,

eTR = −(s − 4)(s + 2t + 2)

2(s − 2)
√

F5(s, t)
eP + F6(s, t)

2(s − 2)
√

F5(s, t)
eQ + F6(s, t)√

2F2(s)F5(s, t)
eIq

+ −F7(s, t)
√

F1(s, t)

F4(s, t)
√

2F2(s)F5(s, t)
eTq ,

eIR =
√

F1(s, t)

2
√

F5(s, t)

(
eP − eQ

)+ F6(s, t)√
2F2(s)F5(s, t)

eTq + F7(s, t)
√

F1(s, t)

F4(s, t)
√

2F2(s)F5(s, t)
eIq ,

where eP1 = k1 = 2eP − q . eL2 is the longitudinal unit vector for k̃2, and

F1(s, t) = 2s2t − s2 − 12st + 2st2 + 16s − 96 − 16t2 − 32t,

F2(s) = −s2 + 10s − 20, F3(s) = s2 − 4s + 36,

F4(s, t) = 72 − st (s + t + 2), F5(s, t) = −st (s + t + 2) − 8s + 8,

F6(s, t) = s2 − 2s + 2st − 8 − 8t,

F7(s, t) = s3t + s2t2 − 2st2 − 4st − 72s + 144.

5. Exact identities in various bases

In this section, we discuss the relation of physical bracket states with standard positive 
norm/DDF states. As seen in Section 3.1, a bracket operator is physical when a deformer and 
a seed operators on which the bracket operator is based are physical, and physical state condi-
tions for the deformer and seed operators are simply solved by use of the q-orthonormal basis 
introduced in Section 4. As we will see, Moore’s relation takes a simple form when it is rep-
resented in terms of amplitudes with q-orthonormal polarizations. Especially, the coefficients in 
the relations are found to be t -independent. However, the q-orthonormal basis is constructed with 
respect to a deformation momentum q which does not show up in physical momenta for scat-
tering amplitudes and then it does not respect certain physical symmetries. We therefore want to 
represent exact relations in a physical basis — usual helicity basis with respect to a momentum 
for an external particle. Further transformation to a DDF basis is advantageous when we discuss 
high-energy symmetries as explained in Section 6.1.

The translation involves energy dependent transformation coefficients connecting different 
bases and the expressions of the coefficients are fixed by bracket operation and the choice of q . 
As we will see, the high-energy expansions of these coefficients provide proportional constants 
of high-energy linear relations.
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5.1. Exact identities for Case study I

In this subsection, we discuss the bracket states that appear in A[2̃000] = A[11̃00] relation 
and their decompositions into scattering helicity bases.

Since we are interested in scattering amplitudes for physical processes, we need to impose 
physical state conditions on bracket states. As discussed in Section 3, the bracket operator is 
automatically physical for a physical choice of the seed polarization ζ1 and the deformer polar-
ization ζq . Physical conditions for the deformer and the seed operators are met easily by use of 
q-orthonormal basis introduced in Section 4 as

ζ1 = eA, ζq = eB, A,B = Tq, Iq, Ji . (5.1)

By plugging (5.1) into (2.16), (2.17), and (2.18), the polarization tensors of the bracket states are 
written as

ζ (2)
μν (ζ1, ζq) = eA

(μeB
ν) + δAB

2
qμqν, ζ (2)

μ (ζ1, ζq) = δAB

2
qμ,

ζRμ(ζq) = eB
μ + kB

2 qμ. (5.2)

The two polarization tensors on the first line are for the level 2 bracket operator that appears in 
A[2̃000] calculation, while the last one is for the level 1 bracket operator on A[11̃00] side. We 
may write the bracket operators of these choices of the polarization tensors as V brAB

(2)
(k̃1, x) and 

V brB
(1) (k̃2, 1). We are interested in the four-point amplitudes with these operators inserted,

T AB

br[2̃000] =
1∫

0

dx
〈
V brAB

(2) (k̃1, x)V(0)(k2,0)V(0)(k3,1)V(0)(k4,∞)
〉
, (5.3)

T A|B
br[11̃00] =

1∫
0

dx
〈
V A

(1)(k1, x)V brB
(1) (k̃2,1)V(0)(k3,1)V(0)(k4,∞)

〉
, (5.4)

where the vertical line in the superscript of the second amplitude denotes the separation of the 
first and the second particles. In terms of these “bracket amplitudes,” Moore’s relation trivially 
reads

T AB

br[2̃000] = T A|B
br[11̃00]. (5.5)

Since the bracket operators are vertex operators with specific forms of the polarization tensors, 
we may write Moore’s relation in terms of the amplitudes associated with conventional scattering 
amplitudes such as

1∫
0

dx
〈
V(2)(k̃1, x; ζ )V(0)(k2,0)V(0)(k3,1)V(0)(k4,∞)

〉
= Fs−t

[
ζμνT μν

[2000] + ζμT μ
[2000]

]
, (5.6)

where

Fs−t = �(−αs′ − 1)�(−α′t − 1)

′ , (5.7)

�(α u + 2)
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is “Veneziano-like” part which is responsible for the soft behavior in the high-energy regime. We 
take out this factor from scattering amplitudes as a common factor, and then T μν

[2000] and T μ
[2000]

are the rest of “polynomial” part. In the same manner we define T μ|ν
[1100], and Moore’s relation is 

written in the following form,

T AB[2000] + δAB

2

(
T qq

[2000] + T q

[2000]
)= T A|B

[1100] + kB
2 T

A|q
[1100], (5.8)

where T AB[2000] = eA
μeB

ν T
μν

[2000], T
q

[2000] = qμT μ
[2000], and so on. Since q = 1√

2
(eP + eQ), the second 

terms of the both sides contain eP components. The amplitudes with this component are related 
to vanishing amplitudes due to the decoupling of zero norm states. After dropping such trivial 
part, we can write the both hands sides in terms of the q-transverse polarizations as

T AB[2000] − δAB

20

(
−4T QQ

[2000] + T IqIq

[2000] + T TqTq

[2000] +
22∑
i=1

T JiJi

[2000]

)

= T A|B
[1100] + 2kB

2

s + 2

(√
sT A|Iq

[1100] + √
2T A|Q

[1100]
)
, (5.9)

where A, B = Tq, Iq, Ji . This equality is exact and holds for arbitrary s and t . The coefficients 
in the equality are almost just constants and even non-constant coefficients are simple functions 
of s, since k

Iq

2 = −√
s, kQ

2 = s−4
2
√

2
, and k

Tq

2 = k
Ji

2 = 0. Especially, the coefficients are t (therefore 
the scattering angle) independent. There appear five independent relations with respect to the 
choice of A and B . This is first our observation; the exact identity relation takes a particularly 
simple form with projection onto q-orthonormal basis. Hence, the deformation momentum q
also provides a natural frame to describe the exact identity.

However, when we look at the relation as a relation among physical scattering amplitudes, 
q does not explicitly appear as a momentum of external particles but is implicitly encoded in a 
specific form of deformed polarization tensors. Therefore transverse projections with respect to q
does not have manifest physical significance. We thus rewrite the relation in terms of amplitudes 
in scattering helicity basis which is standard basis to describe scattering amplitudes in the CM 
frame.

5.1.1. Level 2 bracket state in A[2̃000] amplitude
We first write bracket states in terms of scattering helicity states, with zero norm states 

dropped. The level 2 bracket state corresponding to V br
(2)(k̃1, z; ζ (2)) is rewritten as3

∣∣ζ1 = eA, ζq = eB; k̃1
〉
br =

[
αAB−1 + δAB

2

(
α

qq

−1 + α
q

−2

)]|0; k̃1〉

=
[(

C(A
aC

B)
b + δAB

4
CQ

aC
Q

b

)
αab

−1 + 2

(
C(A

aC
B)

L + δAB

4
CQ

aC
Q

L

)
αaL

−1

+
(

CA
LCB

L + δAB

4
CQ

LCQ
L

)
αLL−1

3 |0; ̃k1〉 is the tachyon state with momentum k̃1.
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+
√

2CQ
aδ

AB

4

(
αa

−2 + √
2αaP

−1

)+
√

2CQ
LδAB

4

(
αL−2 + √

2αLP−1

)
+ δAB

20

(
5αPP−1 + 5

√
2αP−2

)]|0; k̃1〉, (5.10)

where A, B = Tq, Iq, Ji and a, b = T , I, Ji . We summarize a product of oscillators of the same 
level as αab

−1 ≡ αa
−1α

b
−1, and αq

−1 = q · α−1. CA
a is the transformation matrix defined in (4.24). 

In the second from the last line, these two specific linear combinations are proportional to zero 
norm states of this level. The explicit forms of zero norm states are summarized in Appendix B.2. 
In the last line, we consider the difference with one of the zero norm state as(

5αPP−1 + 5
√

2αP−2

)|0; k̃1〉 = −
(

αLL−1 +
∑
a

αaa
−1

)
|0; k̃1〉 + |ZN1; k̃1〉.

By dropping all the zero norm state parts, we find that the bracket state (5.10) can be written in 
terms of positive norm states, up to zero norm states, as

(5.10) =
(∑

a′,b′
GAB

a′b′αa′b′
−1 + GAB

∑
a′

αa′a′
−1

)
|0; k̃1〉, (5.11)

where a′, b′ = L, T , I, Ji , namely the longitudinal direction and the transverse directions. The 
coefficients are

GAB
a′b′ =

(
CACB + δAB

4
CQCQ

)
(a′b′)

, GAB = −δAB

20
. (5.12)

(CACB)(a′b′) is the symmetrization, (CACB)(a′b′) ≡ 1
2 (CA

a′CB
b′ + CA

b′CB
a′).

5.1.2. Level 1 bracket state in A[11̃00] amplitude
We now move on to the m̃2

2 = 0 bracket state. The state is fairly simple,∣∣ζq = eB; k̃2
〉
br = (

αB−1 + kB
2 α

q

−1

)|0; k̃2〉. (5.13)

Note that eB is transverse to q but not to k2. We have chosen the polarization tensor of the de-
former ζqμ so that the polarization tensor associated with this bracket state satisfies the transver-
sality condition with respect to k̃2,

k̃2 · ζR = 0, ζRμ

(
ζq = eB

)= eB
μ + kB

2 qμ. (5.14)

Therefore, this bracket states can be rewritten as a linear combination of the momentum and the 
transverse oscillators,

(5.13) =
(

G̃B
P2

α
P2−1 +

∑
ã

G̃B
ã αã

−1

)
|0; k̃2〉, (5.15)

where ã = TR, IR, Ji , the transverse directions with respect to k1 and k̃2, and the coefficients are 
determined to be

G̃B
P2

= −eP2 · ζR, G̃B
ã = eã · ζR. (5.16)

Here, we put the tilde for coefficients on the right-hand side (namely A[11̃00]) states for distinc-
tion. For the first particle associated with the undeformed seed operator V μ

(1)(k1), we simply apply 
the transformation matrix CA

ã to rotate q-orthonormal directions to k1 transverse directions.
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5.1.3. Exact identity in terms of standard scattering amplitudes
We can now write down Moore’s identity (5.5) in terms of the amplitudes in the scattering 

helicity basis as∑
a′,b′

GAB
a′b′T a′b′

[2000] + GAB
∑
a′

T a′a′
[2000] =

∑
ã,b̃

CA
ãG̃

B

b̃
T ã|b̃

[1100]. (5.17)

where a′, b′ = L, T , I, Ji and ã, b̃ = TR, IR, Ji . On the left hand side, the amplitudes with a 
completely transverse polarization (eI or eJi ) are trivially zero, while on the right hand side, 
completely transverse directions should appear in a pairwise way for the amplitude to be non-
vanishing. Therefore, the summation can be made explicit as(

GAB
T T + GAB

)
T T T[2000] + 2GAB

LT T LT[2000] + (
GAB

LL + GAB
)
T LL[2000]

= CA
TR

G̃B
TR
T TR |TR

[1100] + CA
IR

G̃B
IR
T IR |IR

[1100] +
∑

i

CA
Ji

G̃B
Ji
T Ji |Ji

[1100]. (5.18)

In this expression, the coefficients G, C, and G̃ have nontrivial s and t dependence to make the 
equality hold. As we shall see in Section 6, the high-energy expansion of these coefficients gives 
proportional constants of linear relations in the fixed-angle high-energy limit.

5.1.4. The exact identity in terms of DDF amplitudes
As explained in B.2, the bracket state (5.10) can further be transformed into the sum of the 

DDF states, up to zero norm states, as

(5.10) =
∑
a,b

DAB
ab |ab; k̃1〉DDF +

∑
a

DAB
a |a; k̃1〉DDF + DAB

∑
a

|aa; k̃1〉DDF,

where a, b = T , I, Ji , the transverse directions, and | · · · ; k̃1〉DDF are the DDF states given by the 
action of DDF raising operators Aa−n on a tachyonic vacuum. The coefficients are given as

DAB
ab = GAB

ab , DAB
a = −√

2GAB
La , DAB = 1

4

(
GAB

LL + 5GAB
)
. (5.19)

For the massless bracket state Since there is no distinction between positive norm states and DDF 
states for massless states, in A[11̃00] side we use (5.12) to write down Moore’s relation in terms 
of DDF amplitudes,∑

a,b

DAB
ab T ab

DDF[2000] +
∑
a

DAB
a T a

DDF[2000] + DAB
∑

b

T bb
DDF[2000]

=
∑
ã,b̃

CA
ãG̃

B

b̃
T ã|b̃

[1100], (5.20)

where a, b = T , I, Ji and T ab
DDF[2000] is defined as an amplitude with one DDF state |ab; k̃1〉DDF

and three tachyons. The others are understood in the same manner. One can again use the non-
vanishing conditions for the choice of completely transverse directions, to make summation 
explicit as

DAB
T T T T T

DDF[2000] + DAB
II T II

DDF[2000] +
∑

i

DAB
JiJi

T JiJi

DDF[2000] + DAB
T T T

DDF[2000]

+ DAB
(
T T T + T II + 22T JJ

)

DDF[2000] DDF[2000] DDF[2000]
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= CA
TR

G̃B
TR
T TR |TR

[1100] + CA
IR

G̃B
IR
T IR |IR

[1100] +
∑

i

CA
Ji

G̃B
Ji
T Ji |Ji

[1100], (5.21)

where, for the third term in the second line, all Ji (i = 1, · · · , 22) gives the same result, and then 
we can take J as a representative of Ji and multiply 22.

5.2. Exact identities for Case study II

Here we discuss the bracket states that appear in the discussion of A[3̃000] = A[12̃00] re-
lation, presented in Section 2. As in the previous case, we will decompose the relevant bracket 
states in terms of standard positive norm states as well as DDF states. The discussion is parallel 
to the previous subsection, and the readers who do not need the details can skip to Section 6.

We again need to prepare polarization tensors of the seed and the deformer operators to make 
the corresponding bracket states physical. We set both seed and deformer operators to be physi-
cal. For the seed operator, we impose

ζ1μ = eC
μ, eC ∈ eTq , eIq , eJi . (5.22)

The polarization tensors of the deformer operator that satisfy the physical state conditions are⎧⎪⎪⎨
⎪⎪⎩

(I) : ζqμν = eAB
(μν) − δAB

24 Eμν,

(II) : ζqμν = 2
√

2e
LqA

(μν),

(III) : ζqμν = 24e
LqLq
μν − Eμν,

(
Eμν ≡

∑
D=Tq ,Iq ,Ji

eD
μ eD

ν

)
(5.23)

where A, B = Tq, Iq, Ji and ζ̃qμ = 0 for all the cases. eLq = (eP +3eQ)/2
√

2 is the longitudinal 
polarization with respect to q; namely, ePq = q/

√
2, eLq , eTq , eIq , and eJi form a helicity basis 

with respect to q . In this case, the bracket state polarization tensors depend on different numbers 
of q-transverse directions, and we will call these three cases Choice (I), (II), and (III) respectively. 
By plugging these in (2.20)–(2.24), one obtains the polarization tensors for the bracket operators 
(the explicit forms are given later), and by using them the exact bracket relations for a given set 
of A, B, C are simply written as

T ABC

br[3̃000] = T C|AB

br[12̃00],

T AC

br[3̃000] = T C|A
br[12̃00],

T C

br[3̃000] = T C

br[12̃00], (5.24)

for Choice (I), (II), and (III), respectively. As in the previous example, these relations can be 
represented as a relation among scattering amplitudes in q-orthonormal basis, and one can check 
that again the coefficients are very simple t -independent ones. We do not spell out them here and 
directly move on to scattering helicity basis expressions.

5.2.1. Level 3 bracket state in A[3̃000] amplitude
We start with Choice (I). With this choice, the polarization tensors for the bracket states are

ζ (3)
μνρ = eABC

(μνρ) + 1

2
q(μqν

(
δACeB + δBCeA

)
ρ)

− δAB

24

[
E(μνe

C
ρ) + q(μqνe

C
ρ)

]
, (5.25)

ζ
(3)
μ;ν = (

δACeB + δBCeA
)

qν + 1
qμ

(
δACeB + δBCeA

) − δAB [
2eC

μqν + qμeC
ν

]
, (5.26)
μ 2 ν 24
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ζ (3)
μ = (

δACeB + δBCeA
)
μ

− 2δAB

24
eC
μ . (5.27)

The state corresponding to V br
(3)

(k̃1, z; ζ (3)) is rewritten in terms of scattering helicity basis as 
before,∣∣∣∣ζq = eAB − δAB

24
E, ζ̃q = 0, ζ1 = eC; k̃1

〉
br

=
[
αABC

−1 + δAC

(
1

2
α

qqB

−1 + αB−2α
q

−1 + 1

2
α

q

−2α
B−1 + αB−3

)
+ (A ↔ B)

− δAB

24

(∑
D

αDDC
−1 + α

qqC

−1 + 2αC
−2α

q

−1 + α
q

−2α
C
−1 + 2αC

−3

)]
|0; k̃1〉

=
[ ∑

a′,b′,c′
GABC

a′b′c′αa′b′c′
−1 +

∑
a′,b′

GABC
[a′b′]α

[a′
−2α

b′]
−1

]
|0; k̃1〉 + (zero norm states), (5.28)

where a′, b′ = L, T , I, Ji , namely the longitudinal and the transverse directions with respect 
to k̃1. The coefficients are

GABC
a′b′c′ =

[
CACBCC + δAC

24

(
2CQCQCB −

∑
D

CDCDCB

)
+ (A ↔ B)

− δAB

288

(
2CQCQCC + 11

∑
D

CDCDCC

)]
(a′b′c′)

, (5.29)

GABC
[a′b′] =

[
−δAC

4
CQCB + (A ↔ B) + δAB

48
CQCC

]
[a′b′]

. (5.30)

CA
a = eA · ea is the transformation matrix from q-basis to k̃1-basis as before.
For Choice (II) and (III), we can repeat the same procedure and just display the results here. 

For Choice (II), the polarization tensors are

ζ (3)
μνρ = −2e

(P−Q)AC
(μνρ)

+ δAC

3

(
9ePPQ + 6ePQQ + eQQQ

)
(μνρ)

, (5.31)

ζ
(3)
μ;ν = −2eA

(μeC
ν) − 2eA[μeC

ν] + 2δAC
(
3eP

(μe
Q
ν) − eP[μe

Q
ν] + eQ

μ eQ
ν

)
, (5.32)

ζ (3)
μ = 8δAC

3
eQ
μ , (5.33)

and the bracket state is decomposed in the same way as (5.28) with GABC
a′b′c′ and GABC

[a′b′] replaced 
with

GAC
a′b′c′ =

(
2CACCCQ + 2δAC

9
CQCQCQ − δAC

9

∑
D

CDCDCQ

)
(a′b′c′)

, (5.34)

GAC
[a′b′] = −2CA[a′CC

b′]. (5.35)

For Choice (III), the polarization tensors are

ζ (3)
μνρ = 1

4

([−15ePP − 138ePQ + 41eQQ
]
eC
)
(μνρ)

−
∑

eDDC
(μνρ), (5.36)
D
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ζ
(3)
μ;ν = −1

2
e(9P+67Q)
μ eC

ν − eC
μe(3P+Q)

ν , (5.37)

ζ (3)
μ = −2eC

μ, (5.38)

and the decomposition is carried out with

GC
a′b′c′ = 5

12

(
26CQCQCC −

∑
D

CDCDCC

)
a′b′c′

, GC
[a′b′] = −65

2
CQ[a′CC

b′]. (5.39)

5.2.2. Level 2 bracket state in A[12̃00] amplitude
We move on to the bracket state in A[12̃00] side. We first investigate the Choice (I) case. The 

polarization tensors are

ζRμν = eAB
(μν) + q(μ

(
kA

2 eB + kB
2 eA

)
ν)

+ kA
2 kB

2

2
qμqν

− δAB

24

[
Eμν + 2

∑
D

q(μeD
ν)k

D
2 +

∑
D(kD

2 )2

2
qμqν

]
, (5.40)

ζRμ = (
kA

2 eB + kB
2 eA

)
μ

+ kA
2 kB

2

2
qμ − δAB

24

[
2
∑
D

eD
μ kD

2 +
∑

D(kD
2 )2

2
qμ

]
. (5.41)

The state corresponding to V br
(2)(k̃2) is

∣∣ζq = eAB − δAB

24
E, ζ̃q = 0; k̃2

〉
br

=
[
αAB−1 + (

kA
2 α

Bq

−1 + kA
2 αB−2 + (A ↔ B)

)+ kA
2 kB

2

2

(
α

qq

−1 + α
q

−2

)

− δAB

24

(∑
D

αDD−1 + 2
∑
D

kD
2

(
α

Dq

−1 + αD−2

)+
∑

D(kD
2 )2

2

(
α

qq

−1 + α
q

−2

))]|0; k̃2〉.

(5.42)

We decompose this state by use of the helicity states with respect to k1, introduced in Sec-
tion 4.4,4 as

(5.42) =
[∑

ã′,b̃′
G̃AB

ã′b̃′α
ã′b̃′
−1 + G̃

∑
ã′

αã′ã′
−1

]
|0; k̃2〉 + (zero norm states), (5.43)

where ã′, b̃′ = L2, TR, IR, Ji , namely the longitudinal and the transverse directions with respect 
to k1. The coefficients are

G̃AB

ã′b̃′ =
{(

CACB − δAB

24

∑
D

CDCD

)
+ 2

(
k
(A
2 CB) − δAB

24

∑
D

kD
2 CD

)
c

4 In the k1 helicity basis, there exist another null vector, may be called eL̃1 , which satisfies eP1 · eL̃1 = 1 and is 
transverse to the other basis vectors. In the discussion of the physical amplitudes, eL̃1 turns out to be irrelevant to our 
analysis.
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+ 1

2

(
kA

2 kB
2 − δAB

24

∑
D

(
kD

2

)2
)

cc

}
(ã′b̃′)

, (5.44)

G̃AB = 1

20

(
kA

2 kB
2 − δAB

24

∑
D

(
kD

2

)2
)

. (5.45)

Here, CA
ã′ is defined by eA · eã′

and we do not list up the explicit components here. The lower 
case cã′ is the eã′

component of q .
For Choice (II), the polarization tensors are

ζRμν = 2
√

2

(
e
LqA

(μν) + k
Lq

2 q(μeA
ν) + kA

2 q(μe
Lq

ν) + k
Lq

2 kA
2

2
qμqν

)
, (5.46)

ζRμ = 2
√

2

(
k
Lq

2 eA
μ + kA

2 e
Lq
μ + k

Lq

2 kA
2

2
qμ

)
, (5.47)

and the corresponding bracket state is decomposed as in (5.43) with

G̃A

ã′b̃′ = 2
√

2

(
CLq CA + k

Lq

2 CAc + kA
2 CLq c + kA

2 k
Lq

2

2
cc

)
(ã′b̃′)

, (5.48)

G̃A = 2
√

2kA
2 k

Lq

2

20
. (5.49)

For Choice (III), the polarization tensors are

ζRμν = 24e
LqLq

(μν) − E(μν) + 48k
Lq

2 q(μe
Lq

ν)

− 2
∑
D

kD
2 q(μeD

ν) + 24(k
Lq

2 )2 −∑
D(kD

2 )2

2
qμqν, (5.50)

ζRμ = 48k
Lq

2 e
Lq
μ − 2

∑
D

kD
2 eD

μ + 24(k
Lq

2 )2 −∑
D(kD

2 )2

2
qμ, (5.51)

and the coefficients for the decomposition of the bracket state are

G̃
ã′b̃′ =

(
24CLq CLq −

∑
D

CDCD + 48k
Lq

2 CLq c − 2
∑
D

kD
2 CDc

+ 24(k
Lq

2 )2 −∑
D(kD

2 )2

2
cc

)
(ã′b̃′)

, (5.52)

G̃ = 24(k
Lq

2 )2 −∑
D(kD

2 )2

20
. (5.53)

5.2.3. The exact identity in terms of the standard scattering amplitudes
Now we can write down the exact identity relation in terms of T μνρ

[3000], T
μ;ν

[3000], and T μ
[3000]

amplitudes which are “polynomial pieces” of the scattering amplitudes with V(3)(k̃1, x; ζ ) and 
three tachyons insertion. For right hand side, the amplitude pieces are denoted as T μ|νρ

[1200] and 

T μ|ν , which come from a V(1)(k1, x; ζ ), V(2)(k̃2, 0; ζ ) and two tachyons amplitude. Like the 
[1200]
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previous example, the vertical line in the superscript separates an index from the first particle 
from ones of the second. With these pieces of the amplitudes, the exact identity is given as∑

a′,b′,c′
GABC

a′b′c′T a′b′c′
[3000] +

∑
a′,b′

GABC
[a′b′]T

[a′;b′]
[3000]

=
∑

c̃

CC
c̃

(∑
ã′,b̃′

G̃AB

ã′b̃′T
c̃|ã′b̃′

[1200] + G̃AB
∑
ã′

T c̃|ã′ã′
[1200]

)
,

for Choice (I), where the indices are a′, b′, c′ = L, T , I, Ji , ã′, b̃′ = L2, TR, IR, Ji , and c̃ =
TR, IR, Ji . Here, [a; b] represents the anti-symmetrization of the indices and the symmetrized 
ones are missing since they appear only as a part of decoupling amplitudes. There are also sim-
ilar relations for Choice (II) and (III), where G coefficients are replaced with the ones in (5.35), 
(5.48) and (5.48), (5.53) respectively. By dropping trivially vanishing amplitudes summation is 
made explicit as, for Choice (I), (B and AB indices will be missing for Choice (II) and (III) 
respectively)

GABC
T T T T T T T[3000] + 3GABC

LT T T LT T[3000] + 3GABC
LLT T LLT[3000] + GABC

T T T T T T T[3000] + 2GABC[T L]T
[T ;L]

[3000]
= CC

TR

((
G̃AB

TRTR
+ G̃AB

)
T TR |TRTR

[1200] + 2G̃AB
L2TR

T TR |L2TR

[1200] + (
G̃AB

L2L2
+ G̃AB

)
T TR |L2L2

[1200]
)

+ CC
IR

(
G̃AB

TRIR
T IR |TRIR

[1200] + G̃AB
L2IR

T IR |L2IR

[1200]
)

+
22∑
i=1

CC
Ji

(
G̃AB

TRJi
T Ji |TRJi

[1200] + G̃AB
L2Ji

T Ji |L2Ji

[1200]
)
. (5.54)

5.2.4. The exact identity in terms of DDF amplitudes
As before, we rewrite the level 3 and 2 bracket states for Choice (I) in terms of DDF ampli-

tudes as, up to zero norm states,

(5.30) =
∑
a,b,c

DABC
abc |abc〉DDF +

∑
a,b

(
DABC

(ab)

∣∣(a;b)
〉
DDF + DABC[ab]

∣∣[a;b]〉DDF

)
+
∑
a

DABC
1a |a〉DDF +

∑
a,b

DABC
2a |abb〉DDF + DABC

∑
b

|b;b〉DDF,

(5.43) =
∑
ã,b̃

D̃AB

ãb̃
|ãb̃〉DDF +

∑
ã

D̃AB
ã |ã〉DDF + D̃AB

∑
ã

|ãã〉DDF,

where a, b, c = T , I, Ji and ã, b̃ = TR, IR, Ji . The coefficients are determined by general con-
sideration in B.2 as

DABC
abc = GABC

abc , DABC
(ab) = −3GABC

Lab ,

DABC[ab] = GABC[ab] , DABC = −1

2
GABC

LLL ,

DABC
1a = 1

4

(
9GABC

LLa + 2GABC[La]
)
, DABC

2a = 1

8

(
3GABC

LLa − 2GABC[La]
)
, (5.55)

and

D̃AB
˜ = G̃AB

˜ , D̃AB
ã = −√

2G̃AB
L ã, D̃AB = 1(

G̃AB
L L + 5G̃AB

)
, (5.56)
ãb (ãb) 2 4 2 2
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For Choice (II) and (III), we simply replace G coefficients in the D coefficients with the corre-
sponding ones.

By use of the DDF amplitudes that correspond to these states, the exact identities are ex-
pressed, after taking the trivially vanishing amplitudes into account, as(

DABC
T T T + DABC

2T

)
T T T T

DDF[3000] + (
3DABC

T II + DABC
2T

)
T T II

DDF[3000]

+
22∑
i=1

(
3DABC

T JiJi
+ DABC

2T

)
T T JiJi

DDF[3000]

+ (
DABC

(T ;T ) + DABC
)
T (T ;T )

DDF[3000] + (
DABC

(I ;I ) + DABC
)
T (I ;I )

DDF[3000]

+
22∑
i=1

(
DABC

(Ji ;Ji )
+ DABC

)
T (Ji ;Ji )

DDF[3000] + DABC
T T T

DDF[3000]

= CC
TR

((
D̃AB

TRTR
+ DAB

)
T TR |TRTR

DDF[1200] + (
D̃AB

IRIR
+ DAB

)
T TR |IRIR

DDF[1200]

+
22∑
i=1

(
D̃AB

JiJi
+ DAB

)
T TR |JiJi

DDF[1200] + D̃AB
TR

T TR |TR

[1200]

)

+ CC
IR

(
2D̃AB

TRIR
T IR |TRIR

DDF[1200] + D̃AB
IR

T IR |IR

[1200]
)

+
22∑
i=1

CC
Ji

(
2D̃AB

TRJi
T Ji |TRJi

DDF[1200] + D̃AB
Ji

T Ji |Ji

[1200]
)
. (5.57)

6. High-energy stringy symmetry v.s. exact identities from bracket algebra

In this section, we consider the high-energy expansion of bracket relations and examine how 
these relations constrain the asymptotic forms of scattering amplitudes.

The relations are, for example in the case of A[2̃000] =A[11̃00],∑
a′,b′

GAB
a′b′T a′b′

[2000] + GAB
∑
a′

T a′a′
[2000] =

∑
ã,b̃

CA
ãG̃

B

b̃
T ã|b̃

[1100],

for standard scattering amplitudes. We expand the transformation matrices, G and C, as well as 
the amplitudes under the s → ∞ with t̂ = t/s fixed limit. At each order of s, there will be rela-
tions among asymptotic amplitudes. We will explore how these relations “bootstrap” asymptotic 
amplitudes, and whether or not they reproduce known high-energy relations.

In this program, the transformation matrices CA
a (therefore, G and D) are regarded as inputs, 

since they are determined once we specify the momenta ki and q . On the other hand, the ampli-
tudes are considered to be unknowns which are to be determined. However, we need to supply 
information on the leading power of each amplitude,5 such as T T T[2000] = O(s3). For both types 
of amplitudes, a “power counting rule” has been established [13,16,17] and it tells the relative 
power of a given amplitude with respect to the leading order power. Though it turns out that it 

5 As mentioned in Sections 2 and 5.1, we consider amplitudes up to a common exponential part (Fs−t in (5.7)), and 
mean the leading power by the leading power of the rest of “polynomial” parts.
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is actually sufficient to know the relative powers to carry out the program, to make expressions 
concrete we employ our empirical knowledge on the orders of scattering amplitudes. We also 
need to use triviality of amplitudes, like completely transverse directions Ji must appear in a 
pairwise way for an amplitude to be non-vanishing. This fact reduces the number of independent 
unknowns. We have already taken this fact into account, for example, in (5.18) and (5.21).

6.1. High-energy linear relations from the decoupling of high-energy zero-norm states and 
saddle-point calculation

We are about to investigate how Moore’s relations restrict amplitudes under the fixed-angle 
high-energy limit. In order to have a view on what kinds of relations we expect to see, we briefly 
review an approach based on the decoupling of (high-energy) zero-norm states and collect some 
known linear relations from [9,12,13]. We will also mention a couple of relations which are 
obtained by saddle-point calculation. In the following subsections, we examine which of these 
relations are extracted from exact relations by a high-energy expansion.

To illustrate the analysis, we take four point amplitudes with one level 2 state and three 
tachyons, T μν

[2000], as an example. For simplicity, the helicity basis with respect to the momentum 
for the level 2 state is denoted as eP , eL, and eT in this subsection. The completely transverse di-
rections are irrelevant here. From the oscillator expressions of zero norm states, (B.9) and (B.10), 
one can immediately see that the amplitudes obey the following relations,

5T PP[2000] + T LL[2000] + T T T[2000] + 5
√

2T P[2000] = 0,
√

2T PL[2000] + T P[2000] = 0. (6.1)

In the high-energy limit, the masses are negligible and eP approximates to eL (as explicitly seen 
from (4.29) and (4.30)). By taking a linear combination, one finds that in a linear combination 
T T T[2000] − 4T LL[2000] the leading order part vanishes, since this combination approximates a zero-
norm state in the high-energy limit. One thus obtains a linear relation in the high-energy limit,

T T T[2000] = 4T LL[2000]. (6.2)

Actually, in order to come to this conclusion, one need to be sure that these two are indeed of 
leading order. As mentioned in the previous subsection, a “power counting rule” of [9,13] tells 
the relative power of an amplitude with a set of helicity projections compared to the leading order 
power, and the amplitudes in (6.2) are indeed the leading order ones. Thus this is a high-energy 
linear relation of this amplitude. The same argument leads to a linear relation for T μνρ

[3000] [12],

T T T T[3000] : T LLT[3000] : T (L;T )
[3000] : T [L;T ]

[3000] = 8 : 1 : −1 : −1, (6.3)

where T (L;T )
[3000] and T [L;T ]

[3000] are symmetric and anti-symmetric combinations of the indices in an 
amplitude that corresponds to αL−2α

T−1.
Such high-energy linear relations based on the decoupling of zero-norm states should hold 

in very general circumstances. The same relations should hold for other choices of extra vertex 
operators (three tachyons in the current examples) and also for all orders in perturbation theory. 
We thus take these relations as symmetry identities in the high-energy limit. On the other hand, 
this argument is on a state-level analysis and is confined in a set of states at a fixed level. The 
decoupling of high-energy zero-norm states does not give any inter-level relation, but we expect 
that there appear several inter-level relations as well, as all the mass levels are degenerate in the 
high-energy limit. Among many possible inter-level linear relations, we may be interested in the 
following relations among all T -polarized amplitudes,
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T T T[2000] = T T |T
[1100], T T T T[3000] = T T |T T

[1200] , (6.4)

at the leading order. Here, all the states are generated only by the level 1 oscillator αT−1 with 
T -polarization (with respect to the momentum of the state on which it acts) and the total level 
on the both hands sides are the same. As long as these two conditions are met, at the leading 
order, the same kind of relations hold in general; for example, T T T T T[4000] = T T T T |T

[3100] = T T T |T |T
[2110] =

T T |T |T |T
[1111] and so on. These relations can be derived through direct calculation by use of the 

saddle-point approximation [9]. We will come back to this partonic behavior of scattering ampli-
tudes in Section 7, but in this section, we check if this kind of relation is also obtained through 
Moore’s relations.

In general, the appearance of such leading order relations implies that it is possible to choose 
another basis of physical states such that there exists a unique state in the basis at the leading or-
der and all the other states are of subleading. Such basis has been found and discussed in [13,16]
and called DDF gauge, where positive norm physical states are spanned by DDF operators. The 
corresponding amplitudes are DDF amplitudes, such as T T T T

DDF[3000]. In this gauge, the leading 
energy dependence of an amplitude is determined by the number of T indices. For example, at 
level 3, T T T T

DDF[3000] generated by (AT−1)
3 starts with the highest power in s. T T ;T

DDF[3000] is at the 
next-to-leading order, and T T

DDF[3000] and T T II
DDF[3000] are further sub-leading. Therefore, in this 

gauge, leading order linear relations become trivial, and we can concentrate on inter-level rela-
tions like (6.4) as well as subleading relations among DDF amplitudes. Actually, we can develop 
a systematic high-energy expansion [17], and observe several interesting relations connecting 
amplitudes of different leading energy dependence. Among amplitudes generated only by AT−1
and AI−1, it is found

T (T )n−m(I)m

DDF[n000] = T (T )n−m−2(I )m+2

DDF[n000]
( −2s

m + 1
+O

(
s0)). (6.5)

Namely, up to subleading corrections, the following relations obey:

T T T
DDF[2000] = −2sT II

DDF[2000], T T T T T
DDF[4000] = −2sT T T II

DDF[4000] = 4s2

3
T IIII

DDF[4000]. (6.6)

Since Moore’s relation is exact, we should be able to obtain such inter-level and inter-energy-
level relations from it. As a preliminary trial, we shall derive a first few nontrivial relations among 
DDF amplitudes in the following subsections.

6.2. High-energy expansions of the scattering amplitudes: A[2̃000] =A[11̃00]
As explained in the beginning of this section, we take the large-s expansions of the amplitudes 

and the coefficients of the exact relation (5.18), with t̂ = t/s fixed, as

T T T[2000] = T T T
[2000](3)s

3 + T T T
[2000](2)s

2 + · · · , (6.7)

G
TqTq

T T = G
TqTq

T T (0) + G
TqTq

T T (−1)s
−1 + · · · , (6.8)

and so on. Here, on the right hand side, factors like T T T
[2000](n) denote coefficients of sn and are in 

general functions of t̂ , for example, T T T
[2000](3) = −t̂ (1+t̂ )

4 .6

6 Explicit expressions of amplitudes are found in the preprint version (v2) of the manuscript. You may obtain all the 
other coefficients by use of them.
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In the bracket relation (5.18), by collecting the terms at the same order in s, we can find 
several relations among these expansion coefficients. For example, for (A, B) = (Tq, Tq) choice, 
the coefficient of s3 reads

0 = (
G

TqTq

T T (0) + G
TqTq

(0)

)
T T T

[2000](3) + (
G

TqTq

LL(0) + G
TqTq

(0)

)
T LL

[2000](3)

− CTq
TR(0)G̃

Tq

TR(0)T
TR |TR

[1100](3). (6.9)

After evaluating C and G coefficients by use of their asymptotic forms, it leads to asymptotic 
relations among the leading order part of scattering amplitudes.

Before going further, we point out that the coefficient function for the right hand side, CA
ãG̃

B

b̃

is constant and almost diagonal. The amplitudes T ã|b̃
[1100] are non-zero only for (ã, b̃) = (TR, TR), 

(TR, L̃2), (IR, IR), and (Ji, Ji). Here eL̃2 is one of the basis vector for k̃2 helicity basis, k2 ·
eL̃2 = 1. For these ã, b̃, non-vanishing coefficients are

CIq
IR

G̃
Iq

IR
= −1, CTq

TR
G̃

Tq

TR
= 1, CJi

Ji
G̃

Ji

Ji
= 1 (no sum for i),

and the unphysical projection onto eL̃2 does not appear. Therefore, on the right hand side, the co-
efficients can be regarded as constants and the asymptotic expansion only involves the expansion 
of the amplitudes.

To first two orders with (A, B) = (Tq, Tq), (Iq, Iq), (J, J ), and (Tq, Iq), the relations are

O
(
s3) : 0 = 19

20
T T T[2000](3) + 1

5
T LL[2000](3) − T TR |TR

[1100](3), (6.10)

0 = T T T[2000](3) − 4T LL[2000](3), (6.11)

O
(
s2) : 0 = 19

20
T T T[2000](2) − 2T LL[2000](3) + 1

5
T LL[2000](2) − T TR |TR

[1100](2), (6.12)

0 = − 1

20
T T T

[2000](2) + 6T LL
[2000](3) + 1

5
T LL

[2000](2) + T IR |IR

[1100](2), (6.13)

0 = − 1

20
T T T

[2000](2) − 2T LL
[2000](3) + 1

5
T LL

[2000](2) − T J |J
[1100](2), (6.14)

0 = (2t̂ + 1)T T T
[2000](3) +

√
−2t̂ (1 + t̂ )T T L

[2000](5/2), (6.15)

O(s) : 0 = −2
(
4t̂2 + 6t̂ + 1

)
T T T

[2000](3) + (
2t̂2 + 3t̂ + 1

)
T T T

[2000](2)

+
√

−2t̂ (1 + t̂ )(1 + t̂ )T T L
[2000](3/2). (6.16)

From (6.10) and (6.11), it is easy to obtain the following linear relations

T T T
[2000](3) = 4T LL

[2000](3), T T T
[2000](3) = T TR |TR

[1100](3). (6.17)

The first one is the linear relation (6.2) derived from the decoupling of zero-norm states, while 
the second one is an inter-level relation (6.4).

On A[11̃00] side, IR and Ji have the same geometrical meaning; namely, both represent com-
pletely transverse directions to the scattering plane. Therefore, replacing (Ji, Ji) with (IR, IR)

does not change the amplitudes. More explicitly, T IR |IR

[1100] = T J |J
[1100] holds for all orders in s. By 

use of this rotational symmetry for (6.12), (6.13), and (6.14), we find further relations,

4T LL + T IR |IR = 0, T T T − T TR |TR + T IR |IR = 0. (6.18)
[2000](3) [1100](2) [2000](2) [1100](2) [1100](2)
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The rest of the relations (6.15) and (6.16) provide some angle-dependent relations. As already 
mentioned, we have used the explicit s dependence of each amplitudes. The power counting 
rule [13] provides the information on relative power of each amplitudes. Since the relation is 
homogeneous, these relative powers of the amplitudes suffice to determine high-energy linear 
relations; some of them have been derived by use of the decoupling of high-energy zero norm 
states [12,13], and we also find extra subleading relations and inter-level relations.

6.3. High-energy expansions of the DDF amplitudes: A[2̃000] =A[11̃00]

We move on to exact relations among DDF amplitudes (5.21). Again, we expand all the ele-
ments that appear in (5.21) with respect to its s dependence, T T T

DDF[2000] = T T T
DDF[2000] (3)s

3 + · · · , 

D
IqIq

II = D
IqIq

II (0) +D
IqIq

II (−1)s
−1 +· · · , and so on. We then organize the exact relations with respect 

to its s dependence as before, with D coefficients evaluated, as7

O
(
s3): T T T

DDF[2000] (3) = T TR |TR

[1100](3), (6.19)

O
(
s2): T T T

DDF[2000] (2) − 1

2
T T T

DDF[2000] (3) = T TR |TR

[1100] (2), (6.20)

T JJ
DDF[2000] (2) − 1

2
T T T

DDF[2000] (3) = T J |J
[1100] (2), (6.21)

T II
DDF[2000] (2) + 3

2
T T T

DDF[2000] (3) = −T IR |IR

[1100] (2), (6.22)

4t̂ + 2√
−t̂ (t̂ + 1)

T T T
DDF[2000] (3) − 2T T

DDF[2000] (5/2) = 0, (6.23)

where J represents one of 22 Ji , and the O(s3) relation is for (A, B) = (Tq, Tq) while at O(s2)

the relations are for (A, B) = (Tq, Tq), (J, J ), (Iq, Iq) and (Tq, Iq) in order. By using the fact 
that T JJ

DDF[2000] = T II
DDF[2000] and T J |J

[1100] = T IR |IR

[1100] , which follows from the rotational symmetry 
in the directions transverse to the scattering plane, one can further derive

2T II
DDF[2000] (2) = T IR |IR

[1100] (2)
. (6.24)

The leading order relation (6.19) is a DDF-amplitude counter part of the relation (6.4). (6.22), 
combined with (6.24), gives a known DDF amplitude relation (6.6).

At order O(s), the relations involve t̂ , then the scattering angle. For example, for A = B = Iq , 
one finds (we omit the subscript DDF[2000] and [1100] for simplicity)

−2t̂ (t̂ + 1)T IR |IR

(1)
= 12(2t̂ + 1)

√
t̂ + 1

√
−t̂T T

(5/2) − 8(2t̂ + 1)2T T T
(3)

+ t̂ (t̂ + 1)
(−9T II

(2) + 2T II
(1) + 3T T T

(2) + 66T JJ
(2)

)
.

By taking some linear combinations of four relations at this order, we can derive some 
t̂ -independent relations, for example,

T TR |TR

(1) − T IR |IR

(1) + 2T J |J
(1) = T T T

(1) + T II
(1) + 2T JJ

(1) . (6.25)

Again, by employing an obvious symmetry, IR → J and J → I on both hands sides, we have

7 Recall that the right hand side, A[11̃00] side, is the same as the previous case.
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T TR |TR

(1) + T IR |IR

(1) = T T T
(1) + 3T II

(1) . (6.26)

In summary, by using the power counting rule of the DDF amplitudes, the bracket relation 
provides some of the known asymptotic relations, such as (6.19), and also several subleading 
relations.

6.4. High-energy expansions of the scattering amplitudes: A[3̃000] =A[12̃00]

As in the case of A[2̃000] =A[11̃00] relation, we expand the amplitudes and the G matrices 
in the bracket relation (5.54) to derive the high-energy relations. In this case, there are many 
relations for each Choice (I), (II), and (III) with various choices of A, B , and C.

In the case of Choice (I), for (A, B, C) = (Tq, Tq, Tq), the first two leading order relations 
read

O
(
s13/2) : 0 = CTq

T (0)

(
G̃

TqTq

TRTR(2)T
TR |TRTR

[1200](9/2) + G̃
TqTq

L2L2(2)T
TR |L2L2

[1200](9/2)

)
,

O
(
s11/2) : 0 = CTq

TR(0)G̃
TqTq

TRL2(3/2)T
TR |TRL2

[1200](4) + CTq
TR(0)G̃

TqTq

TRTR(2)T
TR |TRTR

[1200](7/2)

+ CTq
T (0)G̃

TqTq

L2L2(2)T
TR |L2L2

[1200](7/2) + CTq
TR(−1)G̃

TqTq

L2L2(2)T
TR |L2L2

[1200](9/2)

+ (
CTq

TR(−1)G
TqTq

(2) + CTq
TR(0)G̃

TqTq

(1) + CTq
TR(0)G̃

TqTq

TRTR(1)

)
T TR |TRTR

[1200](9/2).

Interestingly, unlike the previous case, some of G̃ coefficients on the right hand side have positive 
power in s, while the left hand side coefficients do not. Thus, first few leading order relations in 
s only involve amplitudes from A[12̃00]. We now write down the leading order relations, with 
C, G and G̃ coefficients evaluated, for various choices of (A, B, C) as

0 = 4T TR |L2L2
[1200](9/2) − T TR |TRTR

[1200](9/2), (6.27)

0 = √
2T TR |TRL2

[1200](4) − (2t̂ + 1)T TR |TRTR

[1200](9/2)√
−t̂
√

t̂ + 1
, (6.28)

0 = −3T [L;T ]
[3000](9/2) + 1

6
T T T T

[3000](9/2) + 83

3
T T LL

[3000](9/2) + 2

√
2(2t̂ + 1)T TR |TRL2

[1200](4)√
−t̂
√

t̂ + 1

+ 4T IR |TRIR

[1200](7/2) + 2
(2t̂ + 1)2T TR |TRTR

[1200](9/2)

(t̂ + 1)t̂
, (6.29)

0 = 18T [L;T ]
[3000](9/2) − T T T T

[3000](9/2) + 26T T LL
[3000](9/2), (6.30)

0 = −2T [L;T ]
[3000](9/2) + 6T T LL

[3000](9/2) + 1

2

√
2(2t̂ + 1)T TR |TRL2

[1200](4)√
−t̂
√

t̂ + 1
+ T IR |TRIR

[1200](7/2)

+ 1

2

(2t̂ + 1)2T TR |TRTR

[1200](9/2)

t̂ (t̂ + 1)
, (6.31)

0 = − (2t̂ + 1)T [L;T ]
[3000](9/2)√

−t̂
√

t̂ + 1
+ 2

3
T T T L

[3000](4) − 52

3
T LLL

[3000](4) + 1

2

(2t̂ + 1)T T T T
[3000](9/2)√

−t̂
√

t̂ + 1

− 37
(2t̂ + 1)T T LL

[3000](9/2)√ √ + 4
√

2T J |JL2
[1200](3) − 4

(2t̂ + 1)T J |TRJ

[1200](7/2)√ √ , (6.32)

−t̂ t̂ + 1 −t̂ t̂ + 1
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0 = 1

6
T T T L

[3000](4) − 13

3
T LLL

[3000](4) + 1

9

(2t̂ + 1)T T T T[3000](9/2)√
−t̂
√

t̂ + 1
− 80

9

(2t̂ + 1)T T LL[3000](9/2)√
−t̂
√

t̂ + 1

+ √
2T J |JL2

[1200](3) − (2t̂ + 1)T J |TRJ

[1200](7/2)√
−t̂
√

t̂ + 1
, (6.33)

where J stands for one of Ji .
From (6.27)–(6.28), we find

T TR |TRTR

[1200](9/2) = 4T TR |L2L2
[1200](9/2) =

√
2
√

−t̂
√

t̂ + 1

2t̂ + 1
T TR |TRL2

[1200](4) . (6.34)

The first equality is the linear relation at level 2 we have seen before, (6.2). Using this relation, 
(6.29)–(6.31) lead to

T T T T
[3000](9/2) = 8T T LL

[3000](9/2) = −8T [L;T ]
[3000](9/2) = −T IR |TRIR

[1200](7/2). (6.35)

The first three relations are indeed the linear relation (6.3) obtained by use of the decoupling 
of zero-norm states. Since α(L

−2α
T )
−1|0; k̃1〉 appears in zero-norm states, T (L;T )

[3000] is missing in our 
computation here.

So far, one can see that the leading order amplitudes, T T T T
[3000](9/2) and T TR |TRTR

[1200](9/2), can be re-

garded as basic ones to represent the rest of amplitudes. The final two relations, (6.32) and (6.33), 
give a single relation

0 = T T T L
[3000](4) − 26T LLL

[3000](4) + 6
√

2T J |JL2
[1200](3), (6.36)

after using the rotational symmetry, T J |TRJ
[1200] = T IR |TRIR

[1200] . It involves other leading order ampli-
tudes. By direct computation, one can check that these three coefficients are proportional to 
t̂ (t̂ + 1)(2t̂ + 1), and then they are actually proportional to one another.

The next-to-leading order relations are very complicated in general. Among those, the highest 
order one at O(s11/2) is found to provide a simple relation

0 = 10T TR |TRTR

[1200](9/2) − T TR |TRTR

[1200](7/2) + 4T TR |L2L2
[1200](7/2). (6.37)

Explicit evaluation shows that these three are not proportional to one another, as a function of 
t̂ , unlike the previous example. Other relations are more involved and contain other subleading 
order amplitudes. We do not present explicit forms of them here.

The leading order relations (6.34) and (6.35) reproduce some of the leading order relations 
observed in [12,13]. The relation between all T -polarized amplitudes, T T T T

[3000](9/2) = T TR |TRTR

[1200](9/2), 
is not obtained from Moore’s relations, up to this order. If we supply it, the leading order relations 
up to O(s9/2), (6.34) and (6.35), are written by one of them.

6.5. High-energy expansions of the DDF amplitudes: A[3̃000] =A[12̃00]

Finally, we consider asymptotic relations among DDF amplitudes, (5.57). As before, we ex-
pand the DDF amplitudes and the D matrices, We list the leading order ones from Choice (I), 
(II), and (III), with the same structure ones collected, as
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0 = 5t̂2 + 5t̂ + 1

(−t̂ )(1 + t̂ )
T TR |TRTR

DDF[1200](9/2) + 2t̂ + 1√
(−t̂ )(1 + t̂ )

T TR |TR

DDF[1200](4)

− 2T TR |IRIR

DDF[1200](7/2)
, (6.38)

0 = (2t̂ + 1)(5t̂2 + 5t̂ + 1)

(−t̂ )3/2(1 + t̂ )3/2
T TR |TRTR

DDF[1200](9/2) + (2t̂ + 1)2

(−t̂ )(1 + t̂ )
T TR |TR

DDF[1200](4)

− 2(2t̂ + 1)√
(−t̂ )(1 + t̂ )

(
2T IR |TRIR

DDF[1200](7/2) + T TR |IRIR

DDF[1200](7/2)

)− 2T IR |IR

DDF[1200](3), (6.39)

0 = 2t̂ + 1√
(−t̂ )(1 + t̂ )

T TR |TRTR

DDF[1200](9/2) + T TR |TR

DDF[1200](4), (6.40)

0 = −2T T T T
DDF[3000](9/2) + (2t̂ + 1)2

(−t̂ )(1 + t̂ )
T TR |TRTR

DDF[1200](9/2) + 2t̂ + 1√
(−t̂ )(1 + t̂ )

T TR |TR

DDF[1200](4)

− 2T IR |TRIR

DDF[1200](7/2)
, (6.41)

0 = (
D

TqJJ

(0) + D
TqJJ

T T T (0)

)
T T T T

DDF[3000](9/2), (6.42)

0 = − 2t̂ + 1√
(−t̂ )(1 + t̂ )

(
T T T T

DDF[3000](9/2) + T Ji |T Ji

DDF[1200](7/2)

)
+ 2T T ;T

DDF[3000](4) − T Ji |Ji

DDF[1200](3). (6.43)

For (6.42), the coefficient vanishes once the explicit expression is plugged in. So this relation 
does not give any constraint on the amplitudes. The other relations impose nontrivial relations 
among DDF amplitudes of a fixed order of s. So far, there appear nine amplitudes and there are 
five relations. The first four relations are simplified as

T TR |TR

DDF[1200](4) = − 2t̂ + 1√
(−t̂ )(1 + t̂ )

T TR |TRTR

DDF[1200](9/2), (6.44)

T IR |IR

DDF[1200](3)
= −2(2t̂ + 1)√

(−t̂ )(1 + t̂ )
T IR |TRIR

DDF[1200](7/2)
, (6.45)

T TR |IRIR

DDF[1200](7/2) = −1

2
T TR |TRTR

DDF[1200](9/2), T IR |TRIR

DDF[1200](7/2) = −T T T T
DDF[3000](9/2). (6.46)

The relations in the last line are the ones mentioned in Section 6.1. Together with the last relation 
involving Ji index, one can see that the subleading amplitudes are related to the higher order part 
of the amplitudes. By use of the rotational symmetry, IR → J , one further finds

T IR |IR

DDF[1200](3) = 2T T ;T
DDF[3000](4). (6.47)

Thus, these amplitudes are represented by two of the leading order parts, say T TR |TRTR

DDF[1200](9/2) and 

T T T T
DDF[3000](9/2). The next order relations involve new leading order part (like T T

DDF[3000](7/2)) or 
subleading parts of the amplitudes. In this way, the exact bracket relations provide constraints 
on the high-energy expansions of the DDF amplitudes, and relate them in a complicated manner. 
The relation between the leading order parts of the amplitudes of T -projection,

T T T T = T TR |TRTR , (6.48)
DDF[3000](9/2) DDF[1200](9/2)
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is not obtained also in this case. If we assume this relation, one can see that the higher order 
amplitudes can be written in terms of one of the leading order parts.

7. Summary and conclusion

In this paper, through a detailed study of bracket state spectrum and a new definition of 
q-orthonormal helicity basis, we re-examine the exact symmetry identities in bosonic open string 
theory as first derived by G.W. Moore. Based on two illustrative case studies, we are able to spell 
out the concrete kinematic contents of the symmetry relations among tree-level four-point am-
plitudes of low-lying stringy excitations. These relations are also recast into identities among 
conventional and DDF amplitudes, where the participant states in the scattering amplitudes in 
each basis are more familiar and form well-defined representations of other symmetry groups. In 
so doing, we can also connect and compare with other well-known symmetry patterns of scat-
tering amplitudes in string theory, in particular, the high-energy symmetry as advocated by D.J. 
Gross. We show that, under certain presumptions, part of high-energy symmetry (especially the 
linear relations as derived from decoupling of the high-energy zero-norm states) can be extracted 
from a high-energy expansion of Moore’s symmetry relations. Furthermore, we can detect some 
of the energy hierarchy of the DDF amplitudes and give new inter-level and subleading relations 
from a high-energy expansion point of view.

To summarize, our findings in this paper are:
(1) While Moore’s exact symmetry identities lead to infinitely many strong constrains among 

inter-level amplitudes, their high-energy limits do not have complete overlap with the high-
energy linear relations as derived from decoupling of high-energy zero-norm states [9,12]. To 
make connections and comparisons with the high-energy symmetry of Gross, we need to make 
high-energy expansions of both transformation matrices and the relevant scattering amplitudes. 
Only if we obtain a closed set of linear equations among leading components of scattering 
amplitudes with various physical polarizations, we can derive some constraints among lead-
ing amplitudes at the same mass level. Given that the transformation matrices among stringy 
state bases are energy-dependent, the mixing of different components (organized by powers 
of s) of various stringy scattering amplitudes is unavoidable and the existence of closed re-
lations is definitely non-trivial. For instance, (6.36) as derived from the order s4 relations in 
A[3̃000] = A[12̃00], is a constraint among amplitudes, T T T L

[3000](4), T LLL
[3000](4), and T J |JL2

[1200](3), but it 
is not strong enough to give the linear relation as shown in [9,12]. It is, however, not a problem 
of Moore’s relation. As we have seen, there are infinitely many different ways to realize bracket 
operators at a given level, and they are related to different sets of amplitudes through Moore’s 
relation. Therefore, the missing link observed here should be connected if we include further sets 
of relations. The failure here means that our simple example is not a sufficient set to obtain all 
the known relations. Note that the successful case of A[3̃000] = A[12̃00], (6.35), where the lin-
ear relation among T T T T

[3000](9/2), T T LL
[3000](9/2), and T [L,T ]

[3000](9/2)
can be derived from the high-energy 

expansions of Moore’s exact identities, in our opinion, should be taken as an accident.
(2) In our previous studies of the symmetry patterns of stringy scattering amplitudes [17], 

we have observed a special feature of the all-transversely-polarized (with respect to each own 
momentum) scattering amplitudes. The high-energy limits of this class of stringy scattering am-
plitudes demonstrate some partonic behaviors which we call string bit pictures. For instance, 
(6.48) provides one simple example, where as long as the total level numbers and total spins 
of scattering states are the same (3 + 0 + 0 + 0 = 1 + 2 + 0 + 0 in this case), the scattering 
amplitudes are always equal (up to sign). For A[3̃000] = A[12̃00] example, such an inter-level 
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symmetry pattern was only observed by explicit evaluations of stringy scattering amplitudes. 
While this inter-level symmetry pattern is derived by Moore’s exact symmetry in the case of 
A[2̃000] = A[11̃00], due to the small number of the amplitudes, it is unlikely deducible for 
higher level amplitudes. The use of such a sting bit picture helps in simplifying high-energy rela-
tion in Moore’s exact symmetry identities. Together with the rotational invariance (trading I (or 
IR) polarizations into J direction), we are able to represent all leading-components (up to order 
s9/2) of stringy scattering amplitudes in the A[3̃000] = A[12̃00] relation by a single amplitude 
T T T T

DDF[3000](9/2).
(3) In our study, it is clear that due to the energy dependence of the transformation matrices, 

the sub-leading components of different energy orders in various stringy scattering amplitudes 
will get mixed in the high-energy relations from Moore’s identities. In order to make a system-
atic expansion and compare various components we need to choose a set of reference kinematic 
variables, which are s and t̂ ≡ t/s in our two case studies. The fact that we have chosen special 
scattering processes such that, in each case, both sides of the Moore’s exact identity share the 
same Mandelstam variables, is simply for the sake of convenience. In general, it is not clear that 
if there are many sets of Mandelstam variables {(sa, ta)4

a=1}, how to choose the best reference 
kinematic variables. In addition, since each amplitude defines its own scattering plane and gener-
ally we have to compare scattering processes at different scattering angles. One has to be careful 
in making conclusions about the sub-leading patterns of the high-energy relations in Moore’s 
exact identities. We give a brief illustration of subtleties about the choice of reference kinematic 
variables in Appendix C.

Aside from these symmetry relations and the connections among different approaches which 
are realized by scattering amplitudes as functions of kinematic variables, there are other issues 
worth further exploration:

• The algebra of bracket commutator and the origin of symmetry breakdown in string theory. 
This is a question of fundamental importance in string theory. One can easily imagine the 
bracket algebra relating different stringy excitation should be some kind of residue symmetry 
after spontaneous breakdown of certain (presumably infinite-dimensional) symmetry. See 
discussion in [18]. One of the original motivations studying the high-energy symmetry is to 
make an analogy of equivalence theorem in electroweak theory. It is not clear if we can view 
these exact relations (which apparently look kinematic dependent) as a non-linear realization 
of the broken symmetry.

• Similarity between constructions of DDF states and that of bracket states, especially in the 
q-orthonormal base, is of interest. As demonstrated in [19], the algebraic structure among 
bracket states may be understood as a kind of Kac–Moody algebra, at least partially.

• Following the previous line of thought, one might wish to prove other kinematic limits these 
symmetry relations e.g. Regge limits ([14]) to see if we can obtain other useful patterns or 
connect with different approaches.

• We can make further generalizations by choosing different space–time backgrounds, adding 
supersymmetry, or studying string theory at finite temperature. The study of loop amplitudes 
may require special efforts.

• Similar structure and patterns can be captured in the exactly solvable string theory [20]. In 
either minimal string models or matrix models one may be able to give more mathematical 
insight to this ultimate question.
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Appendix A. More on bracket states and the physical state conditions

In this subsection, we present an interesting example in which a deformer operator that does 
not satisfy physical state conditions generates physical bracket operators, by using bracket op-
erators in A[3̃000] = A[12̃00] relation. In this appendix, we take α′ = 1/2 for simplicity. The 
physical state conditions for the level 2 bracket operator V br

(2)(k̃2, z) are reduced to the conditions 
on the deformer polarization tensors as

0 = [ζq · q + ζ̃q ]μ + qμk2 · [ζq · q + ζ̃q ], (A.1)

0 = ζqμνη
μν + 2ζ̃q · q + 6k2 · [ζq · q + ζ̃q ], (A.2)

with q2 = −2 and k2 · q = −1. From q · k2 = −1, we have a solution of (A.1),

ζqμνq
ν + ζ̃qμ = cqμ, c ∈C. (A.3)

It is easy to see that ζqμνq
ν + ζ̃qμ does not have a component transverse to q , and this is a general 

solution with one parameter c. Plugging this into (A.2), we find

ζqμν

(
ημν − 2qμqν

)= 10c. (A.4)

When c = 0, ζqμν and ζ̃qμ satisfy the physical state conditions for J(2)(q, w). Thus, c measures 
a failure of those conditions. We are interested in whether the conditions (A.3) and (A.4) allow 
a solution with c �= 0. To solve these conditions, we introduce a helicity basis with respect to q; 
ePq = q/

√
2 and transverse orthonormal vectors eTi (i = 1, · · · , 25). When c �= 0, solutions are

c = 1

10
: ζqμν = eTi

μ eTi
ν , ζ̃qμ =

√
2

10
e
Pq
μ (i = 1, · · · ,25,no sum for i), (A.5)

c = −1

2
: ζqμν = e

Pq
μ e

Pq
ν , ζ̃qμ = 1√

2
e
Pq
μ . (A.6)

The second choice leads to V br
(2) = 0 identically, while for c = 1/10 one can check that it indeed 

gives nonvanishing bracket operators. Together with the solutions with c = 0, these complete the 
conditions for the level 2 bracket operator to be physical.

We consider the physical state condition of the level 3 bracket operator V br
(3)(k̃1, z). In this 

case, three polarization tensors provide three physical state conditions for ζ1μ, ζqμν, ζ̃qμ. These 
conditions turn out to be too complicated to find a general solution. However, curiously, if we 
take V br

(2)
case solution (A.3) and the physical state condition for the seed operator ζ1 ·k1 = 0 as an 

ansatz, the physical state conditions lead to a solution which is exactly the same as (A.5) (with 
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the same c = 1/10). It should not be accidental since these two operators are related through 
Moore’s relation and they would define physical amplitudes for the same choice of J(2). It is not 
a complete analysis, and there might be other physical choices for V br

(3), but we do not pursue it 
further and stop here.

Thus, a lesson from these examples is that it is indeed possible to define physical bracket 
operators by using unphysical deformer operators and physical seed operators. Since an extra 
physical state in this example seems very special, in the main part, we concentrate on “standard” 
physical choices where both seed and deformer operators are physical.

Appendix B. DDF states

In this appendix, we summarize the basic facts on Del Giudice, Di Vecchia, and Fubini (DDF) 
operators [15] and corresponding states. Our treatment follows closely that of [1], and we will 
spell out explicit formulas which are used in the analysis in the main part.

B.1. Construction

Let |0; p0〉 be a tachyonic ground state of the bosonic open string theory with p2
0 = 1/α′. We 

introduce a null vector k0 which satisfies k2
0 = 0 and p0 · k0 = 1/(2α′). It is straightforward to 

see that p(N) = p0 −Nk0 satisfies the mass-shell condition of level N states, p2
(N) = (1 −N)/α′. 

A convenient parametrization of these momenta are

p
μ
0 = 1√

α′ (0,0, · · · ,1), k
μ
0 = 1

2
√

α′ (−1,0, · · · ,1). (B.1)

The DDF operator is defined as

A	
n(nk0) =

∮
dz

2πi

i∂X	(z)√
2α′ eink0·X(z), (B.2)

where z = eiτ , and 	 refers to the transverse directions with respect to p0 and k0, 	 = 1, · · · , 24. 
DDF states are defined by the action of A	−n on the tachyonic ground state |0; p0〉. Since p0 ·k0 =
1/(2α′), the action of a DDF operator on the tachyonic ground state |0; p0〉 is well-defined. Ai

n

commutes with Virasoro operators Ln and their commutation relation [A	
n, A

k
m] = nδ	kδn+m is 

the same as the standard transverse oscillators α	−n. Thus the DDF states generates the whole 
positive norm physical states.

We are ready to write down DDF states in terms of standard oscillators αμ
n . It is convenient 

to use the helicity basis where the inner product with k0 is proportional to L − P projection, 
k0 · α−n ∝ (eL − eP )μα

μ
−n = α

(L−P)
−n [13]. For the first few levels, the result is

Level 1 : |a;p(1)〉DDF ≡ Aa
−1|0;p0〉 = αa

−1|0;p(1)〉, (B.3)

Level 2 : |ab;p(2)〉DDF ≡ Aa
−1A

b
−1|0;p0〉

=
[
αab

−1 + δab

(
− 1

2
√

2
α

(L−P)
−2 + 1

4
α

(L−P)
−1 α

(L−P)
−1

)]
|0;p(2)〉, (B.4)

|a;p(2)〉DDF ≡ Aa
−2|0;p0〉 = (

αa
−2 − √

2αa
−1α

(L−P)
−1

)|0;p(2)〉, (B.5)
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Level 3 : |abc;p(3)〉DDF ≡ Aa
−1A

b
−1A

c
−1|0;p0〉

=
[
αabc

−1 + (
δabαc

−1 + δbcαa
−1 + δcaαi

−1

)
×
(

−1

4
α

(L−P)
−2 + 1

8
α

(L−P)
−1 α

(L−P)
−1

)]
|0;p(3)〉, (B.6)

|a;b;p(3)〉DDF ≡ Aa
−2A

b
−1|0;p0〉

=
[
αa

−2α
b
−1 − αab

−1α
(L−P)
−1

+ δab

(
−1

3
α

(L−P)
−3 + 1

2
α

(L−P)
−2 α

(L−P)
−1 − 1

6

(
α

(L−P)
−1

)3
)]

|0;p(3)〉, (B.7)

|a;p(3)〉DDF ≡ Aa
−3|0;p0〉

=
[
αa

−3 − 3

2
αa

−2α
(L−P)
−1 + αa

−1

(
−3

4
α

(L−P)
−2 + 9

8

(
α

(L−P)
−1

)2
)]

|0;p(3)〉. (B.8)

When it is obvious, the momenta may not be displayed and the states are expressed by its trans-
verse indices. It should be noted that the definition of eP and eL depends on p(N) and they are 
different for each level. At level 1, there is no distinction between DDF states and usual massless 
states.

B.2. From positive norm states to DDF states

DDF states form a basis of physical states at a given level and then it is possible to rewrite a 
given physical state by use of them up to zero-norm states.8 We utilize such decomposition to 
relate level 2 and 3 bracket states to DDF states.

B.2.1. Level 2
First, we list the zero-norm states at level 2,

|ZN1〉 =
(

5αPP−1 + αLL−1 +
∑

a=1,···,24

αaa
−1 + 5

√
2αP−2

)
|0; k〉, (B.9)

|ZN2〉 = (√
2αPL−1 + αL−2

)|0; k〉, (B.10)

|ZNa
3〉 = (√

2αPa
−1 + αa

−2

)|0; k〉, (B.11)

where eP and eL represent the momentum and the longitudinal helicity with respect to the mo-
mentum k. ea (a = 1, · · · , 24) represents the transverse directions with respect to k. We now 
consider a decomposition of the following level 2 physical positive norm state,[∑

a′,b′
Ga′b′αa′b′

−1 + G
∑
a′

αa′a′
−1

]
|0; k〉, (B.12)

where a′, b′ indices run over L, a, the transverse directions together with the longitudinal direc-
tions, and the physical state conditions imply 

∑
a Gaa + GLL + 25G = 0. This state can indeed 

be written in terms of the DDF states, up to zero norm states, as

8 The structure of zero-norm states in terms of the helicity basis is discussed in [21].
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(B.12) =
∑
a,b

Dab|ab; k〉DDF +
∑
a

Da|a; k〉DDF + D
∑
a

|aa; k〉DDF, (B.13)

Dab = Gab, Da = −√
2GLa, D = 1

4
(GLL + 5G). (B.14)

B.2.2. Level 3
The zero-norm states of this level are∣∣ZNaa

1

〉= (
αaaP

−1 − αLLP−1 + αa
−2α

a
−1 − αL−2α

L−1

)|0; k〉, (B.15)∣∣ZNa′b′
2

〉= (
αa′b′P

−1 + α
(a′
−2α

b′)
−1

)|0; k〉 (
a′ �= b′), (B.16)∣∣ZNa′

3

〉= (
9αPPa′

−1 + αLLa′
−1 +

∑
b

αa′bb
−1 + 18α

(P
−2α

a′)
−1 + 6αa′

−3

)
|0; k〉, (B.17)

∣∣ZNa′
4

〉= (
αLLa′

−1 +
∑

b

αa′bb
−1 + 9α

[P
−2α

a′]
−1 − 3αa′

−3

)
|0; k〉, (B.18)

|ZN5〉 =
(

25αPPP−1 + 75αP−2α
P−1 + 50αP−3 + 9

∑
b

(
αbbP

−1 + αb
−2α

b
−1

))|0; k〉, (B.19)

where a, b, c = 1, · · · , 24 are transverse directions with respect to k and a′ = a, L. The indices 
are not summed over otherwise explicitly displayed. As in the level 2 case, we consider a decom-
position of the following physical positive norm state in terms of DDF states,[ ∑

a′,b′,c′
Ga′b′c′αa′b′c′

−1 +
∑
a′,b′

G[a′b′]α[a′
−2α

b′]
−1

]
|0; k〉, (B.20)

with the physical state conditions, 
∑

b Gabb +GaLL = 0 and 
∑

b GLbb +GLLL = 0. After some 
algebra, we find that (B.20) can be rewritten as∑

a,b,c

Dabc|abc; k〉DDF +
∑
a,b

D(ab)

∣∣(a;b); k〉DDF +
∑
a,b

D[ab]
∣∣[a;b]; k〉DDF

+
∑
a

D1a|a; k〉DDF +
∑
a

D2a

∑
b

|abb; k〉DDF + D
∑

b

|b;b; k〉DDF, (B.21)

up to zero norm states, and

Dabc = Gabc, D(ab) = −3GLab, D[ab] = G[ab], D = −1

2
GLLL

D1a = 1

4
(9GLLa + 2GLa), D2a = 1

8
(3GLLa − 2GLa). (B.22)

Appendix C. High-energy expansion with a fixed scattering angle

In this paper, we focus on the high-energy limits (s → ∞ with t̂ = t/s fixed) of string scatter-
ing amplitudes. In the leading order, this limit corresponds to the fixed-angle high-energy limit 
of the amplitudes, but when we consider relation among subleading part of the amplitudes, there 
appears some difference. In this appendix, we discuss the high-energy asymptotic relation with 
the fixed scattering angle by taking A[2̃000] =A[11̃00] as an example.
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Recall that Mandelstam variables s and t are common on both hands sides in this example. 
Due to the mass difference, t takes different forms, in terms of s and the scattering angles, on 
both hand sides as

t[2̃000] = − s + 4

2
+
√

(s2 + 16)(s + 8)

2
√

s
cos θ, (C.1)

t[11̃00] = − s + 4

2
+

√
s(s + 8)

2
cos θ ′, (C.2)

where θ is the scattering angle for A[2̃000] and θ ′ for A[11̃00], and we have set α′ = 1/2. Since 
actually t[2̃000] = t[11̃00], these two angles are related as cosθ ′ = cos θ(1 + 8s−2 − 32s−4 + · · ·). 
t̂ and θ are related as t̂ = − sin2 θ

2 + O(s−1) in the high-energy limit. At the leading order, the 
expressions are the same for θ and θ ′, but subleading corrections take different forms for them.

This poses a question on the high-energy expansions of string scattering amplitudes. We need 
to choose which angle to be fixed under the s → ∞ limit. In this sense, a fixed-angle high-energy 
limit is ambiguous in the bracket relation. To proceed the analysis, we now choose θ to be fixed 
and expand the coefficients and the DDF amplitudes with θ fixed,

T T T
DDF[2000] = T T T

θ [2000] (3)s
3 + · · · , D

IqIq

II = D
IqIq

θII (0) + D
IqIq

θII (−1)s
−1 + · · · , (C.3)

where each coefficient is now a function of θ ; for example, T T T
θ [2000] (3) = 1

16 sin2 θ . It should 

be emphasized that, apart from the leading ones like T T T
θ [2000] (3) or D

IqIq

θII (0), the coefficients are 

not simply obtained by identifying t̂ = − sin2 θ
2 in the fixed-t̂ coefficients that appeared in Sec-

tion 6.3. At O(s3) and at O(s2) with (A, B) = (Tq, Tq), (IR, IR), (J, J ) the relations take the 
same forms as (6.19)–(6.22). For (A, B) = (Tq, Iq) at O(s2), we find

2T T T
θ [2000](3) = tan θT T

θ [2000](5/2). (C.4)

This relation involves only in leading amplitudes of A[2̃000] side and reproduces a known 
fixed-θ relation. At O(s), after simplifying by use of higher order relations and rotational sym-
metry, (A, B) = (Tq, Tq), (Iq, Iq), (Tq, Iq) and (J, J ) choices lead to, in order,

−2T TR |TR

θ [1100](1) = 8 cot θT T
θ [2000](5/2) + T T T

θ [2000](2) + 19T II
θ [2000](2) − 2T T T

θ [2000](1),

2T IR |IR

θ [1100](1) = 8 cot θT T
θ [2000](5/2) − 57T II

θ [2000](2) − 2T II
θ [2000](1) − 3T T T

θ [2000](2),

0 = tan θ
(
4T T

θ [2000](5/2) + T T
θ [2000](3/2)

)− 2T T T
θ [2000](2) + 2T II

θ [2000](2),

2T J |J
θ [1100](1) = 8 cot θT T

θ [2000](5/2) − 19T II
θ [2000](2) + 2T II

θ [2000](1) − T T T
θ [2000](2).

By solving them, one can find several relations among the amplitudes. However, for subleading 
amplitudes on A[11̃00] side, such as T TR |TR

θ [1100](1), this expansion is not of direct physical relevance 
and it is not clear how useful these expressions are. 
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