RECURSIVELY RIGID BOOLEAN ALGEBRAS

Jeffrey B. REMMEL*
Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA

Communicated by A. Nerode
Received 20 November 1985

Introduction

A recursive Boolean algebra $B=\left(F_{B},+_{B},{ }_{B},-_{B}, 0_{B}, 1_{B}\right)$ consists of a recursive subset F_{B} of the natural numbers \mathbb{N} called the field of B, partial recursive operations $+_{B}$ (join), ${ }_{B}$ (meet), $-_{B}$ (complement), plus distinguished elements 0_{B} and 1_{B} of F_{B} which are the zero and one of B respectively. We let $\operatorname{Aut}(B)$ denote the group of automorphisms of B and $\operatorname{Aut}_{r}(B)$ denote the group of recursive automorphisms of B, i.e., those automorphisms of B which are partial recursive functions. For any $x \in B$, we let $B \upharpoonright x$ denote the recursive B.A. determined by x. That is, $F_{B \mid x}=\left\{y \in F_{B} \mid y \leqslant_{B} x\right\}$ where $y \leqslant_{B} x$ iff $x \cdot_{B} y=y$, the operations $+_{\left.B\right|_{x}}$ and $\cdot_{B \mid x}$ are the restrictions of $+_{B}$ and \cdot_{B} respectively, $-_{\left.B\right|_{x}} y$ is defined to be $x-_{B} y, 0_{B \mid x}=0_{B}$, and $1_{B \mid x}=x$. Given two recursive B.A.'s B_{1} and B_{2} we write $B_{1} \approx B_{2}$ if B_{1} is isomorphic to B_{2} and $B_{1} \approx_{r} B_{2}$ if B_{1} is recursively isomorphic to B_{2}, i.e., if there is a partial recursive isomorphism from B_{1} onto B_{2}. Moreover we let $B_{1} \times B_{2}$ denote the recursive B.A. such that $F_{B_{1} \times B_{2}}=$ $\left\{\langle x, y\rangle \mid x \in B_{1}, y \in B_{2}\right\}$ where \langle,$\rangle is some fixed recursive pairing function and$ the operations are taken componentwise. Clearly if B is a recursive B.A. and $z \in B$, then $B \approx_{\mathrm{r}}(B\lceil z) \times(B \upharpoonright-z)$.
A B.A. D is said to be rigid if $\operatorname{Aut}(D)$ consists only of the identity. Now it is easy to see that the only rigid countable B.A. is the two element B.A. That is, let F_{n} denote the finite B.A. with exactly n atoms and \bar{Q} denote some fixed recursive presentation of the countable atomless B.A. Note since Cantor's back and forth argument is clearly effective, any two recursive countable atomless B.A.'s are recursively isomorphic and $\operatorname{Aut}_{\mathrm{r}}(\bar{Q})$ is countably infinite (see [4]). Now if B is any countable B.A. and $B \neq F_{1}$, then there exists $z \in B$ such that either $B \upharpoonright z \approx F_{2}$ or $B \upharpoonright z \approx \tilde{Q}$. Moreover for any $z \in B, \phi \in \operatorname{Aut}(B \upharpoonright z)$, and $\psi \in \operatorname{Aut}(B \uparrow-z)$, there is a unique $\theta \in \operatorname{Aut}(B)$ such that $\theta \upharpoonright(B \upharpoonright z)=\phi$ and $\theta \upharpoonright(B \upharpoonright-z)=\psi$. Thus we can construct a nontrivial $\theta \in \operatorname{Aut}(B)$ by letting ψ be the identity on $B \upharpoonright-z$ and letting ϕ be the automorphism which interchanges the two atoms if $B \upharpoonright z \approx F_{2}$ or letting ϕ be one of the nontrivial recursive automorphisms of \bar{Q} if $B \upharpoonright z \approx \tilde{Q}$.

[^0]Clearly, if B started out to be a recursive B.A., θ will be a recursive automorphism of B. Thus there are no interesting recursively rigid B.A.'s if we take the obvious definition of saying a recursive B.A. B is recursively rigid iff $\operatorname{Aut}_{\mathrm{r}}(B)$ consists only of the identity. Instead, we shall say that B is recursively rigid if the only automorphisms in $\operatorname{Aut}_{\mathrm{r}}(B)$ are induced by essentially trivial factorizations of B.

Definition. A recursive B.A. B is recursively rigid if for every recursive automorphism $\theta \in \operatorname{Aut}_{\mathrm{r}}(B)$, there exists a $z \in B$ such that $B \upharpoonright z$ is a finite B.A. and there exists a $\phi \in \operatorname{Aut}_{\mathrm{r}}(B \upharpoonright z)$ such that θ is induced by the pair $\langle\phi, \mathrm{I}\rangle$ where $\mathrm{I} \in \operatorname{Aut}_{\mathrm{r}}(B \uparrow-z)$ is the identity.

It follows from our analysis above that any recursive B.A. with an atomless element cannot be recursively rigid. In fact, the following easily follows by essentially the same argument.

Proposition 1. Suppose B is a recursively rigid recursive B.A. Then either
(i) $B \approx F_{n}$ for some n, or
(ii) B is an atomic $B . A$. where the set of atoms of $B, \operatorname{At}(B)$, is infinite and each recursive auromorphism of B moves only finitely many atoms. Hence $\operatorname{Aut}_{\mathrm{r}}(B)$ is isomorphic to $\mathrm{FP}(\omega)$ the group of permutations of ω which move only finitely many elements.

Now the existence of recursively rigid BA's was first proved by Morozov [3] although he did not use the term recursively rigid. He proved the following.

Theorem 2 (Morozov [3]). Suppose B is an atomic B.A. and $\operatorname{At}(B)$ is recursive. Then there exists a recursive B.A. D isomorphic to B such that every recursive automorphism of D moves only finitely many atoms.

Theorem 2 is not the best possible result due to the restriction that the set of atoms of B must be recursive. That is, it is a result of Goncharov [1] that there exist atomic recursive B.A.'s B_{n} for each $n \geqslant 0$ such that $B_{n} \neq B_{m}$ if $m \neq n$ and B_{n} is not isomorphic to any recursive B.A. B such that $\operatorname{At}(B)$ is recursive. Thus, Theorem 2 does not cover all atomic recursive B.A.'s. The main result of this paper will show that we can drop the hypothesis that $\operatorname{At}(B)$ be recursive in Theorem 2. In fact, we can even drop the hypothesis that B must be atomic. That is, ignoring the obviously trivial cases in Theorem 2 where $\operatorname{At}(B)$ is finite, we shall prove the following.

Theorem 3. Let D be any recursive B.A. such that $\operatorname{At}(D)$ is infinite. Then for each $n \geqslant 0$, there exists a recursive B.A. D_{n} isomorphic to D such that
(i) $\operatorname{At}\left(D_{n}\right)$ is immune, i.e., $\operatorname{At}\left(D_{n}\right)$ contains no infinite r.e. set.,
(ii) every recursive automorphism of D_{n} moves only finitely many atoms, and
(iii) $D_{n} \not \not_{\mathrm{r}} D_{m}$ if $n \neq m$.

We shall give the proof of Theorem 3 in Section 1. The proof of Theorem 3 requires some of the machinery developed in [4,5] which was used to prove the same result with condition (ii) removed. However, our proof here requires the use of an infinite injury priority argument as opposed to the finite injury priority arguments used to prove the corresponding result in [4] and Theorem 2. Indeed, this is the first example of the use of infinite injury priority argument in recursive algebra for other than degree-theoretic results.

Clearly as corollaries of Theorem 3, we get the following results.
Corollary 4. Every infinite atomic recursive B.A. is isomorphic to a recursively rigid recursive B.A.

Corollary 5. Every infinite atomic recursive B.A. D is isomorphic to a recursive B.A. B such that

$$
\operatorname{Aut}_{\mathrm{r}}(B) \approx \mathrm{FP}(\omega) \quad \text { and } \quad \operatorname{Aut}_{\mathrm{r}}(B \times \tilde{Q}) \approx \mathrm{FP}(\omega) \times \operatorname{Aut}_{\mathrm{r}}(\tilde{Q}) .
$$

We note that Corollary 5 is in great contrast with the following result of McKenzie.

Theorem 6 (McKenzie [2]). Suppose B_{1} is any countable B.A. of the form D or $D \times \tilde{Q}$ where D is an atomic B.A. with at least two atoms and B_{2} is any countable B. A. Then $B_{1} \approx B_{2}$ if and only if $\operatorname{Aut}\left(B_{1}\right) \approx \operatorname{Aut}\left(B_{2}\right)$.

Of course as was pointed out by Morozov [3], it already follows from Theorem 2 that the obvious effective version of McKenzie's result is false but we see from Corollary 5 that the effective version of McKenzie's theorem fails in the strongest possible terms. Thus, in general the group of recursive automorphisms of a recursive B.A. may not tell us much about the B.A.

We make one final remark to show that yet another interesting result follows from Theorem 3. That is, we cannot determine whether or not a recursive B.A. B has a decidable presentation from its group of recursive automorphisms even for atomic B.A.'s. Here we say that a recursive B.A. D is decidable ${ }^{1}$ if $\operatorname{Th}(D, d)_{d \in D}$ is a decidable theory. Now it follows from Tarski's elimination of quantifiers for B.A.'s that an atomic recursive B.A. D is decidable if and only if $\operatorname{At}(B)$ is recursive (see [4]). Thus the atomic B.A.'s constructed by Goncharov which were mentioned previously are all examples of atomic recursive B.A.'s which are not isomorphic to any decidable B.A. Thus by Corollary 5, we have the following.

[^1]Corollary 7. There exist atomic recursive B.A.'s B_{1} and B_{2} such that $\operatorname{Aut}_{\mathrm{r}}\left(B_{1}\right) \approx$ $\operatorname{Aut}_{\mathrm{r}}\left(B_{2}\right)$ where B_{1} is isomorphic to a decidable B.A. but B_{2} is not isomorphic to any decidable B.A.

We note that one cannot replace the hypothesis that B_{1} and B_{2} are recursive by the hypothesis that B_{1} and B_{2} are decidable since Morozov has proved the following which may be regarded as an effective version for Theorem 6.

Theorem 8 (Morozov [3]). If B_{1} is an atomic decidable B.A. and B_{2} is an atomic recursive B.A. such that $\operatorname{Aut}_{\mathrm{r}}\left(B_{1}\right) \approx \operatorname{Aut}_{\mathrm{r}}\left(B_{2}\right)$, then $B_{1} \approx_{\mathrm{r}} B_{2}$.

We should also note that if one is willing to drop the hypothesis that the B.A.'s are atomic in Corollary 7, then even the full group of automorphisms cannot determine if a B.A. is isomorphic to a recursive B.A. That is, Morozov [3] has exhibited a decidable B.A. D_{1} and a countable B.A. D_{2} which is not even isomorphic to a recursive B.A. such that $\operatorname{Aut}\left(D_{1}\right) \approx \operatorname{Aut}\left(D_{2}\right)$. Note that by McKenzie's theorem, D_{1} and D_{2} are necessarily non-atomic.

1. The proof of our main result

In this section, we shall give the proof of Theorem 3. Before we give the proof, we need a bit of notation and to quote some results from [4]. First if S is any subset of a B.A. B, we let $\langle S\rangle$ denote the subalgebra generated by B. The set of atoms of B will be denoted by $\operatorname{At}(B)$. Note that if C is a subalgebra of $B, \operatorname{At}(C)$ denotes the atoms of C and hence an $x \in \operatorname{At}(C)$ is not necessarily an atom in B. Now we shall think of \tilde{Q} as the B.A. generated by the left-closed right-open intervals of the rationals \mathbb{Q} under an appropriate Gödel numbering. In fact we shall assume the field of \tilde{Q} is equal to \mathbb{N}, the set of natural numbers. Now in general, we shall construct our recursive B.A.'s to be recursive subalgebras of \bar{Q}. This causes no restriction due to the following well known result which is proved in [4].

Theorem 9. Every recursive B.A. is recursively isomorphic to a recursive subalgebra of \tilde{Q}.

Next suppose D is a recursive B.A. When we take the least element x in D that satisfies a certain property, we mean the least x with respect to the usual ordering of the natural numbers as $F_{D} \subseteq \mathbb{N}$. We shall always use \leqslant to refer to the order of \mathbb{N} and hence we will use subscripts \leqslant_{D} to refer to the ordering induced by the B.A: D. We say that an r.e. sequence $0_{D}=d_{0}, d_{1}, \ldots$ is an r.e. generating sequence for D if letting D^{s} denote $\left\langle\left\{d_{0}, \ldots, d_{s}\right\}\right\rangle$, we have (i) $D=\bigcup_{s} D^{s}$ and
(ii) for all $s, D^{s+1} \supset D^{s}$ and there is an atom $a \in \operatorname{At}\left(D^{s}\right)$ such that $0_{D}<_{D} d_{s+1}<_{D} a$. It is easy to see that every recursive B.A. D has an r.e. generating sequence; see [4] for details.

The purely Boolean-algebraic key result we shall need is the following which states that if we start with any countable B.A. B such that $\operatorname{At}(B)$ is infinite and split each of the atoms of B into finitely many pieces, we do not change the isomorphism type.

Theorem 10 (Remmel [4]). Let B be a subalgebra of \tilde{Q} such that $\operatorname{At}(B)=$ $\left\{d_{0}, d_{1}, \ldots\right\}$ is infinite. Assume that for each $i, e_{1}^{i}, \ldots, e_{k_{i}}^{i}$ are nonzero pairwise disjoint elements of \bar{Q} such that

$$
d_{i}=\sum_{j=1}^{k_{i}} e_{j}^{i}
$$

Let $C=\left\langle B \cup\left\{e_{j}^{i} \mid i \geqslant 0 \& 1 \leqslant j \leqslant k_{i}\right\}\right\rangle$. Then $B \approx C$.
We claim that Theorem 3 will follow once we can prove the following.
Theorem 11. Let D be a recursive B.A. such that $\operatorname{At}(D)$ is infinite. Then there exists a recursive B.A. C isomorphic to D such that $\operatorname{At}(C)$ is immune and any recursive automorphism of C moves only finitely atoms.

To see that Theorem 3 follows from Theorem 10, we need one other purely Boolean-algebraic result from [4].

Theorem 12 (Remmel [4]). Suppose B is a countable B.A. such that $\operatorname{At}(B)$ is infinite. Then for any $z \in B$ such that $B \upharpoonright z$ is a finite B.A., $B \approx B\left\lceil\left(-{ }_{B} z\right)\right.$.

Proof of Theorem 3. Let D be any recursive B.A. such that $\operatorname{At}(D)$ is infinite and let C be the recursive B.A. whose existence is guaranteed by Theorem 11. Next let $\operatorname{At}(C)=\left\{a_{0}, a_{1}, \ldots\right\}$ and let $z_{n}=\sum_{i=0}^{n} a_{i}$ for each n. Then we claim that we can let $D_{n}=C \uparrow\left(-{ }_{c} z_{n}\right)$ for each n. That is, since the set of atoms of C is immune and each recursive automorphism of C moves only finitely many atoms, it is clear each D_{n} inherits those same two properties. Thus we need only show that $D_{n} \not \chi_{\mathrm{r}} D_{m}$ if $m \neq n$. So suppose for example that $m<n$ and there is a recursive isomorphism $\phi: D_{m} \rightarrow D_{n}$. Note that $\phi \upharpoonright \operatorname{At}\left(D_{m}\right)$ must map $\operatorname{At}\left(D_{m}\right)$ onto $\operatorname{At}\left(D_{n}\right)$. But then consider the r.e. set $S=\left\{\phi\left(d_{m+1}\right), \phi^{2}\left(d_{m+1}\right)\right.$, $\left.\phi^{3}\left(d_{m+1}\right), \ldots\right\}$. As $d_{m+1} \notin \operatorname{At}\left(D_{n}\right)$ and ϕ is $1: 1$, it would follow that S is an infinite r.e. set contained in $\operatorname{At}\left(D_{n}\right)$ violating the immunity of $\operatorname{At}\left(D_{n}\right)$. Thus there can be no such ϕ and hence D_{0}, D_{1}, \ldots have the properties required by Theorem 3.

Proof of Theorem 11. Let d_{0}, d_{1}, \ldots be an r.e. generating sequence for D and
let $D^{s}=\left\langle\left\{d_{0}, \ldots, d_{s}\right\}\right\rangle$. We shall build the desired recursive B.A. C in stages so that C is a recursive subalgebra of \tilde{Q}. At each stage of our construction, we will specify two finite subalgebras B^{s} and C^{s} of \tilde{Q} and an isomorphism $f^{s}: D^{s} \rightarrow B^{s}$. We will ensure that for all $s, B^{s} \subseteq C^{s}, B^{s} \subseteq B^{s+1}, C^{s} \subseteq C^{s+1}$, and $f^{s} \subseteq f^{s+1}$. At the end of our construction $B=\bigcup B^{s}$ will be an r.e. subalgebra of $\bar{Q}, C=\bigcup C^{s}$ will be a recursive subalgebra of \tilde{Q} and $f=\bigcup f^{s}$ will be a partial recursive isomorphism from D onto B. C will be in relation to B as in Theorem 10. That is, if $\operatorname{At}(B)=\left\{a_{0}, a_{1}, \ldots\right\}$, then for each i, there will be finitely many pairwise disjoint nonzero elements of $\tilde{Q}, e_{1}^{i}, \ldots, e_{k_{i}}^{i}$, such that

$$
a_{i}=\sum_{i=1}^{k_{i}} e_{j}^{i} \quad \text { and } \quad C=\left\langle B \cup\left\{e_{j}^{i} \mid i \geqslant 0 \& 1 \leqslant j \leqslant k_{i}\right\}\right\rangle
$$

Thus f will ensure that $D \approx B$ and Theorem 10 will ensure that $B \approx C$ so that $D \approx C$.

To ensure that $\operatorname{At}(C)$ is immune, we shall meet the following set of requirements for $e=0,1, \ldots$.
$R_{2 e}:$ If $W_{e} \cap C$ is infinite, then $W_{e} \cap(C-\operatorname{At}(C)) \neq \emptyset$.
We say requirement R_{e} is satisfied at stage s if $W^{s} \cap\left(C^{s}-\operatorname{At}\left(C^{s}\right)\right) \neq \emptyset$.
To ensure that there is no recursive automorphism ϕ of C such that ϕ moves infinitely many atoms of C, we shall meet the following set of requirements.
$R_{2 e+1}$: If ϕ_{e} is an order preserving $1: 1$ map on some subset of C and there are infinitely many $x \in \operatorname{At}(C)$ such that $\phi_{e}(x) \downarrow$ and $\phi_{e}(x) \neq x$, then there is an $x_{e} \in \operatorname{At}(C)$ such that $\phi_{e}\left(x_{e}\right) \downarrow$ and $\phi_{e}\left(x_{e}\right) \notin \operatorname{At}(C)$.

Our basic strategy to meet the requirements $R_{2 e}$ is as follows. Suppose at stage s, requirement $R_{2 e}$ is not satisfied and there is an $x \in \operatorname{At}\left(C^{s}\right)$ such that $x \in W_{e}^{s+1}$. Then at state $s+1$, we let x_{1} and x_{2} be two nonzero disjoint element of \tilde{Q} such that $x=x_{1}+x_{2}$ and let $C^{s+1}=\left\langle C^{s} \cup\left\{x_{1}, x_{2}\right\}\right\rangle$. Thus $x \notin \operatorname{At}\left(C^{s+1}\right)$ so that $x \notin \operatorname{At}(C)$ and x will witness that $R_{2 e}$ is satisfied.

Our strategy to meet the requirements $R_{2 e+1}$ requires a similar action. The idea is to find some element y such that y currently looks like an atom of C in the sense that $y \in \operatorname{At}\left(C^{s}\right), \phi_{e, s}(y) \downarrow$ and $\phi_{e, s}(y)=x \neq y$. Then there are two possibilities. One is that $x \notin C^{s}$ in which case we will place x into a set F^{s+1} of forbidden elements and simply ensure that no element in F^{s+1} ever gets into C so that ϕ_{e} cannot possibly be a recursive automorphism of C. The other possibility is that $x \in C^{s}$ in which case we will ensure that at stage $s+1, x$ is split into two nonzero elements x_{1} and x_{2} such that $x_{1}+x_{2}=x$ and $C^{s+1}=\left\langle C^{s} \cup\left\{x_{1}, x_{2}\right\}\right\rangle$. We shall then place a $\Delta_{2 e+1}$ marker on y. Our hope is that $y \in \operatorname{At}(C)$ so that once again ϕ_{e} cannot be an automorphism of C since ϕ_{e} takes an atom y to non-atom x in C. However, there are two ways that this attempt can fail. One is that $y \in B^{s}$ and at
some later stage t, we are forced to split y into two nonzero pieces in B^{t} in order to ensure that B is isomorphic to C. The other way is that y could be split in C for the sake of meeting some higher priority requirement. In either case, we will simply remove the $\Delta_{2 e+1}$ marker from y, search for a new element that currently looks like an atom, and apply the same strategy. We shall see that if ϕ_{e} really does move infinitely many atoms, then we will require only finitely many applications of this strategy before we find a y which is actually in $\operatorname{At}(C)$. However, because our original B.A. may have atomless elements, there may exist recursive automorphisms ϕ_{e} which move infinitely many elements but leave all atoms of C fixed. For such ϕ_{e}, we may not be able to avoid applying our basic strategy infinitely many times due to the fact that we are not assuming we can effectively tell atoms from atomless elements in our original B.A. D. This fact will necessarily complicate our construction. The key point is that such ϕ_{e} will impose only finitely much permanent restraints so that we will still have enough freedom to met the other requirements.

The need for restraint arises in our construction due to the fact that our strategies for meeting the requirements R_{e} may conflict with ensuring that C is isomorphic to D. That is, both types of strategy can cause some $x \in B$ to be split into two nonzero pieces x_{1} and x_{2} in C. Now if we blindly follow such a procedure to satisfy the requirements, then at some later stages we may split x_{1} and x_{2} into nonzero disjoint elements so that $x_{1}=y_{1}+y_{2}$ and $x_{2}=z_{1}+z_{2}$ for the sake of other requirements R_{i} and R_{j}, and then at even later stages split each of y_{1}, y_{2}, z_{1}, and z_{2}, etc. In this way, x may end up to be an atomless element in C even though D is atomic. Our idea to control the isomorphism type of C is to build an isomorphic copy of D, B, in \bar{Q} and to ensure that C only differs from B as described above. In particular, we must ensure that if $x \in \operatorname{At}(B)$, then x is a union of finitely many atoms in C. We shall priority rank our requirements as R_{0}, R_{1}, \ldots, that is, R_{0} has highest priority, R_{1} has next highest priority, etc. We shall use a set of movable markers in the construction. We imagine we have a potentially infinite set of markers Γ_{e} for each requirement R_{e}. When we split an $x \in \operatorname{At}\left(C^{s}\right)$ at state $s+1$ into two nonzero disjoint elements x_{1} and x_{2} for the sake of requirement R_{e} as described above, then we will place a Γ_{e} marker on each of x_{1} and x_{2}. As long as a Γ_{e} marker remains on x_{1} and x_{2}, we will allow x_{1} and x_{2} to be split at some later stage only for the sake of some requirement R, which has a higher priority than R_{e}, i.e., only if $j<e$. In such a case those elements into which x_{1} or x_{2} are split will also have Γ_{j} markers for some $j<e$. From this, it is easy to see that if an element x_{i} has a permanent Γ_{e} marker in it, then x_{1} will be a union of at most 2^{e} atoms in C. However, there is one situation where we could remove the Γ_{e} markers from x_{1} and x_{2}. Namely it may be the case that at some stage u, $x=f^{u}(a)$ where $a \in \operatorname{At}\left(D^{u}\right)$ and then at stage $u+1, d_{u+1} \cdot a$ and $a-d_{u+1}$ are nonzero so that we must split x for the sake of building B isomorphic to D. In such a situation, we will let $B^{u+1}=\left\langle B^{u} \cup\left\{x_{1}, x_{2}\right\}\right\rangle$ and let $f^{u+1}\left(a \cdot d_{u+1}\right)=x_{1}$ and $f^{u+1}\left(a-d_{u+1}\right)=x_{2}$ and remove the Γ_{e} markers from x_{1} and x_{2}. In this way, if a
turned out to be an atomless element in D, we will be free to make x an atomless element in C.

Now that we know the nature of the restraints imposed by our requirements, we can better describe our remark concerning those odd requirements $R_{2 e+1}$ which may act infinitely often. The idea is that we shall assume that only finitely many atoms of C have permanent Γ_{j} markers on them for $j \leqslant 2 e$. Now if at stage s, we find $x, y \in \operatorname{At}\left(C^{s}\right)$ such that $\phi^{s+1}(y)=x$ and $x \cdot{ }_{\varrho} y=0_{\bar{Q}}$, then as described above we shall place a $\Delta_{2 e+1}$ marker on y and split x into x_{1} and x_{2} and place $\Gamma_{2 e+1}$ markers on x_{1} and x_{2}. Now if later y is split, say due to ensuring that B is isomorphic to D, we shall remove the $\Delta_{2 e+1}$ marker from y. However, we are not free to remove the $\Gamma_{2 e+1}$ markers from x_{1} and x_{2} unless once again the process of ensuring that D is isomorphic to B forces us to split x. Thus it is possible for an abandonded attempt to meet $R_{2 e+1}$ to leave permanent restraint on x_{1} and x_{2}. The key point which saves us however is that if x_{1} and x_{2} are permanently restrained, then $x=x_{1}+x_{2}$ will be a finite union of atoms in C. But as $y \cdot x=0_{\bar{Q}}$ and $\phi_{e}(y)=x$, it necessarily follows that if ϕ_{e} is to be an isomorphism, then at least one atom, say z, of C under x must be mapped outside of x under ϕ_{e}. In this way, we will be able to argue that if infinitely many elements of C were to end up with permanent $\Gamma_{2 e+1}$ markers on them, then ϕ_{e} would have to move infinitely many atoms. However, as mentioned above, if ϕ_{e} moves infinitely many atoms, then we will eventually find a $y \in \operatorname{At}(C)$ on which we can successfully apply our strategy and at which point we will cease to act for $R_{2 e+1}$. But then $R_{2 e+1}$ would impose only finitely much restraint contradicting our original assumption. Of course, the even requirements act at most once since once an even requirement is satisfied at stage s, it remains satisfied at all later stages. Thus we will be able to show that each requirement can impose at most finitely much permanent restraint.

We shall say an odd requirement $R_{2 e+1}$ is satisfied at stage s if either there is a $\Delta_{2 e+1}$ marker on some element of C^{s} at stage s or if we have witnesses to the fact that ϕ_{e} is not an isomorphism at stage s, for example there exist x and $y \in C^{s}$ such that $\phi_{e}(x) \downarrow$ and $\phi_{e}(y) \downarrow$ and either $x \in C^{s}$ and $\phi_{e}(x) \in F^{s}$ or $x \neq y$ and $\phi_{e}(x)=$ $\phi_{e}(y)$ or $x<{ }_{\bar{Q}} y$ but $\phi_{e}(x) \Varangle_{\bar{Q}} \phi_{e}(y)$, etc.

Finally, we need to state and prove one simple lemma before actually giving the construction. This lemma will be used to justify our ability to choose new elements to add to C^{s} so that we can ensure C is recursive and keep any forbidden elements in F^{s} out of C.

Lemma 11.1. Suppose B is a finite subalgebra of \tilde{Q}, F is a finite subset of \mathbb{N} such that $F \cap B=\emptyset$, and a is any atom of B. Then there exists a nonzero $x \in \bar{Q}$ such that $x<_{\bar{Q}} a$ and $\langle B \cup\{x\}\rangle \cap F=\emptyset$.

Proof. It is easy to see that if $x, y<_{\bar{Q}} a$ and $x \notin\{y, a-y\}$, then $\langle B \cup\{x\}\rangle \cap$ $\langle B \cup\{y\}\rangle=B$. Next observe that since \tilde{Q} is atomless, there are infinitely many
nonzero x such that $x<_{\bar{Q}} a$. Thus since F is only finite, there must be a nonzero $x<_{\bar{Q}} a$ such that $\langle B \cup\{x\}\rangle \cap F=\emptyset$.

We now proceed to give the formal description of our construction. Each stage $s>0$ is divided into two substages. The first substage will be devoted to extending the isomorphism $f^{s}: D^{s} \rightarrow B^{s}$ to an isomorphism $f^{s+1}: D^{s+1} \rightarrow B^{s+1}$. The second substage will be devoted to meeting the requirements R_{e}. Moreover, we shall use even stages to meet the even requirements and odd stages to meet the odd requirements.

Construction

Stage 0. Let $B^{0}=C^{0}=\left\{1_{\bar{Q}}, 0_{\bar{Q}}\right\}, f^{0}\left(1_{D}\right)=1_{\bar{Q}}, f^{0}\left(0_{D}\right)=0_{\bar{Q}}$, and $F^{0}=\emptyset$.
Stage $s+1$. Assume B^{s}, C^{s}, F^{s}, and f^{s} have been defined so that $f^{s}: D^{s} \rightarrow B^{s}$ is an isomorphism, $B^{s} \subseteq C^{s}$, and $C^{s} \cap F^{s}=\emptyset$.

Substage i. Let a be the atom of D^{s} such that $d_{s+1}<_{D} a$ and let $x=f^{s}(a)$. If $x \in \operatorname{At}\left(C^{s}\right)$, then let x_{1} be the least nonzero element of \tilde{Q} such that $x_{1}<{ }_{Q} x$ and $\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle \cap\{0, \ldots, s\}=C^{s} \cap\{0, \ldots, s\}$ and $\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle \cap F^{s}=\emptyset$. If $x \notin$ $\operatorname{At}\left(C^{s}\right)$, let t be the least stage such that $x \in \operatorname{At}\left(C^{t-1}\right)$ but $x \notin \operatorname{At}\left(C^{t}\right)$. Then at stage t, there will be a first time either in substage i or substage ii where x is split into two elements $x_{1}<x_{2}$. In fact it will turn out that our construction will ensure that x_{1} is the least element in C^{s} with $0<{ }_{\bar{Q}} x_{1}<{ }_{Q} x$. In either case we define $B^{s+1}=\left\langle B^{s} \cup\left\{x_{1}\right\}\right\rangle$ and define f^{s+1} by defining it on the atoms of D^{s+1} and extending it to be a homomorphism. That is, if $d \in \operatorname{At}\left(D^{s+1}\right)$ and $d \notin\left\{d_{s+1}, a-d_{s+1}\right\}$, then let $f^{s+1}(d)=f^{s}(d)$. Otherwise let $f^{s+1}\left(d_{s+1}\right)=x_{1}$ and $f^{s+1}\left(a-d_{s+1}\right)=x-x_{1}$. It is clear that $f^{s} \subseteq f^{s+1}$ and f^{s+1} is an isomorphism from D^{s+1} onto B^{s+1}. Also if we are in the case where $x \notin \operatorname{At}\left(C^{s}\right)$, remove any markers on x_{1} and $x-x_{1}$. Remove any Δ markers from elements not in $\operatorname{At}\left(\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle\right)$.

Substage ii.

Case 1: $s+1$ is even.
Look for an $e \leqslant s+1$ such that $e=2 i, R_{e}$ is not satisfied at stage s, and there is an $x \in \operatorname{At}\left(C^{s}\right)$ such that $x \in W_{i}^{s}$ and x has no Γ_{j} or Δ_{j} markers on it with $j<e$. If there is no such e, then let $C^{s+1}=\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle$ and to onto the next stage. Otherwise, let $e(s+1)$ be the least such e and $x(s+1)$ be the least x corresponding to $e(s+1)$. If $x(s+1)$ equals the x chosen at substage i , let $C^{s+1}=\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle$. Otherwise let z_{1} be the least nonzero $z<{ }_{\tilde{Q}} x(s+1)$ such that $\left\langle C^{s} \cup\left\{x_{1}\right\} \cup\{z\}\right\rangle \cap\{0, \ldots, s\}=\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle \cap\{0, \ldots, s\} \quad$ and $\left\langle C^{s} \cup\left\{x_{1}\right\} \cup\right.$ $\{z\}\rangle \cap F^{s}=\emptyset$. Let $C^{s+1}=\left\langle C^{s} \cup\left\{x_{1}, z_{1}\right\}\right\rangle$. Place Γ_{e} markers on z_{1} and $x(s+1)-$ z_{1}. Remove any Δ markers from elements not in $\operatorname{At}\left(C^{s+1}\right)$.

Case 2: $s+1=2 r+1$ is odd.
We build a sequence of sets $G_{-1} \subseteq G_{0} \subseteq \cdots \subseteq G_{r}$ and a sequence of subalgebras
$E_{-1} \subseteq E_{0} \subseteq \cdots \subseteq E_{r}$ by induction. We let $G_{-1}=F_{s}$ and $E_{-1}=\left\langle C^{s} \cup\left\{x_{1}\right\}\right\rangle$. Then assuming we have constructed G_{j-1} and E_{j-1}, we construct G_{j} and E_{j} as follows. If either there is an element $y \in E_{j-1}$ with a $\Delta_{2 j+1}$ marker on it, there are witnesses in E_{j-1} which show that ϕ_{j} is not consistent with being an automorphism of E_{j-1}, or there are $w, z \in E_{j-1}$ such that $w \leqslant_{\tilde{Q}} z, \phi_{j}^{s+1}(w) \uparrow$, and z was split into two elements u_{j} and w_{j} with $\Gamma_{2 j+1}$ markers on them, i.e., we split z for $R_{2 j+1}$, at some previous stage, then let $G_{j}=G_{j-1}$ and $E_{j}=E_{j-1}$. Otherwise, look for the least $y \in \operatorname{At}\left(E_{j-1}\right)$ such that
(a) $\phi_{j}^{s+1}(y) \downarrow$ and $x \cdot y_{r}=0_{\bar{Q}}$ where $x=\phi_{j}(y)$, and
(b) x has no Γ_{j} or Δ_{i} marker on it for $i \leqslant 2 j+1$.

If there is no such y, then again let $G_{j}=G_{j-1}$ and $E_{j}=E_{j-1}$. Otherwise, let $y(j, s+1)$ be the least such y and $x(j, s+1)=\phi_{j}(y(j, s+1))$. If $x(j, s+1) \notin E_{j-1}$ let $G_{j}=G_{j-1} \cup\{x(j, s+1)\}$ and let $G_{j}=G_{j-1}$ otherwise. Now if $x(j, s+1) \notin$ $\operatorname{At}\left(E_{j-1}\right)$, then let $E_{j}=E_{j-1}$ and place a $\Delta_{2 j+1}$ marker on $y(j, s+1)$. Finally if $x(j, s+1) \in \operatorname{At}\left(E_{j-1}\right)$, then let z_{j} be the least nonzero $z<_{\tilde{Q}} x(j, s+1)$ such that $\left\langle E_{j-1} \cup\{z\}\right\rangle \cap\{0, \ldots, s\}=E_{j-1} \cap\{0, \ldots, s\}$ and $\left\langle E_{j-1} \cup\{z\}\right\rangle \cap G_{j}=\emptyset$. Then let $E_{j}=\left\langle E_{j-1} \cup\left\{z_{j}\right\}\right\rangle$, place a $\Delta_{2 j+1}$ marker on $y(j, s+1)$, and place a $\Gamma_{2 j+1}$ marker on z_{j} and $x(j, s+1)-z_{j}$. Remove any Δ marker from elements not in $\operatorname{At}\left(E_{j}\right)$. Finally, we let $C^{s+1}=E_{r}$ and $F^{s+1}=G_{r}$.

This completes the description of the construction. It is clear that each stage is completely effective. We let $B=\cup_{s} B^{s}, C=\cup_{s} C^{s}$, and $f=\cup_{s} f^{s}$. Our construction clearly ensures that $f: D \rightarrow B$ is an isomorphism and that C is a recursive subalgebra of \tilde{Q} since we have ensured that for any fixed $s, s \in C$ iff $s \in C^{s}$.

We are now left with two lemmas to prove to see that C has the desired properties.

Lemma 11.2. All the requirements are met.

Proof. Fix e and assume by induction that for all $i<e$, requirement R_{i} is met and that there are only finitely many elements of C which have permanent Γ_{i} markers on them. First suppose $e=2 i$. Note that once an even requirement is satisfied at a stage s, it remains satisfied at all later stages. Hence there is at most one state s where $e(s+1)=e$ and there can be at most two permanent Γ_{e} markers that are ever introduced. Thus we need only see that requirement R_{e} is met. So suppose to the contrary that W_{i} is infinite and $W_{i} \subseteq \operatorname{At}(C)$. It then follows that there must exist a least $x \in W_{i}$ such that x has no permanent Γ_{j} or Δ_{j} markers on it for $j \leqslant e$. Thus there is a stage t large enough so that t is odd, $x \in W^{t} \cap \mathrm{At}\left(C^{t}\right), x$ has no Γ_{j} or Δ_{j} markers on it with $j \leqslant e$, and $e(2 s) \geqslant e$ for all $2 s \geqslant t+1$. But then at stage $t+1$, either requirement R_{e} is already satisfied or $e=e(t+1)$ and we take action at stage $t+1$ to satisfy R_{e}. In either case, we are assured that $W_{i}^{t+1} \cap\left(C^{t+1}-\right.$ $\left.\operatorname{At}\left(C^{t+1}\right)\right) \neq \emptyset$ contrary to our assumption.

Suppose $e=2 j+1$. Note there are essentially 4 ways in which we can be forced into taking no further action for R_{e} past a certain stage. First we can find witnesses at some stage which show that ϕ_{e} cannot be an automorphism in which case R_{e} is met. A second is that there is a permanent Δ_{e} marker in which case our basic strategy guarantees R_{e} is met. A third way is that at some stage $u, y(j, u)$ and $x(j, u)$ are defined, the Γ_{e} markers on the elements which split $x(j, u)$ are permanent, but there never a stage $t>u$ such that $\phi^{t}(w) \downarrow$ for all $w \in C^{t}$ with $w \leqslant_{\bar{\varrho}} x(j, u)$. In this case, it is easy to see that our construction ensures that the only way any predecessors of $x(j, u)$ can be split after stage u is due to an action for some requirement R_{i} with $i<e$. Moreover, it follows that any Γ_{i} markers placed on predecessors of $x(j, u)$ are also permanent since our construction ensures that before we can remove such markers we must first remove the Γ_{e} markers from our original splitting of $x(j, u)$. Since there are only finitely many permanent Γ_{i} markers with $i<e$, we know that $x(j, u)$ must be a finite union of atoms of C. Thus, it follows that there must be at least one $w \in C$ where $w \leqslant_{\bar{Q}} x(j, u)$ and $\phi_{i}(w) \uparrow$, so once again R_{e} is met. Finally, it may be the case that for all sufficiently large t, we have no candidates meeting conditions (a) and (b). But then it is easy to see that since there are only finitely many permanent Γ_{i} and Δ_{i} markers for $i<e$, it cannot possibly be the case that ϕ_{1} is an automorphism of C which moves infinitely many atoms. Thus in all cases, we can clearly continue the induction.

We have thus reduced ourselves to the case where we can assume (i) ϕ_{j}^{s} is always consistent with being an automorphism of C, (ii) there are no permanent Δ_{e} markers, (iii) if z is split into two elements with permanent Γ_{e} markers on them, then $\phi_{j}(w) \downarrow$ for all $w \leqslant_{\bar{Q}} z$ with $w \in C$, and (iv) we take action for R_{e} at infinitely many stages. Next let us explore how we can get permanent Γ_{e} markers without having permanent Δ_{e} markers. Consider a stage s where a permanent Γ_{e} marker is introduced. At such a stage s, we have $y(j, s) \cdot x(j, s)=0_{\bar{Q}}$, $\phi_{j}^{s}(y(j, s))=x(j, s)$, and we split $x(j, s)$ into two elements z_{j} and $w_{j}=x(j, s)-z_{j}$. Now if the Γ_{e} markers we place on z_{j} and w_{j} are permanent, then by our previous arguments we know both z_{j} and w_{j} are finite unions of atoms in C. It then follows, due to the fact that by assumption ϕ_{j}^{t} is always consistent with being an automorphism of C, that there must be some $a \leqslant z_{j}+w_{j}=x(j, s)$ such that $a \in \operatorname{At}(C)$ and $\phi_{j}(a) \cdot x(j, s)=0_{\bar{\varrho}}$. That is, by our assumption, $\phi_{j}(x(j, s))$ must be defined and since $\phi_{j}(y(j, s))=x(j, s)$ and $y(j, s) \cdot x(j, s)=0_{\bar{Q}}$ we must have $\phi_{j}(y(j, s)) \cdot \phi_{j}(x(j, s))=x(j, s) \cdot \phi_{j}(x(j, s))=0_{\bar{Q}}$. Now consider $\phi_{i}(a)$ which again must be defined by our assumptions. We claim that $\phi_{j}(a)$ has a permanent Γ_{i} or Δ_{i} marker on it for some $i \leqslant e$. Otherwise for all sufficiently large t, a is a candidate to have a Δ_{e} marker on it at stage $2 t+1$. By our assumptions, we take action for R_{e} at infinitely many stages. It then follows that since once we remove a Δ_{e} marker from an element y we can never reconsider y to have another Δ_{e} marker placed on it, eventually a would become the least candidate to have a Δ_{e} marker placed on it. Thus eventually we would take an action for R_{e} at a stage t
where $y(j, t)=a$. But then since $a \in \operatorname{At}(C)$, the Δ_{e} marker we placed on a would be permanent contradicting our assumptions.

We now claim that under the above circumstances either
(a) there is some $d_{1} \in \operatorname{At}(C)$ such that $d_{1} \leqslant_{\bar{Q}} x(j, s)$ and $\phi_{j}\left(d_{1}\right)$ has a permanent Γ_{i} or Δ_{i} marker on it for $i<e$, or
(b) there is some $d_{2} \in \operatorname{At}(C)$ such that $d_{2} \leqslant_{\bar{Q}} x(j, s)$ and d_{2} has a permanent Γ_{i} marker on it for $i<e$.

Note that once we prove our claim, it will follow that there are only finitely many permanent Γ_{e} markers since by induction there are only finitely many permanent Γ_{i} or Δ_{i} markers with $i<e$ and we are assuming ϕ_{j} is always consistent with being an automorphism of C. To prove our claim we need to examine the case where $\phi_{j}(a)$ has a permanent Γ_{e} marker on it. Suppose $\phi_{j}(a)$ got its permanent Γ_{e} marker at stage t. Note that $t \neq s$. So first assume $t>s$ and consider $y(j, t)$ and $x(j, t)$. Note that $\phi_{j}(a)$ must be one half of the splitting of $x(j, t)$. Let us assume that $a \leqslant_{\tilde{Q}} z_{j}$. Note that at stage $t, y(j, t)$ is an atom in the E_{j-1} of stage t and $z_{j} \in E_{j-1}$ so that we must have that either $y(j, t) \cdot z_{j}=0_{\bar{Q}}$ or $y(j, t) \leqslant{ }_{\bar{Q}} z_{j}$. It cannot be that $y(j, t) \cdot z_{j}=0_{\bar{Q}}$ since otherwise $a \cdot y(j, t)=0_{\bar{Q}}$ but $\phi_{j}(a) \leqslant_{\bar{Q}}$ $\phi_{j}(y(j, t))=x(j, t)$ so that a and $y(j, t)$ would eventually witness that ϕ_{i} is not consistent with being an automorphism of C. Now if $y(j, t) \leqslant_{\tilde{Q}} z_{j}$, then since the Δ_{e} markers on $y(j, t)$ must eventually be abandoned, we must conclude that $y(j, t)$ and hence z_{j} must have been split in C due to the action of some requirement R_{i} with $i<e$. Hence there is an atom of C strictly below z_{j} with a permanent Γ_{i} marker on it for some $i<e$. Thus if $s<t$, case (b) of our claim holds. Lastly consider the case when $t<s$. Let u_{j} and v_{j} be the elements into which $x(j, t)$ was split at stage t and say $\phi_{j}(a)=u_{j}$. Since we are assuming that the Γ_{e} markers on u_{j} and v_{j} are permanent, it follows from our construction that every $b \leqslant_{\bar{Q}} u_{j}+v_{j}$ which is an atom either in C^{r} or the sequence of subalgebras constructed at stage r for any $r \geqslant s$ must have a Γ_{i} marker on it for some $i \leqslant e$. But note that to split $x(j, s)$ at stage s, it must be that $x(j, s)$ is an atom in the E_{j-1} constructed at stage s. Thus we must conclude that since $x(j, s)$ has no Γ_{i} or Δ_{i} markers on it with $i<e$ when it was split, $x(j, s) \cdot\left(u_{j}+v_{j}\right)=x(j, s) \cdot x(j, t)=0_{\bar{Q}}$. Moreover note that since $a \leqslant_{\bar{Q}} x(j, s)$ and $\phi_{j}(a)=u_{j}(a)=u_{j} \leqslant_{\bar{Q}} x(j, t)$, then $\phi_{j}(x(j, s)) \cdot x(j, t) \neq 0_{\bar{Q}}$. But then $x(j, s) \cdot y(j, t) \neq 0_{\bar{Q}}$ since again we can assume $\phi_{j}(x(j, s)) \downarrow$ and ϕ_{j} preserves intersections. It then follows that since $x(j, s) \in$ $\operatorname{At}\left(E_{j-1}\right)$ and $y(j, t) \in E_{j-1}$ that $x(j, s) \leqslant_{\bar{Q}} y(j, t)$. In fact $x(j, s)<_{\tilde{Q}} y(j, t)$. That is, $y(j, t) \notin \operatorname{At}\left(E_{j-1}\right)$ because otherwise $y(j, t)$ would retain its Δ_{e} marker and then we could not act for R_{e} at stage s. Now due to the fact that ϕ_{j} is always consistent with being an automorphism, we know that $x(j, s)<_{\tilde{Q}} y(j, t)$ implies $\phi_{j}(x(j, s))<_{\tilde{Q}}$ $x(j, t)$. But as $\phi_{j}(a)=u_{j}$, we must then have that $\phi_{j}(x(j, s)-a)<_{\bar{Q}} v_{j}$. Thus we can now conclude that some atom $a^{\prime} \in \operatorname{At}(C)$ where $a^{\prime} \leqslant_{\bar{Q}} x(j, s)-a$ is such that $\phi_{j}\left(a^{\prime}\right)<_{\tilde{Q}} v_{j} . \quad$ But then since $x(j, s) \cdot x(j, t)=0_{\tilde{Q}}$, we have $\phi_{j}\left(a^{\prime}\right) \cdot a^{\prime}=0_{\bar{Q}}$. Moreover we must conclude that v_{j} must have been split and that $\phi_{j}\left(a^{\prime}\right)$ must be an element with a Γ_{i} marker on it for $i<e$. That is, $\phi_{j}\left(a^{\prime}\right)$ must also have
permanent Γ_{R} marker on it for some $R \leqslant e$ or by our previous argument, we can conclude that a^{\prime} would eventually get a permanent Δ_{e} marker on it. Moreover the case $R=e$ is ruled out since $\phi_{j}\left(a^{\prime}\right)<_{\bar{Q}} v_{j}$ and v_{j} has a permanent Γ_{e} marker on it. Thus if $t<s$, we are guaranteed that case (a) of our claim holds.

Having established the fact that there are only finitely many Γ_{e} markers given assumptions (i)-(iv), we are left only with proving that requirement R_{e} is met. So suppose ϕ_{j} is an automorphism of C which moves infinitely many atoms of C. It then follows that there must be some $a \in \operatorname{At}(C)$ such that $\phi_{j}(a)$ has no permanent Γ_{i} or Δ_{i} markers on it for $i \leqslant e$. But then by our previous arguments, our current assumptions ensure that eventually we would place a Δ_{e} marker on a and ensure that $\phi_{j}(a) \notin \mathrm{At}(C)$. But then this Δ_{e} marker would be permanent contrary to our assumptions. Thus ϕ_{j} cannot be an automorphism of C which moves infinitely many atoms, so R_{e} is met.

To complete our proof, we need only prove the following.
Lemma 11.3. $D \approx C$.

Proof. Our construction ensures that $D \approx B$. Thus we show $B \approx C$. Let $\operatorname{At}(B)=$ $\left\{a_{0}, a_{1}, \ldots\right\}$. First we shall show that for each a_{i} there exist $e_{1}^{i}, \ldots, e_{k_{i}}^{i}$, elements of $\operatorname{At}(C)$, such that $a_{i}=\sum_{j=1}^{k_{i}} e_{j}^{i}$ and then we shall show that $C=\left\langle B \cup\left\{e_{j}^{i} \mid i \geqslant\right.\right.$ $\left.\left.0 \& 1 \leqslant j \leqslant k_{i}\right\}\right\rangle$. Thus it will follow from Theorem 10 that $B \approx C$.

Given i, let t be the first stage such that $a_{i} \in B^{t}$. Since $a_{i} \in \operatorname{At}(B)$ there is an atom d of D such that $f^{t}(d)=a_{i}$. It follows that there is no stage $s>t$ such that at substage i of stage s we introduce a nonzero $x \in B^{s}$ such that $x<{ }_{\tilde{Q}} a_{i}$. Now if a_{i} is not an atom of C, then there is a stage s such that the $x(s)$ or $x(j, s)$ chosen at substage ii of stage s is a_{i}. Thus there exists an $x \in C^{s}$ such that x is nonzero and $x<_{\bar{Q}} a_{i}$ and both x and $a_{i}-x$ have Γ_{e} markers on them for some e. Since a_{i} is never split in substage i at any stage u, it follows that the Γ_{e} markers are never removed from x and $x-a_{i}$. Our construction now ensures that if there is a stage u and a nonzero y such that $y<{ }_{\bar{Q}} x$ or $y<_{\bar{Q}} x-a_{i}$ and $y \in \operatorname{At}\left(C^{u}\right)-\operatorname{At}\left(C^{u-1}\right)$, then y must have a Γ_{j} marker on it for some $j<e$ and this Γ_{j} marker will never be removed from y. Since we have proved in Lemma 11.2 that there are only finitely many Γ_{i} markers for any i, it easily follows that both x and $a_{i}-x$ is a union of finitely many atoms of C.

Next suppose z is an arbitrary nonzero element of C. Let s be the stage where $z \in C^{s}-C^{s-1}$. Thus we can express z as a finite union of atoms of $C^{s}, z=\sum_{i=1}^{k} z_{i}$. It is an easy finite induction to show that if $z^{\prime} \in \operatorname{At}\left(C^{s}\right)$, then either $z^{\prime} \in B^{s}$ or z^{\prime} has a Γ_{j} marker on it for some j. Moreover, our construction ensures that if a Γ_{j} marker is ever removed from any x at some stage t, then $x \in B^{t}$. Now let u be a stage large enough so that if $x \in C^{s}$ and x has a Γ_{j} marker on it at stage s, then either x no longer has a Γ_{j} marker on it at stage u, in which case $x \in B^{u}$, or the Γ_{j} marker remains on x at all stages $t \geqslant s$. Consider the subalgebra $E=B^{u} \cap C^{s}$. For
each z_{i} as above, either $z_{i} \in B^{u}$ or z_{i} has a Γ_{j} marker on it at stage u. In the latter case, let a be the atom of E such that $z_{i}<_{\bar{Q}} a$. Consider the first stage w where $a \in \operatorname{At}\left(C^{w}\right)-\operatorname{At}\left(C^{w+1}\right)$. Then at stage $w+1$, there are x_{1} and x_{2} in $\operatorname{At}\left(C^{w+1}\right)$ or $\operatorname{At}\left(E_{j}\right)$ for some j such that $a=x_{1}+x_{2}$. Since $a \in C^{s}, z_{i} \in C^{s}$, and $z_{i}<_{\bar{Q}} a$, it follows that $w+1 \leqslant s$ and x_{1} and x_{2} are not in $B^{u} \cap C^{s}$. Moreover, we must have split a at substage ii of stage $w+1$ and hence at stage $w+1, x_{1}$ and x_{2} have Γ_{n} markers on them for some n. Since x_{1} and x_{2} are not in B^{u}, it follows that the Γ_{n} markers on x_{1} and x_{2} were not removed by stage u. Thus x_{1} and x_{2} have Γ_{n} markers on them at stage u and hence by our choice of u, x_{1} and x_{2} have Γ_{n} markers on them at all stages $t \geqslant s$. It now follows that a must be an atom of B for if there is a stage t such that $a \in \operatorname{At}\left(B^{t+1}\right)-\operatorname{At}\left(B^{t}\right)$, then we split a at stage i of stage $t+1$ and our construction would force us to remove the Γ_{n} markers on x_{1} and x_{2}. Thus each z_{i} is either in B or $z_{i}<_{\bar{Q}} a_{j}$ where a_{j} is some atom of B in which case z_{i} is a finite union of some of $e_{1}^{j}, \ldots, e_{k_{j}}^{j}$ where $e_{i}^{j}, \ldots, e_{h_{j}}^{j}$ are the atoms of C under a_{j}. Thus we can conclude that

$$
C=\left\langle B \cup\left\{e_{j}^{i} \mid i \geqslant 0 \& 1 \leqslant j \leqslant k_{i}\right\}\right\rangle
$$

References

[1] S.S. Goncharov, Some properties of the constructivizations of Boolean algebras, Sibirski Math. Zh. 16 (1975) 264-278.
[2] R. McKenzie, On the automorphism group of denumerable Boolean algebras, Canad. J. Math. 29 (1977) 466-471.
[3] A.S. Morozov, Groups of recursive automorphisms of constructive Boolean algebras, Algebra i Logika 22 (1983) 95-112.
[4] J.B. Remmel, Recursive isomorphisms types of recursive Boolean algebras, J. Symbolic Logic 46 (1981) 572-593.
[5] J.B. Remmel, Recursive Boolean algebras with recursive sets of atoms, J. Symbolic Logic 46 (1981) 595-616.
[6] M. Rubin, On the automorphism groups of countable Boolean algebras, Israel J. Math. 35 (1980) 151-170.

[^0]: * Partially supported by NSF Grant \# DMS-85-05004.

[^1]: ${ }^{1}$ We note that in the Russian literature, the term constructive B.A. and strongly constructive B.A. are used for our recursive B.A. and decidable B.A. respectively.

