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Abstract 

Week-Schwarz, S., Cartesian closed topological and monotopological hulls: A comparison, 
Topology and its Applications 38 (1991) 263-274. 

The theory of the Cartesian closed monotopological hull of a category can be developed in analogy 
to that of the Cartesian closed topological hull. The main objective of this paper is to describe 
these hulls in terms of one another. On the local level, a comparison between the Cartesian objects 
of a monotopological category and the Cartesian objects of its MacNeille completion is carried 
out. The Cartesian closed monotopological hulls of several well-known subcategories of To 
determined. 
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completion, Cartesian object, power, Cartesian closed (mono)topological hull. 
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It is well known that Cartesian closedness is a useful property in connection with 
topological concepts. The fact that many important categories from 
not have this convenience property has lead to the dev 
Cartesian closed topological (CCT) hulls by 

Categories of spaces 5tisfying a separation axiom-e. 

generally are not topological, but 
Cartesian closedness can be obtai 
hull, while retaining separation. 

* Most of the results in this paper are contained in a part of thr aut er’s doctora! dirgerUb-)” 
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concept of Cartesian closed monotopological (CCMT) hulls [6,24]: Given a concrete 
category A over Set, the CCMT hull of A is the least finally dense CCMT extension 

i.e. every finally dense embedding of into a CCMT category can be uniquely 

ded to the hull. (Since the notations are not quite consistent in the literature, 
we note that by a monotopological category, we understaG. a small-fibred, concrete 
category over Set with constant morphisms where point-separating structured sources 
have uniquely determined initial lifts; if a monotopological category is initially 
complete, then it is called topological, otherwise, properly moProtopologica1. Embed- 
dings and extensions are considered to be full and concrete.) 

It is immediate from the definition that the CCMT hull of a category A is unique 
up to (concrete) isomorphism; if it exists- which is not ensured, see Theorem 4.1 
and Remark 4.2-it will be denoted CCMTH A. 

In analogy to [12], it can be shown that the CCMT hull of A can, alternatively, 
be described as a finally dense CCMT extension of A which contains the function 
space objects [X, Y], X, YE A, as an initial mono-dense subclass, and that 
CCMTH A is obtained by formation of the surjective-reflective hull of 
(C[X, Y] 1 X, YE A} in any finally dense CCMT extension C of A. In both cases it 
suffices that Y runs through an initially mono-dense subclass of A. 

It is natural to ask for connections between the CCT and the CCMT hull of a 
category A. We will show that they7 cu be described by one another. 

An important tool for this comparison is the relationship between topological 
and monotopological categories via TO-reflection and MacNeille completion, which 
is briefly examined in Section 2. It allows the characterization of the Cartesian objects 
(i.e. those objects X for which the functor - x X has a right adjoint) of a monotopo- 
logical category by the Cartesian objects of its MacNeille completion, and vice versa 
(Section 3). These “local” results are applied, in Section 4, to obtain connections 
between CCT and CCMT hulls. 

The paper concludes by giving the CCMT hulls of several well-known categories; 
in particular, it turns out that the important category of c-embedded convergence 
spaces is the CCMT hull of the Tfchonoff spaces. 

2. TO-reflection and MacNeille completion 

Recall that an object X of a topological categor is called a TO-object of 
it does not have an indiscrete subspace with more 
is saturated, i.e. the class TUB of &-objects is initially dense in 
TO-object iff every initial source with domain X is a 
in the sense of [8, 1.3.81, [13, 1.51). The 
subcategory of [ 18,3.3.6]; in particular, is monotopological for any topological 

onotopological categ can be assigned a topological 
ac&ill~ completion fV (i.e. a least finally dense, initially 
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complete extension), which is small-fibred by [ 1,2.13]; it is easily seen that constant 
maps between MA-objects are morphisms; hence M 

Generally, these processes are not “inverse” to ea is 
topological (which is rare, but possible) or if is not saturated, a if 

is topological. However, if A is properly monotopological, then 

heorem. A properly monotopological category is the category of TO-objects of its 
MacNeille completion. 

roof. Let A be properly monotopological. Then M 
dense and finally dense subcategory. Finally dense 
sources; consequently, A is closed under initial mon 

subcategory of MA. By [18, 3.3.61, 
denote the reflector. Let X E TOM A. Si 

the reflection p : X + RX is initial; since X is a TO-object, p is injective; and as an 
rphism, p is surjective: consequently, p is an isomorphism, which implies 

s. (I) Not every topological category is obtained as the 
etion of a properly monot 

Theorem 2.1, henc 
dense as well as finally dens 

(2) The conditions on TO ually redundant; for it can be 
shown that any properly ological category that is itially dense and 
epireflective in a topological category is also finally dense in [24, 1.2.31. Hence, 
if is saturated, TO is properly monotopological iff TO is finally dense in 

(3) While saturatedness of a topological category is inherited by its bireflective 
subcategories [18, 3.4.5(4)], this is not the case for the property of being the 
MacNeille completion of a properly monotopological category, as the example of 
quasiordered sets and sets with equivalence relations shows. 

Before we compare CCT and CC T hulls, we will first investigate the re 
between Cartesian objects in topological and monotopol al categories. This will 
not only make the results on hulls more transparent and 
but is interesting in its own right, as Cartesian objects repres the “localized form 
of Cartesian closedness”. 
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h : W x X + Y, the associated map h* : W ,(X, Y), h*(w)(x) = h( w, x), is also a 
morphism. (The order between A-objects h the same underlying set is given by 

the requirement that the identity map be a morphism.) The objects of the form 
AJX, Y) are called powers. Then an object X E A is Cartesian iff for every YE 
the usual evaluation map ev: ,(X, Y) x X + Y, ev(f; x) =f(x), is a morphism. 

Indeed, for X to be Cartesian in A, it is sufficient that for some initially dense 
of A, all evaluation maps ev : A,(X, Y) x X + Y with Y E are morphisms 

[22, 3.1, 3.21. 
Since the TO-objects of a topological category B form a quotient-reflective sub- 

powers of TO-objects are TO-objects [23, 2.3.121, i.e., T,B is closed 
under formation of powers in In particular, every TO-object that is Cartesian in 

is also Cartesian in TO We will show that the converse implication is true if B 
is saturated; for in that case, powers in TO are formed in the same way. 

In the following, T will denote the TO-reflector of a given topological category, 
and 7 the unit of the adjunction. 

3.1. Lemma. Zf B is saturated topological, then powers of TO-objects in B and in T,B 
coincide. 

Proof. Denote A = T,B. Let X, YE A. Since A is quotient-reflective in 
JX, Y) E A, hence TBJX, Y) = B,(X, Y). The sink 

(h*: W+B,(X, Y)I WEB, h: WXX- Y B-morphism) 

is a final epi-sink in B by [22, 2.9(2)]. Consequently, 

S=(Th*: TW+B,(X, Y)I WEB, h: WxX+ Y B-morphism) 

is a final epi-sink in A. Since 

R=(g*:Z+A,(X, Y)~ZEA, g:ZxX+ Y A-morphism) 

is a final epi-sink in (X, Y), it is sufficient to show S = R in order 
,(X,Y).RcSisclear.Nowlet WEBandh:WxX+Ybe 
7 is initial and surjective, there is a morp m m:TW+ W 

such that ?om=lTw. Then g=ho(mxlx):TWxX-,Y is an morphism; we 
will show that g* = 77z*. If w, W’E W are such that TW= TW’, then h(w,x)= 
h*(w)(x) = Th*(~w)(x) = 771*( ~w’)(x) = h*( w’)(x) = h( w’, x) for any x E X. With 
w’= m(7w), we obtain g*(Tw)(x) = g(rw, x) = h(m(rw), x) = h(w, x) = 
Th”(?-w)(x). 0 

Now Lemma 3.1 yields the following description of the Cartesian objects of To 
by the Cartesian objects of 
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3.2. Theorem. A TO-object of saturated topological category is Cartesian in TO 
if and only if it is Cartesian in 

roof. If X is Cartesian 
,(X, Y)xX+ Y is a 
it follows that X is ca 

, then for every YE TO , the evaluation map 
by Lemma 3.1. Since T,, is initially dense 

In view of Theorem 2.1, the last theorem can be stated for acNeille completions 
of monotopological categories: 

3.3. Corollary. An object of a monotopological category is Cartesian in if it is 
Cartesian in the MacNeille completion of -4. 

3. be saturated topological. Denoting by Ca 
Cartesian objects of , Theorem 3.2 can be stated 
Moreover, Theorem .2 implies that CartT& =Ca 
every bireflective subcategory C of since every bireflective subcategory of the 

gory s also saturated. (The last equality follows immedi- 

W .4(l)].) For bireflective subcategories C of 
this result was shown in [22: 6.31. 

NOW we turn to the question of how to determi.ne the Cartesian objects of a 
saturated topological category by means of the Cartesian objects of the subcategory 
of TO-objects. 

gives an important clue: A topological space X is a Cartesian 
ttice of open sets of X is a continuous lattice [9, Theorem 

31, [ 14, 4.21. Since the lattices of open sets of X and of its TO-reflection TX are 
isomorphic, it follows that X is Cartesian in iff TX is, and the latter is, by 
Theorem 3.2, equivalent to TX being cartesia 

In case of topological spaces, open sets can be identified with continuous functions 
to the Sierpinski two-point spat placing the lattice structures by 

argumentation similar to that in can be utilized in any saturated topological 
category. 

is saturated topological an 
JX, Y) is an isomorphism. 
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3.6. Theorem. An object of a saturated topological category 
only if its TO-reflection is Cartesian in T,B. 

roof. Using the notations of Lemma 3.5, it is easily seen that for X E 
the diagram 

commutes in Set. Sincef(x) =f(x’) wheneverfc B(X, Y) and x, X’E X with 7=x = IX’, 
we obtain, by choosing x’= m( 7x), that ev 0 (B( m, 1) x ~)(f, x) = ev(f 0 m, TX) = 

f( m( TX)) =f(x) = ev(f, x), i.e., the diagram 

B,,( TX, Y) x TX 

is also commutative in Set. Now let X E B. By Theorem 3.2, TX is Cartesian in T,B 
iff TX is Cartesian in B, and the latter is equivalent to X being Cartesian in 
by the commutativity of the above diagrams and the fact that T,B is initially dense 
in B. Cl 

Application of Theorem 3.6 to Theorem 2.1 immediately yields: 

3.7. Corollary ([ 10, 1.4(b)], [6, 3.41). A monotopological category is Cartesian closed 
if and only if its MacNeille completion is Cartesian closed. 

4. Relations between CCMT and CCT hulls 

We are now ready to compare the Cartesian closed topological and monotopologi- 
cal hull of a category, and to describe them in terms of one another. Let us start 
with an observation about the existence of these hulls, which is an easy consequence 
of Corollary 3.7 and the fact that a category has a CC(M)T hull whenever it can 
be finally dense embedded into a CC(M)T category. 

eorem (cf. [6,4.3]). A category has a CCMT hull if and only if it has a CCT 
hull. 

In particular, the internal characterization for the existence of a CCT hull of 
AdGmek and Ksubek 12% 3] applies to the existence of a CC hull as well. - * 
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In [2, 31, Adamek and Koubek give an example of a topological 
category which does not have a CCT hull. The category of TO-objects of that 
category is properly monotopological; virtually the same umentation as in [3, 
Section 31 can be used to show that fails to have a CCMT hull. 

Moreover, Corollary 3.7 yields the “upwards description” of the CCT hull of a 
category in terms of its CCMT hull: 

Theorem. If a category has a CCMT hull, then CCT is obtained as the 
cNeille completion of CC 

Proof. By Corollary 3.7, M(CCMTH A) is a finally dense CCT extension of 
Consequently, TH A exists and is contained in M (CC 
hand, CCMTH CCTH A implies M(CCMTH A) c CC 

Next we give the “downwards description”: 

a category A has a CCT hull, then either (a) CC = 

or (b) CCMTH ; (a) applies iff A fulfils one of the following 

is properly monotopological. 
is an epirejective, but not birejective subcategory of CCT 

(3) AC T,(CCTH A). 
(4) The epireflective hull of 

object of CCTH A. 

does not contain the indiscrete two-point 

roof. By Theorem 4.3, CCTH A 
monotopological, then CC 
hand, if CCMTH A is topol 
equivalence of (1) and (a). Since C 
that CCMTH A is an epireflect 
immediate. (2)=$(3) follows from [18, 3.3.61. The equivalences (a)G(3)e(4) are 
clear. El 

If a monotopological category has a CCT hull, then is epireflective in CCT 

by final density. Since is topological iff A contains an indiscrete two-po 
[23, 1.2.171, and final dense embeddings preserve indiscrete objects, 
4.4(4) implies: 

If a monotopological category 

properly monotopological if and only if CC 

) f hull, then 
roperly monotopological. 

This result is remarkable in two w 
ofa CC ull fl_ms F ori 
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retaining separation” (and that the undesirable case of a topological category with 
a properly monotopological CCMT hull cannot occur). Moreover, it provides a way 
to characterize when a monotopological category is properly monotopological, by 
properties of its CCMT hull (existence of that hull assumed). 

An immediate consequence of Corollary 4.5 and Theorems 4.4 and 4.3 is: 

4.6. Corollary. The CCT hull of a properly monotopological category, if its exists, is 

saturated. 

A similar statement about topological categories is not generally true; however, 
the CCT hull of a saturated topological category is always saturated [19, 
Corollary 31. 

The preceding results give connections between CCT and CCMT hulls of a 
category A by reference to A. Now in case A is properly monotopological, A = T,,B 
for a saturated topological category and one might ask for the relationships 
between the CCT and CCMT hulls of T,B and B. In order to investigate these, we 
need the following lemma: 

.7. ma. Zf C is a topological category and B a saturated, birejlective subcategory 

of C which is Jinally dense in C, then T,B is finally dense in T&. 

roof. Let YE TOC and (5 : Xi + Y 1 i E I) a final sink in C with all Xi in 
tion of the TO-reflector T of C yields a final sink ( TJ : TX, + Y 1 i E I) in 
it suffices to show that TX E T,B whenever X E B (cf. [ 18.3.4.71). Since T,Bc T&, 

-reflection u: X + SX can be factorized over the T&-reflection 7: X + TX, 
i.e. .U = 6 0 T for some C-morphism 5. Hence the initiality of (T (in B and thus, by 
final density, also in C) implies that 7 is initial. Consequently, TX is an initial 
subobject of X E B, and TX E B n T,C = T,B. 0 

heoaem. Zf a saturated topological category B has a CCT hull, then 

roof. Denote C = CCTH Then T,,C is a finally dense CCMT extension of TO 
Since TOC is closed und mation of function spaces in C, it remains to be shown 
that {C[X, Y] 1 X, YE initially mono-dense in T,C. 2 E T,C_ There is an 

initial source (A : Z + C[Xi, Yi] 1 i E I) in C with all Xi, Yi i Since C is saturated, 

Y] + C[Xi, TX] is initial for each i E I. By Lemma 3.5, C[Xi, TYJ z 
j. Composition yields an initia! source (gi : Z + [TX,, TX] 1 i E 1) in 

which is a monosource because of ZE ?;,C. As in the proof of Lemma 4.7, 
TX,, TV, are in T,, 
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is a saturated topological category which has a CCT hull, and 

onotopological, then CCTH(T, 

roof. By Remark 2.2(2), 
CCTHB. Cl 

). Hence CCTH(T, ) = CCTH( MT,, 

The assumption that TOB is properly monotopological cannot be omitted in 
Proposition 4.9, as is shown by the example of sets with equivalence relation (and 
relation-preserving maps). 

Finally, we want to determine the CCMT hulls of some well-known categories. 

5.1. Some well-known categories from general topology 

The categories p of topological spaces and Unif of uniform spaces are saturated; 
consequently, all bireflective subca nif are saturated. By 
Theorem 4.8, we obtain CCMTH(T, these cases. The CCT 
hulls of To eg (completely regula ox (proximity spaces) 
are well known (see 17, 3.3, 4.61, [4, 2.41, [21, Ex. 1 is the category 
of Antoine (or epitopological) spaces, CCTH C y of c-spaces, 
CCTH Unif the category of bornological uniform spaces, and CCTH 
coreflective hull of of Theorem 4.8 yields t 

honoff spaces), Tz (Hausdorff uniform spaces), and 
T,Prox. 

5.2. Finite and countable posets 

The MacNeille completion of the categories OS of finite and 
partially ordered sets (and order-preserving maps) is the catego 
ordered sets (or equivalently, Alexandroff -discrete spaces, i.e., topological spaces 
where arbitrary intersections f open sets are op e two-point chain is 
initially and finally dense in 0s (e.g. [ll, 3.la]). Since s is Cartesian closed [ZO, 

3.11, we have CCTH of 

rtially ordered sets. H = 

OS. This result can also be found-with a much more laborious proof-in [6,4.5]. 

5.3. Compact Hausdorff spaces 
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[21, p. 280, Theorem 51. Since T$omp is initially dense in CReg, these coreflective 
hulls coincide with the CCMT and CCT hulls of T$omp. More illustrative descrip- 
tions can be given as follows: Call a topological space X functionally compactly 
generated iff it is completely regular and any real-valued function with domain X 
that is continuous on all compact subspaces of X is already continuous; X is called 
a functionally compactly generated Tychonoff space iff X fulfils the latter requirement 
and X E Tych. The corresponding subcategories of CReg are denoted by 

ch, respectively. Then FCC is coreflective in CReg; FCGTych is coreflective 
ch; and both categories contain the compact Hausdorff spaces as a finally 

dense subclass. Hence they constitute the coreflective hulls of T,Comp in C 
respectively. In total, we have: CCTH T,Comp = MT$omp = FCC 

CCiTH T2Comp = FCGTych = T,Top n FCC = TO( CCTH T?Comp). 

and 
For descrip- 

tions of CCTH T,Comp, see also [ 5, II 1.61. 

5.4. Met&able spaces 

Basically the same proof as in Section 5.3 can be employed to determine the 
CCMT hull of the category Met of metrizable spaces (and continuous maps), with 
the minor addition that, to show that Met is exponential in Tych and CReg, one 
observes that the coreflective hull of Met (both in Tych and in CReg) coincides with 
the coreflective hull of the one-point compactification of the discrete countably 
infinite topological space. Replaciiig functions that are continuous on compact sub- 
spaces, by sequentially continuous functions (i.e. functions that preserve limits of 
sequences), the categories FCC and FCGTych are replaced by the categories FS 
of funcGonally sequential and FSTych of functionally sequential Tychonof spaces. 
Then CCTH Met = MMet = FS and CCMTH Met = FSTych = T,Top n FS = 

et). The description of CCTH Met is also given in [S, 111.71. 

5.5. L-embedded spaces 

Another type of example can be obtained by modifying and refining Bourdaud’s 
methods [ 71 (cf. also [ 171 and [25]); for more details and extensive references, see 
124, Section 41. 

Denote by Lim, PST and eg the categories of limit spaces (in the sense of [16, 
Definition 41, pseudotopological spaces and regular topological spaces. If L E TO 

and A is the epireflective hull of L in Lim, then the CCMT hull of is given by 
the category of L-embedded limit spaces, i.e. those limit spaces X for which the 

im[X,L],L]definedbyi,~(x)(f)=f(x)forxEX,f~Lim[X,L], 
particular, for L = R!, this shows that the important category of 

c-embedded spaces constitutes the CCMT hull of the Tychonoff spaces. Analogously, 
the CCT hull of the bireflective hull of L in im consists of those 1imi.t spaces X 
for which ix is initial. 

More can be said in the following situation: Let be a bireflective subcategory 

be separating for 9 ix.: L contains two points y, z possessing 
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disjoint neighborhoods, and points and closed sets of every -objectcanbesepatated 

by continuous maps to L such that sed sets are mapped to y and points of the 
complement to z. Then CCMTH(T, cannot only be described as the c 
L-embedded pseudotopological spaces, but also as CCMTH(T, 
Hausdorff and -regular} (where a pseudotopological space X is calle 
if for every filt 9 on X that converges to a point x E X, the filter g 
the closures-in the -modification of X-of the sets FE 9 also converges to x). 
This situation occurs if egory of zero-dimensional spaces and L the 
discrete two-point space eg and L is the set of reals (or the closed unit 
interval) in their usual topology. The latter example is just the well-known description 
of the c-embedded spaces fro 

The CCT hull of a category 1s the above conditions can be described 
similarly: CCTH d-domained and -regular} (where X is 

-domained if for each filter 9 on X, the set of limit points of 9 is 
-modification of X). This constitutes a partial answer to the problem 

in [5, p. 221. (The assumption that LE TO is not essential for this description.) 

PI 

PI 
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