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Whether overt attention in natural scenes is guided by object content or by low-level stimulus features
has become a matter of intense debate. Experimental evidence seemed to indicate that once object loca-
tions in a scene are known, salience models provide little extra explanatory power. This approach has
recently been criticized for using inadequate models of early salience; and indeed, state-of-the-art sal-
ience models outperform trivial object-based models that assume a uniform distribution of fixations
on objects. Here we propose to use object-based models that take a preferred viewing location (PVL) close
to the centre of objects into account. In experiment 1, we demonstrate that, when including this compa-
rably subtle modification, object-based models again are at par with state-of-the-art salience models in
predicting fixations in natural scenes. One possible interpretation of these results is that objects rather
than early salience dominate attentional guidance. In this view, early-salience models predict fixations
through the correlation of their features with object locations. To test this hypothesis directly, in two
additional experiments we reduced low-level salience in image areas of high object content. For these
modified stimuli, the object-based model predicted fixations significantly better than early salience. This
finding held in an object-naming task (experiment 2) and a free-viewing task (experiment 3). These
results provide further evidence for object-based fixation selection – and by inference object-based atten-
tional guidance – in natural scenes.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-SA license

(http://creativecommons.org/licenses/by-nc-sa/3.0/).
1. Introduction

Is attention guided by objects or by the features constituting
them? For simple stimuli and covert shifts of attention, evidence
for object-based attention arises mainly from the attentional costs
associated with switching between objects as compared to shifting
attention within an object (Egly, Driver, & Rafal, 1994; Moore,
Yantis, & Vaughan, 1998). Such benefits extend to search in visual
scenes with 3D objects (Enns & Rensink, 1991). For more natural
situations, however, the question as to when a cluster of features
constitutes an ‘‘object’’ does not necessarily have a unique answer
(Scholl, 2001) and it may depend on the context and task. In the
context of visual working memory, Rensink (2000) suggested that
‘‘proto-objects’’ form pre-attentively and gain their objecthood
(‘‘coherence’’) through attention. Extending the notion of objects
to include such proto-objects, attention can be guided by ‘‘objects’’,
even if more attentional demanding object processing has not yet
been completed.
While for covert attention an object-based component to
attention seems rather undisputed, for the case of overt atten-
tion, defined as fixation selection, in natural scenes two seem-
ingly conflicting views have emerged, referred to as the
‘‘salience-view’’ and the ‘‘object-view’’. The ‘‘salience-view’’
states that fixated locations are selected directly based on a sal-
ience map (Itti & Koch, 2000; Itti, Koch, & Niebur, 1998; Koch &
Ullman, 1985) that is computed from low-level feature contrasts.
The term ‘‘salience’’ or ‘‘early salience’’ in this context is used in
a restrictive sense to denote feature-based effects, and is thus
not equivalent, but contained in ‘‘bottom-up’’, ‘‘stimulus-driven’’
or ‘‘physical’’ salience (Awh, Belopolsky, & Theeuwes, 2012). Put
to the extreme, the salience-view assumes that these features
drive attention irrespective of objecthood (Borji, Sihite, & Itti,
2013). The salience-view appears to be supported by the good
prediction performance of salience-map models (Peters et al.,
2005) and the fact that features included in the model (e.g.,
luminance contrasts) indeed correlate with fixation probability
in natural scenes (Krieger et al., 2000; Reinagel & Zador, 1999).
The ‘‘object-view’’, in turn, states that objects are the primary
driver of fixations in natural scenes (Einhäuser, Spain, &
Perona, 2008; Nuthmann & Henderson, 2010). As a corollary of
this view, the manipulation of an object’s features should leave
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the pattern of preferably fixated locations unaffected, as long as
the impression of objecthood is preserved.

The object-view is supported by two independent lines of evi-
dence. One of them is based on the prediction of fixated loca-
tions within a scene, whereas the second one derives from
distributional analyses of eye fixations within objects in a scene.
With regard to the former, it is important to note that the robust
correlation between fixations and low-level features, which seem
to argue in favour of the salience-view, does not imply causality.
Indeed, when lowering local contrast to an extent that the local
change obtains an object-like quality, the reduced contrast
attracts fixations rather than repelling them (Einhäuser &
König, 2003), arguing against a causal role of contrast. Even
though this specific result can be explained in terms of sec-
ond-order features (texture contrasts, Parkhurst & Niebur,
2004), objects attract fixations and once object locations are
known, early (low-level) salience provides little additional infor-
mation about fixated locations (Einhäuser, Spain, & Perona,
2008). Together with the finding that object locations correlate
with high values in salience maps (Elazary & Itti, 2008; Spain
& Perona, 2011), it seems that salience does not drive fixations
directly, but rather that salience models predict the locations
of objects, which in turn attract fixations. This support for the
object-view has, however, recently been challenged. In a careful
analysis of earlier data, Borji, Sihite, and Itti (2013) showed that
more recent models of early salience outperform the naïve
object-based model of Einhäuser, Spain, and Perona (2008). This
raises the question whether a slightly more realistic object-based
model is again at par with early-salience models.

The second line of evidence for the ‘‘object-view’’ arises from
the analysis of fixations relative to objects. Models of early sal-
ience typically predict that fixations target regions of high con-
trasts (luminance-contrasts, colour-contrasts, etc.), which occur
on the edges of objects with high probability. Although the den-
sity of edges in a local surround indeed is a good low-level pre-
dictor of fixations (Mannan, Ruddock, & Wooding, 1996) and
even explains away effects of contrast as such (Baddeley &
Tatler, 2006; Nuthmann & Einhäuser, submitted for
publication), fixations do not preferentially target object edges.
Rather, fixations are biased towards the centre of objects
(Foulsham & Kingstone, 2013; Nuthmann & Henderson, 2010;
Pajak & Nuthmann, 2013). As a consequence of this bias, for
edge-based early-salience models fixation prediction improves
when maps are smoothed (Borji, Sihite, & Itti, 2013) and thus
relatively more weight is put from the edges to the objects’ cen-
tre (Einhäuser, 2013). Quantitatively, the distribution of fixations
within an object is well-described by a 2-dimensional Gaussian
distribution (Nuthmann & Henderson, 2010). The distribution
has a mean close to the object centre, quantifying the so-called
preferred viewing location (PVL), and a standard deviation of
about a third of the respective object dimension (i.e., width or
height). Since a PVL close to object centre in natural-scene view-
ing parallels a PVL close to word centre in reading (McConkie
et al., 1998; Rayner, 1979), it seems likely that the PVL is a gen-
eral consequence of eye-guidance optimizing fixation locations
with respect to visual processing – at least when no action on
the object is required: fixating the centre of an object (or word)
maximizes the fraction of the object perceived with high visual
acuity. A possible source for the variability in target position,
as quantified by the variance or standard deviation of the PVL’s
Gaussian distribution, is noise in saccade programming
(McConkie et al., 1998; Nuthmann & Henderson, 2010). Taken
together, the existence of a pronounced PVL for objects in scenes
suggests that fixation selection, and by inference attentional
guidance, is object based.
Both lines of evidence for the object-view assume that object
locations are known prior to deploying attention and selecting fix-
ation locations. This does not require objects to be recognized prior
to attentional deployment. Rather, a coarse parcellation of the
scene into ‘‘proto-objects’’ could be computed pre-attentively
(Rensink, 2000). If models of early salience in fact predict the loca-
tion of objects or proto-objects, they could reach indistinguishable
performance from object-based models, even if attention is
entirely object based. The explanatory power of low-level feature
models, like Itti, Koch, and Niebur (1998) salience, would then be
explained by them incidentally modelling the location of objects
or proto-objects. In turn, the existence of a PVL would be a critical
test as to whether proto-objects as predicted by a model indeed
constitute proto-objects that can guide attention in an object-
based way. An early model that computed proto-objects in natural
scenes explicitly in terms of salience (Walther & Koch, 2006) failed
this test and showed no PVL for proto-objects, except for the trivial
case in which proto-objects overlapped with real objects and the
observed weak tendency for a central PVL for these proto-objects
was driven by the real objects (Nuthmann & Henderson, 2010).
In a more recent approach along these lines, Russell et al. (2014)
developed a proto-object model that directly implements Gestalt
principles and excels most existing models with respect to fixation
prediction. Although a direct comparison of this model with real
objects is still open, Russell et al.’s approach shows how object-based
salience can act through proto-objects and can thus be computed
bottom-up (and possibly pre-attentively) from scene properties.

In the present study, we test the object-view against the sal-
ience-view for overt attention in natural scenes. Two predictions
follow from the object-view hypothesis.

(I) A model of fixation locations that has full knowledge of
object locations in a scene and adequately models the distri-
bution of fixations within objects (‘‘PVL-model’’) does not
leave any additional explanatory power for early salience.
That is, salience-based models cannot outperform object-
based models.

(II) Early-salience models that reach the level of object-based
models do so, because they predict object (or proto-object)
locations rather than guiding attention per se. Under the
object-view hypothesis, any manipulation of low-level fea-
tures that neither affects the perceived objecthood nor the
location of the objects in the scene, will decrement the per-
formance of the early-salience model more dramatically
than that of the object-based model.

Here we test these predictions directly: using the object maps
from Einhäuser, Spain, and Perona (2008) and a canonical PVL
distribution from Nuthmann and Henderson (2010) we predict
fixated locations for the images of the Einhäuser, Spain, and
Perona (2008) stimulus set (S. Shore, uncommon places, Shore,
Tillman, & Schmidt-Wulffen, 2004). In a first experiment, predic-
tion (I) is tested on an independent dataset of fixations from 24
new observers who viewed the same Shore, Tillman, and
Schmidt-Wulffen (2004) images. We compare an object-based
model that incorporates the within-object PVL (PVL map) to
the prediction of the Adaptive Whitening Salience Model (AWS,
Garcia-Diaz et al., 2012a, 2012b), which is the best-performing
model identified in the study by Borji, Sihite, and Itti (2013).
In a second experiment, prediction (II) is tested by reducing sat-
uration and contrast of the objects and testing how PVL map and
AWS predict fixations of 8 new observers viewing these modified
stimuli. In experiment 3, we repeat experiment 2 with a free-
viewing task to rule out that object-based instructions biased
the results in experiment 2.
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2. Materials and methods

Stimuli for all experiments were based on 72 images from the
Steven Shore ‘‘Uncommon places’’ collection (Shore, Tillman, &
Schmidt-Wulffen, 2004; Fig. 1A), which constitute a subset of the
93 images used in Einhäuser, Spain, and Perona (2008) and corre-
spond to the subset used in an earlier study (‘t Hart et al., 2013).
Our object-based modelling used the annotation data from the ori-
ginal study by Einhäuser, Spain, and Perona (2008), while all fixa-
tion data was obtained from an independent set of 40 new
observers (24 in experiment 1, 8 in experiments 2 and 3, see Sec-
tions 2.2–2.4).
2.1. Models

All object-based models were computed based on the keywords
provided by the 8 observers of Einhäuser, Spain, and Perona (2008)
G adaptive whitening saliency (AWS)

E uniform object m

A original stimulus
tabletable

plateplate

knifeknife

butterbutter
(6x)(6x)

plateplate

pancakepancake

B bounding b

0

D normalized OOM (“nOOM”)

H modified stimulu

Fig. 1. Stimulus example and maps. (A) Example stimulus from the S. Shore set. (B) Bound
Perona (2008). Same colour indicates same object. Note that some objects have multiple
main analysis of Einhäuser, Spain, and Perona (2008) and Borji, Sihite, and Itti (2013). (D)
to unit integral. (E) Object map based on bounding boxes from panel (B) with uniform s
from panel (B) with sampling within each object or object part according to the Gaussia
and Henderson (2010). (G) Salience map according to the AWS algorithm by Garcia-Dia
stimulus of panel (A), as used in experiments 2 and 3. (I) AWS map for the modified stimu
are scaled to the same dynamic range for illustration. Note that maps in (D), (E), and (F) n
rendering the object ‘‘table’’ indistinguishable from background black at the colour-depth
legend, the reader is referred to the web version of this article.)
and the object outlines created in the context of this study. A list of
all objects is available at http://www.staff.uni-marburg.de/~einha-
eus/download/ObjectRecall.csv. From the outlines, bounding boxes
were computed as the minimal rectangle that fully encompassed
an object. In case an object had more than one disjoint part or more
than one instantiation within the scene, separate bounding boxes
were defined for each part and/or instantiation (Fig. 1B). Hereafter,
both cases will be referred to as object ‘‘parts’’ for simplicity of
notation. In total, the 72 images used for the present study con-
tained 785 annotated objects consisting of a total of 2450 parts.
2.1.1. Original object map (OOM)
To test whether we could replicate the finding by Borji, Sihite,

and Itti (2013) that AWS outperformed the trivial object map rep-
resentation proposed in Einhäuser, Spain, and Perona (2008) on our
new fixation dataset, we used the maps as defined there: the inte-
rior of each object named by any observer received a value of 1, the
C original object map (“OOM”)

ap ( UNI”) PVL-based map (“PVL”)F

cantaloupecantaloupe

knifeknife

milkmilk

waterwater

plateplate
syrupsyrup

oxes

max

s (exp.2,3) I AWS map for modified stimulus

“ 

ing boxes of annotated objects, based on annotation data from Einhäuser, Spain, and
instances (knife, plate) or multiple disjoint parts (butter). (C) Object map as used in
Normalized version of the map in (C) (‘‘nOOM’’), in which each object is normalized
ampling inside each object or object part. (F) Object map based on bounding boxes
n distribution of preferred viewing locations using the parameters from Nuthmann
z et al. (2012a, 2012b) for example image of panel (A). (H) Modified version of the
lus. In panels (C) through (G) and (I), ‘‘hotter’’ colours indicate more weight, all maps
ormalize each object to unit integral, hence large objects carry less weight per pixel,
used for this illustration. (For interpretation of the references to colour in this figure

http://www.staff.uni-marburg.de/~einhaeus/download/ObjectRecall.csv
http://www.staff.uni-marburg.de/~einhaeus/download/ObjectRecall.csv


J. Stoll et al. / Vision Research 107 (2015) 36–48 39
exterior a value of 0 and the resulting object maps were added per
image. That is, each pixel provides a count of how many objects
cover this pixel (Fig. 1C). Here and for the following models, we
ignored how many observers had named an object in the original
study. This ‘‘unweighted’’ use of the maps had the rationale that
the original data serves to provide a more or less exhaustive repre-
sentation of objects in the scene, rather than providing their ‘‘rep-
resentativeness’’ for the scene. Using ‘‘weighted’’ maps, however,
yielded qualitatively similar results.

2.1.2. Normalized original object map (nOOM)
For comparison with the other models described in Sections

2.1.3 and 2.1.4, we normalized each object of the original object
map to unit integral by dividing its contribution to the OOM by
the number of pixels covered by it. This resulted in a normalized
original object map (nOOM, Fig. 1D).

2.1.3. Uniform object map (UNI)
To provide a baseline for the PVL-based maps as described

below (Section 2.1.4), we modelled the distribution of fixations
within each bounding box to be uniform. To compute a uniform
object map for each image, for each object we assigned each pixel
within its bounding box the value of 1/A, where A denotes the area
in pixels (i.e., bounding box width w times its height h). If an object
o consists of Po parts, the contribution of each part was in addition
multiplied by 1/Po. The maps obtained for each object were then
added to obtain the map for the scene (Fig. 1E). By definition, the
sum over all pixels of an object is 1, irrespective of the number
of its parts; and each object makes the same contribution to the
map, irrespective of its size or number of parts.

2.1.4. PVL-based object maps (PVL)
To model fixations within an object adequately, we started with

the observation that fixations can be described by a 2-dimensional
Gaussian distribution (Nuthmann & Henderson, 2010). We mod-
elled the fixation distribution for each object as a Gaussian centred
at the bounding box centre, with a vertical standard deviation of
34% of the bounding box height and a horizontal standard devia-
tion of 29% of the bounding box width, using the numbers provided
in Table 2 of (Nuthmann & Henderson, 2010). Following the proce-
dure for the uniform maps, the Gaussians for each object were nor-
malized to unit integral or – if there were Po parts per object – the
Gaussian for each part was normalized to integral 1/Po. Maps of the
objects within each image were then added (Fig. 1F). As with the
uniform maps, each object makes the same contribution to the
map, irrespective of its size or number of parts.

2.1.5. Formal description of the models
Formally, we can write the description of Sections 2.1.1–2.1.4 as

follows. For the OOM, we have

OOMðx; yÞ ¼
XN

o¼1

Soðx; yÞ

where So denotes the surface of the object o and N the number of
objects in the image.

Soðx; yÞ ¼
1 if ðx; yÞ falls in the boundary of object o

0 otherwise

�

For the nOOM, we have

nOOMðx; yÞ ¼
XN

o¼1

Soðx; yÞ
Ao

with Ao denoting the number of pixels in object o.
For the UNI maps, we first defined for each part p of object o
Uo;pðx; yÞ ¼
1

wh
Bo;pðx; yÞ

where Bo,p denotes the bounding box of part p of object o, w is the
bounding box width and h the bounding box height (indices of w
and h have been omitted for simplicity, but w and h are to be under-
stood to depend on o and p).

Bo;pðx; yÞ ¼
1 if ðx; yÞ falls in the bounding box of part p of object o

0 otherwise

�

Then we summed over all objects and parts

UNIðx; yÞ ¼
XN

o¼1

1
Po

XPo

p¼1

Bo;pðx; yÞ

Similarly, for the PVL maps, we first computed for each part p of
object o

Go;pðx; yÞ ¼
exp �ðx�x0Þ

2r2
x

2 � ðy�y0Þ
2r2

y

2
� �

2prxry

where (x0, y0) is the bounding box centre. Except for the analysis of
Section 3.1.5, the standard deviations followed the Nuthmann and
Henderson (2010) data: rx = 0.29w and ry = 0.34h with h and w
denoting bounding box width and height for the respective object
part.

Then we summed as above to obtain the PVL-based object map.

PVLðx; yÞ ¼
XN

o¼1

1
Po

XPo

p¼1

Go;pðx; yÞ
2.1.6. Adaptive whitening salience (AWS)
As an early-salience model we used the model that Borji, Sihite,

and Itti (2013) identified to achieve best performance on our ear-
lier data: adaptive whitening salience (AWS; Garcia-Diaz et al.,
2012a, 2012b). We applied the matlab implementation as provided
by the authors at http://persoal.citius.usc.es/xose.vidal/research/
aws/AWSmodel.html using a scaling factor of 1.0 to the unmodi-
fied version of each image in its pixel intensity representation
(Fig. 1G). Except for the scaling factor, which has a default value
of 0.5 to reduce computation time for large images, default param-
eters as set in the authors’ implementation were used. The effect of
decreasing the scaling factor is explored in Appendix B.

2.1.7. Combined maps
To test whether adding an early-salience model to the object-

based model improved fixation prediction, we combined normal-
ized versions of the PVL and the AWS map. For each image, we
computed a set of combined maps as

COMaðx; yÞ ¼ a
AWSðx; yÞP
x;yAWSðx; yÞ þ ð1� aÞ PVLðx; yÞP

x;yPVLðx; yÞ

In this equation a parameterizes the weight given to the early-sal-
ience model, with a = 0 corresponding to the pure PVL map and
a = 1 to the pure AWS map.

For comparison, we also tested a multiplicative interaction
between the maps

AWSðx; yÞP
x;yAWSðx; yÞ

 !
PVLðx; yÞP
x;yPVLðx; yÞ

 !
2.2. Experiment 1

To test the models described herein, we recorded a new eye-
tracking dataset using 24 observers (mean age: 24.6 years; 13

http://persoal.citius.usc.es/xose.vidal/research/aws/AWSmodel.html
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female, 11 male). Images were used in 3 different conditions, in
their original colour (Fig. 1A) and in two colour-modified versions.
Each observer viewed each of the 72 images once, 24 stimuli in
each condition (24 unmodified, 24 with clockwise colour rotation
and 24 with counter-clockwise colour rotation). Each condition
of each image was in turn viewed by 8 observers. For the present
study, only the unmodified images were analyzed; for complete-
ness, the details of the colour modification and the main analysis
for the colour modified stimuli are given in Appendix A. Stimuli
were presented centrally at a resolution of 1024 � 768 pixels on
a grey background (18 cd/m2) using a 190 EIZO FlexScan F77S
CRT monitor running at 1152 � 864 pixel resolution and 100 Hz
refresh rate, which was located in 73 cm distance from the obser-
ver. Eye position was recorded at 1000 Hz with an Eyelink-1000
(SR Research, Ottawa, Canada) infrared eye-tracking device, and
for fixation detection the Eyelink’s built-in software with default
settings (saccade thresholds of 35 deg/s for velocity and
9500 deg/s2 for acceleration) was used. Observers started a trial
by fixating centrally, before the image was presented for 3 s. The
initial central (0th) fixation was excluded from analysis. After each
presentation, observers were asked to rate the aesthetics of the
preceding image and to provide five keywords describing the scene
afterwards. Neither keywords nor ratings were analyzed for the
present purposes. All participants gave written informed consent
and all procedures were in accordance with the Declaration of Hel-
sinki and approved by the local ethics committee (Ethikkommis-
sion FB04, Philipps-University Marburg).

2.3. Experiment 2 – modified stimuli, original task

In natural scenes, low-level salience and object presence tend to
be correlated, which presents one possible explanation for good
performance of salience models. To dissociate low-level salience
from object presence, in experiment 2 we used a modified version
of each stimulus. Specifically, we calculated the median value of
the PVL map, and all pixels in the stimulus that exceeded this med-
ian (i.e., half of the image with largest PVL map values) were desat-
urated (transformed to greyscale) and halved in luminance
contrast, while keeping the mean luminance unchanged (Fig. 1H).
For these stimuli, any salience model that is based on low-level
features such as colour-contrasts or luminance-contrast will there-
fore predict fixations in the unmodified (normal saturation, high
luminance contrast) area or at the boundaries between saturated
and unmodified regions (Fig. 1I). The PVL map remains unchanged
by the experimental manipulation (all objects remain visible).
Therefore, the salience model and the PVL-based object model
now differ in their predictions with regard to fixation selection in
scenes. Eight new observers participated in experiment 2 (mean
age: 26.5, 4 male, 4 female). Other than using the modified stimuli,
the experimental methods were identical to experiment 1.

2.4. Experiment 3 – modified stimuli, free viewing

Experiment 3 was identical to experiment 2 with the exception
that observers were not asked to provide keywords after each
stimulus, but the next trial started with a central fixation on a
blank screen after each stimulus presentation. Observers received
no specific instructions except that they were free to look wher-
ever they liked as soon as the stimulus appeared. Eight new
observers participated in experiment 3 (mean age 25.3; 6 female,
2 male).

2.5. Data analysis

To quantify how well a given map (AWS, OOM, nOOM, UNI, PVL)
predicted fixation locations irrespective of spatial biases, we used a
measure from signal-detection theory (SDT). For a given image i,
we pooled the fixations of all observers and measured the values
of the map at these locations. This defined the ‘‘positive set’’ for
this image. We then pooled the fixations from all other images
and measured the values at these locations for the map of image
i. This defined the ‘‘negative’’ set for image i. This negative set
includes all biases that are not specific for image i, and thus pre-
sents a conservative baseline. In some analyses, we restricted the
dataset (e.g., to one colour condition, or to the nth fixation). In
these cases, restrictions were applied to positive and negative
set alike. To quantify how well the negative set could be discrimi-
nated from the positive set, we computed the receiver operating
characteristic (ROC) and used the area under the ROC curve
(AUC) as measure of prediction quality. Importantly, this measure
is invariant under any strictly monotonic scaling of the maps, such
that – except for combining maps – no map-wise normalization
scheme needed to be employed for making the different maps
comparable.

AUCs were obtained independently for each of the 72 images.
Since AUCs were obtained by pooling over observers, all statistical
analysis in the main text (ANOVAs, t-tests) was done ‘‘by-item’’.
This by-item analysis allows for a robust computation of AUCs
pooled across observers; however, for completeness we also report
‘‘by-subject’’ analyses (Appendix C).

In addition to parametric tests (ANOVAs, t-tests), for the main
comparisons we also performed a sign test. The sign test is a
non-parametric test that makes no assumptions on the distribu-
tions of AUCs across images. It tests whether the sign of an effect
(i.e., is model ‘‘A’’ or model ‘‘B’’ better for a given image) is consis-
tent across images, but ignores the size of the effect (i.e., by how
much is model ‘‘A’’ better than model ‘‘B’’).

To analyze the effect of salience on object selection (Section
3.1.6), we used a generalized linear mixed model (GLMM). For
the GLMMs we report z-values, that is, the ratio of regression coef-
ficients to their standard errors (z = b/SE). Predictors were centred
and scaled.

For the GLMM analysis we used the R system for statistical
computing (version 3.1; R Core Team, 2014) with the glmer pro-
gramme of the lme4 package (version 1.1–7; Bates et al., 2014),
with the bobyqa optimizer. Data processing and all other analyses
were performed using Matlab (Mathworks, Natick, MA, USA).
3. Results

3.1. Experiment 1

3.1.1. Object maps that consider the PVL are at par with the best early-
salience model

Using all data from the fixation dataset, we test whether the
prediction of fixated locations depended on the map used (AWS,
OOM, nOOM, UNI, PVL). We find a significant effect of map type
(F(4,284) = 37.0, p < 0.001, rm-ANOVA) on prediction. Post-hoc
tests show that there are significant differences between all pairs
of maps (all ts(71) > 3.7, all ps < 0.001) except between AWS and
PVL (t(71) = 1.29, p = 0.20) and between AWS and UNI
(t(71) = 1.54, p = 0.13). This confirms that AWS significantly out-
performs naïve object-based maps. However, once the within-
object PVL is taken into account, object-based maps are at par with
state-of-the-art early salience maps; numerically, they even show
a slightly better performance, though this is not statistically signif-
icant for the by-item analysis (Fig. 2A).
3.1.2. PVL is a necessary factor for the prediction of fixations
Already the UNI maps achieve better performance than the

OOMs and reach indistinguishable performance from AWS. This
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raises the question whether the bulk of the benefit compared to
the naïve object model arises from using bounding boxes rather
than object outlines or from the normalization by object area. In
other words, is there any true benefit of modelling the PVL within
an object in detail? To address this question, we compare UNI
maps to PVL maps image by image. We find that in 59/72 images,
the maps that take the PVL into account outperform the UNI maps,
with the reverse being true in 13/72 cases only (Fig. 2B). This frac-
tion of images is significant (p < 0.001, sign-test). Similarly, the PVL
outperforms the nOOM map (57/72, p = 0.003) and the OOM map
(63/72, p < 0.001) for the vast majority of images. This shows that
the benefit of considering the within-object PVL is robust across
the vast majority of images.
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Fig. 3. Combination of PVL and AWS. AUC values for various combinations of PVL
and AWS maps; solid line: AUCs for additively combined maps aAWS + (1 � a)PVL
against weight a, mean over images (same weight for all images); shaded area:
s.e.m. over images; left bar: PVL result (a = 0; cf. Fig. 2A), second bar from left: AWS
result (a = 1, cf. Fig. 2A); third bar from left: AUC for choosing optimal weight per
image, mean and s.e.m. over images; right bar: multiplicative interaction of AWS
and PVL maps, mean and s.e.m. over images. Horizontal dashed lines indicate
maximal gain in AUC for combining AWS and PVL compared to PVL alone: 2.2
percentage points.
3.1.3. Early salience provides little extra explanatory power, once
object locations are known

Provided the location of objects are known, how much extra
information does early salience add with regard to fixated loca-
tions? To address this question, we combine the PVL and AWS
maps additively. We screen all possible relative weights (‘‘a’’) of
AWS relative to PVL in steps of 1%. When enforcing the same a
for all images, as would be required for a model generalizing to
unknown images, we find that even at the best combination
(a = 52%, AWS adds only 2.2 percentage points to the PVL perfor-
mance alone (69.4% as compared to 67.2%, Fig. 3). Even when
allowing for adapting the weight for each image separately, the
maximum AUC reaches 71.2%, such that the maximum possible
gain by adding AWS to PVL is less than 4%. A multiplicative inter-
action (i.e., PVL ‘‘gating’’ AWS) is in the same range as the additive
models (69.1% AUC).
3.1.4. Object salience and early salience are similar from the first free
fixation on

In order to test whether the relative contributions of objects
and early salience vary during prolonged viewing, we measured
the fixation prediction of AWS and PVL separated by fixation num-
ber (Fig. 4). Even using a liberal criterion (uncorrected paired t-
tests at each fixation number), we do not find any difference
between PVL and AWS for any fixation number (all ps > 0.17; for
fixation 0–9: all ts(71) < 1.38; for fixation 10 only 69 images con-
tributed data: t(68) = 0.82). Neither do we find any clear main
effect of fixation number (excluding fixation 0 and fixation 10)
on the AUC for either PVL (F(8,568) = 1.73, p = 0.09) or AWS
(F(8,568) = 1.69, p = 0.10). Thus, there is little evidence that fixa-
tion prediction by either early salience or objects changes over
the course of a trial, and there is no evidence of any difference
between PVL and AWS at any point in the trial.
3.1.5. Optimal PVL parameters generalize across datasets
For the analysis so far, we used the parameters of Nuthmann

and Henderson (2010) to model the phenomenon of a PVL within
objects. These were obtained on an entirely different stimulus set
with observers performing distinct tasks (memory, search and
preference judgements) and with a different setup. This raises
the question, whether the average PVL generalizes across datasets.
To test this, we modelled the PVL by 2-dimensional Gaussians with
horizontal standard deviations ranging from 0.10 to 0.60 of bound-
ing box width and vertical standard deviations with the same frac-
tion of bounding box height, varied in 0.01 steps (i.e., we set
rx = bw and ry = bh, with h and w denoting bounding box height
and width, and varied b). We find that prediction indeed reaches
a maximum around b = 0.31 (Fig. 5A), in line with the values found
in Nuthmann and Henderson (2010) and used throughout this
paper. Interestingly, even the optimum value (67.15% AUC at an
sd of 33% of bounding box dimensions) is very close to but slightly
below the 67.19% found for the anisotropic Nuthmann & Hender-
son values. To test whether the result improves further for aniso-
tropic (relative to the bounding box) PVL distributions, we vary
rx and ry independently (rx = bxw and ry = byh) in 0.01 steps
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around the Nuthmann and Henderson (2010) default value of
bx = 0.29 and by = 0.34. We find the AUC has its maximum off the
diagonal (at bx = 0.29, by = 0.35, Fig. 5B, circle) indicating an opti-
mal PVL that is slightly anisotropic relative to the object’s bound-
ing box. This optimal AUC value is only 0.01% (percentage points)
larger than the result for the original parameters (0.29, 0.34). Since
these values were obtained on a different data set and experimen-
tal setup, it is tempting to speculate that the fraction of about 1/3
of bounding box dimensions, possible with a slight anisotropy, for
the PVL might reflect a universal constant for object-viewing.

3.1.6. Prioritisation of objects by low-level salience
Is the prioritisation as to which object is selected, once the

objects are given, biased by early salience? First, we test whether
the probability that an object is fixated at all is related to its sal-
ience. To avoid obvious confounds with object area, we quantify
an object’s low-level salience by the maximum value of the nor-
malized AWS map within the object surface (‘‘peak AWS’’). To keep
all measures well defined, we restrict analysis to those 366 objects
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Fig. 5. Varying PVL-model. (A) AUC for varying size of the Gaussian that models the PV
same ratio (b) relative to the respective bounding box dimension. Mean and s.e.m. over im
vertical standard deviation of the Gaussian that models the PVL, white line indicates diago
the values by Nuthmann and Henderson (2010) used throughout the present paper (0.2
that consist of only one part. In addition to peak AWS, we consider
two object properties, which could potentially confound peak AWS
effects: object size (the number of pixels constituting the object),
and object eccentricity (the distance of the object’s centre of mass
from the image’s centre). For each observer, we allocate a ‘‘1’’ to a
fixated object and a ‘‘0’’ to a non-fixated object, yielding a binary
matrix with 366 � 8 (number of objects � number of observers,
who viewed the respective image in unmodified colour) entries.
We use a GLMM to determine the impact of the object properties
on the thus defined fixation probability (cf., Nuthmann &
Einhäuser, submitted for publication). The model includes the
three object properties as fixed effects. With regard to the random
effects structure, the model includes random intercepts for sub-
jects and items as well as and by-item random slopes for all three
fixed effects. We find a significant effect of peak AWS (z = 4.55,
p < 0.001) above and beyond the effects of object size (z = 5.09,
p < 0.001) and eccentricity (z = �4.70, p < 0.001). This indicates that
among all objects, the objects with higher low-level salience are
preferentially selected.

The analysis so far asks whether an object is fixated at all in the
course of a 3 s presentation. For an infinite presentation duration, it
seems likely that all objects would be eventually fixated; in turn,
the salience of an object may be especially predictive for fixations
early in the trial. To quantify this, we modify the analysis such that,
rather than assigning a 1 to an object that is fixated at any time in
the trial, we assign a 1 only to objects that are fixated at or before a
given fixation number n. Computing the same GLMM for this def-
inition and for each n, we find a significant prediction of fixation
duration for each n (all z > 3.3, all p < 0.001). Z-values tend to
increase with fixation number (i.e., with increasing n; Table 1).
The effects of object size and eccentricity are also significant for
all n, with the effect of eccentricity declining over fixation number
(Table 1). These results offer a role for early salience that comple-
ments object-based fixation selection: attention is guided to
objects, but among all the objects in a scene those with higher
early salience may be preferentially selected.
3.2. Experiments 2 and 3 – modified natural stimuli

The PVL map performs as well as AWS, but it does not outper-
form the salience-based model. While this result already invali-
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Table 1
GLMM results: z-values for the fixed effects peak AWS, object size and object eccentricity on the probability of fixating labelled objects in scenes. Each column, labelled as fixation
number n, reports data for a model that considers objects that are fixated at or before a given fixation number n.

Fixation number 1 2 3 4 5 6 7 8 9 10 Any

Peak AWS 3.551 3.348 4.206 4.345 4.596 4.558 4.206 4.348 4.552 4.682 4.554
Object size 3.915 4.284 4.482 4.462 4.362 4.741 5.215 5.272 5.214 5.079 5.088
Object eccentricity �6.296 �7.279 �7.468 �6.223 �5.571 �5.389 �5.085 �5.267 �5.010 �4.850 �4.702
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dates a key argument put forward against object-based fixation
selection, namely that AWS was better than the naïve object-based
approach (Borji, Sihite, & Itti, 2013), experiment 1 alone does not
show a superiority of object-based models. In experiments 2 and
3, we dissociate the effect of objects from the effect of the features
that constitute objects by manipulating low-level features at object
locations.

3.2.1. Modification de-correlates AWS and PVL maps
The object-view states that early-salience models predict fixa-

tion selection through correlations of their features with object
locations. To test this, we measure the correlation between AWS
and PVL map values. To obtain sufficiently independent samples,
we sample values from both maps on a central 11 � 8 grid of pixels
100 pixels apart (i.e., at (13,35), (13,135), . . . (13,735),
(113,35), . . . (1013,735)) for each image. For the original images
as used in experiment 1, AWS and PVL map values are indeed pos-
itively correlated (r(6334) = 0.16, p < 0.001).

The aim of the experimental manipulation in experiments 2 and
3 is to disentangle AWS from PVL predictions by reducing this cor-
relation. We therefore generated new stimuli by halving contrast
and removing saturation from the half of the image in which PVL
was highest (Fig. 1H). This manipulation was effective in that the
correlation between PVL and AWS for the modified stimuli is
now negative (r(6334) = �0.06, p < 0.001) and – when individual
images are considered – smaller than for the original image in
71/72 cases.

3.2.2. On modified images, PVL outperforms AWS
Using the fixation data of experiment 2 and computing AWS on

the modified stimuli used, the PVL map now significantly outper-
forms AWS with respect to fixation prediction (AUC: 63.0 ± 1.3%
vs. 56.6 ± 1.1% (mean ± s.e.m.); Fig. 6A, t(71) = 3.41, p = 0.001). On
the level of individual images, the prediction of PVL is better for
51/72 images, a significant fraction (p < 0.001, sign-test). In the
free-viewing task of experiment 3, the prediction by the PVL map
remains virtually unchanged (AUC: 63.1 ± 1.3%) and is significantly
better than the AWS performance (AUC: 58.1 ± 1.2%) both on aver-
age (Fig. 6B, t(71) = 2.43, p = 0.02) and for individual images (46/72,
p = 0.02, sign-test). Both experiments show that when the predic-
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Fig. 6. Modified stimuli – PVL based map outperforms AWS. (A) Experiment 2
(object naming) and (B) experiment 3 (free viewing). Notation as in Fig. 2.
tion of an object-based model and a salience-based model are dis-
sociated by experimentally manipulating the correlation between
early salience and objecthood, object-based models outperform
early salience. The result of experiment 3, in which observers
had no specific instruction, furthermore rules out that the prece-
dence of object-based fixation selection over low-level salience is
a mere consequence of an object-related task.
3.2.3. Dependence on fixation number
As for experiment 1, we analyzed the time course of PVL and

AWS predictions. In experiment 2 (Fig. 7A), with the exception of
the initial (0th) fixation, prediction is above chance for all fixations
and both maps (all ps < 0.007, all ts > 2.8). Excluding the initial
(0th) fixation and including all fixation numbers for which data
from all images is available (1st through 9th), we find no effect
of fixation number on AUC, neither for AWS (F(8,568) = 0.53,
p = 0.83) nor for PVL (F(8,568) = 1.37, p = 0.31). In experiment 3,
fixation durations were longer than in the other two experiments
(270.6 ± 2.0 ms vs. 244.6 ± 1.8 ms and 243.3 ± 1.5 ms, excluding
the initial fixation), such that from the 9th fixation on, data for
some images are missing, and we only analyze fixations 1 through
8 further. For those fixations, AUCs are significantly different from
chance for both maps (all ps < 0.001, all ts > 4.0). Again, we find no
main effect of fixation number for AWS (F(7,497) = 0.45, p = 0.87).
However, we find a main effect of fixation number for the PVL map
(F(7,497) = 4.79, p < 0.001). Surprisingly, however, the prediction is
best for the early fixations (Fig. 7B). The PVL model performs sig-
nificantly better than AWS only for the 2nd and 3rd fixation
(t(71) = 3.30, p = 0.002 in both cases), while for the other fixations
performance is indistinguishable from AWS (ts < 1.9; ps > 0.06).
Hence, especially early fixations, though not the first one, are
guided rather by objects than by low-level salience if no object-
related task is to be performed. At no time point during viewing
a fixation is guided primarily by low-level salience.
3.2.4. AWS as object model
The object-view explains the performance of early-salience

models by the correlation of their features to objects in natural
scenes. Hence, if an experimental manipulation dissociates objects
from their natural low-level features – like in our experiments 2
and 3 – the prediction performance of early-salience models
should drop. Notably, we can derive an additional prediction from
the object-view hypothesis: if the early-salience model is com-
puted on the original (i.e., unmodified) stimulus, it predicts object
locations. These object locations remain unaffected by the experi-
mental manipulation. Consequently, the early-salience model
computed on the unmodified image should still predict fixations
on the modified image. We tested this hypothesis and found that
AWS applied to the original image indeed predicts fixations on
the modified image in experiment 2 better than AWS applied to
the modified image itself (AUC: 66.0 ± 1.2% t(71) = 7.41,
p < 0.001). The same holds for experiment 3 (AUC: 66.8 ± 1.2%;
t(71) = 6.15; p < 0.001). This shows that the AWS model inciden-
tally captures attention-guiding properties of natural scenes that
still predict fixations when their correlation to the low-level fea-
tures that are captured by low-level salience are removed.
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4. Discussion

In this study we show that an object-based model that ade-
quately models fixation distributions within objects (i.e., the pre-
ferred viewing location, PVL) performs at par with the best
available model of early salience (AWS). The prediction by the
object-based model is robust to small variations of the PVL’s stan-
dard deviation and not substantially improved by any combination
with the AWS model. Notably, when low-level features are manip-
ulated while keeping objecthood intact, the object-based model
outperforms the early-salience model. Together, these findings
provide further support for the object-view of fixation selection:
objects guide fixations and the prediction by early salience is med-
iated through its correlation with object locations.

If attention is indeed object-based, the question arises up to
which level of detail object processing has to be performed prior
to fixation selection and how such information can be extracted
from the visual stimulus. The degree of object-knowledge required
prior to attentional deployment has frequently been associated
with ‘‘proto-objects’’ (Rensink, 2000). In the context of salience
maps, Walther and Koch (2006) define proto-objects by extending
the peaks of the Itti, Koch, and Niebur (1998) saliency map into
locally similar regions. In this conception, proto-objects are a func-
tion of saliency (Russell et al., 2014). In principle, proto-objects can
guide attention in two ways. First, proto-objects can be a proxy for
real objects that is computed from stimulus properties. In this case,
proto-objects, just like low-level salience, predict fixations through
their correlation with object locations. Alternatively, proto-objects
could constitute a ‘‘higher-level’’ feature that is causal in driving
attention. Yu, Samaras, and Zelinsky (2014) provide indirect evi-
dence for the latter view by showing that proto-objects are a proxy
for clutter, and clutter is a possible higher-level feature for atten-
tion guidance (Nuthmann & Einhäuser, submitted for
publication). In the present study, we show, however, that PVL-
based maps outperform other object maps. For proto-objects that
do not exhibit a PVL it seems therefore unlikely that they predict
fixations better than real objects. An analysis testing proto-objects
as defined by Walther and Koch (2006) showed that there was lit-
tle evidence for a PVL for human fixations within these proto-
objects (Nuthmann & Henderson, 2010). Importantly, there was
no evidence for a PVL when only saliency proto-objects that did
not spatially overlap with annotated real objects were analyzed.
Therefore, proto-objects of that sort are not a suitable candidate
for the unit of fixation selection in real-world scenes. In addition,
AWS generates some notion of objecthood and can be used to
extract proto-objects from a scene (Garcia-Diaz, 2011), presumably
since the whitening aids figure–ground segmentation (see Russell
et al., 2014, for a detailed discussion of this issue). Again, as shown
by experiments 2 and 3, the features of AWS are dominated by
object-based selection (PVL-based object maps), indicating that
the implicit ‘‘proto-objects’’ of AWS do not match real objects with
respect to fixation prediction. It is conceivable that the phenome-
non of a PVL indeed constitutes an important property that distin-
guishes proto-objects from real objects, at least with respect to
fixation selection. Consequently, the question whether proto-
objects, whose computation is stimulus-driven, but not based
exclusively on low-level features (Russell et al., 2014; Yu,
Samaras, & Zelinsky, 2014), exhibit a PVL is an interesting question
for future research.

Attention is likely to act in parallel with object processing
rather than being a mere ‘‘pre-processing’’ step. There is a high
structural similarity of salience-map models and hierarchical mod-
els of object recognition. Already the archetypes of such models,
Koch and Ullman’s (1985) salience map and Fukushima’s (1980)
Neocognitron, shared the notion of cascading linear filters and
non-linear processing stages in analogy to simple and complex
cells of primary visual cortex (Hubel & Wiesel, 1962). The compu-
tational implementation of the salience map (Itti, Koch, & Niebur,
1998) and the extension of the Neocognitron idea into a multi-
stage hierarchical model (HMAX, Riesenhuber & Poggio, 1999)
allowed both models to extend their realm to complex, natural
scenes. Given the similarity between the salience map and HMAX,
it is not surprising that more recent descendants of salience-map
models, such as Itti and Baldi’s (2005) ‘‘surprise’’, model human
object recognition (Einhäuser et al., 2007) to a similar extent as
HMAX itself (Serre, Oliva, & Poggio, 2007), and that in turn HMAX
is a decisive ingredient in a state-of-the-art model of attentional
guidance in categorical search tasks (Zelinsky et al., 2013). This
modelling perspective – together with its roots in cortical physiol-
ogy – argues that attentional selection and object recognition are
not separated, sequential processes, but rather object processing
and attention are tightly interwoven.

A challenge for both model testing and experimental research is
that an object is not necessarily a static entity, but rather a percep-
tual and hierarchical construct that can change depending on the
task and mindset of the observer. In the present study, we took a
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pragmatic approach, using all the keywords provided by at least
one of the 8 observers in our original study (Einhäuser, Spain, &
Perona, 2008). These ranged from large background objects
(‘‘sky’’, ‘‘grass’’, ‘‘road’’, ‘‘table’’) over mid-level objects (‘‘car’’,
‘‘house’’, ‘‘woman’’, ‘‘cantaloupe’’) to objects that are part of other
objects (‘‘roof’’, ‘‘window’’, ‘‘purse’’, ‘‘door’’). Treating all of the
objects equally, as done here, makes several simplifying assump-
tions. First, it assumes that the parameters of the PVL are indepen-
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dent of object size. Second, it puts more weight to objects that con-
sist of multiple parts, provided that parts and object are named.
Third, objects that are disjoint by occlusion are treated as separate
objects. Forth, it does not respect any hierarchy of parts, objects or
scene.

With regard to object size, Pajak and Nuthmann (2013)
reported wider distributions of within-object fixation locations
(i.e., larger variance) for smaller objects. Since – especially for very
small and very large objects – the details of the presentation and
measurement conditions may also have an effect on the exact dis-
tribution, we refrained from modelling this size dependence
explicitly here. Since the PVL results are rather robust against the
exact choice of the width of the Gaussian distribution, it is unlikely
that the effects would be substantial, and – if anything – they
should improve fixation prediction by the PVL maps further.

Putting more weight on objects with multiple named parts
seems reasonable, at least as long as no clear hierarchy between
parts and objects is established and both are likely to follow similar
geometric rules to gain objecthood. By normalizing each object to
unit integral, very large background objects in any case have a
comparably small contribution, except in regions where no other
(foreground) objects are present. In an extreme case, where the
background object spans virtually the whole scene, the PVL for
the background resolves to a model of the central fixation bias
(Tatler, 2007), which in this view corresponds to a PVL at scene
level. Indeed, the central bias is fit well by an anisotropic Gaussian
for a variety of datasets (Clarke & Tatler, 2014). Note, however, that
the present analysis is unaffected by generic biases through its
choice of baseline.

Since disjoining objects by occlusions is rare in the present data
set, this is more a technical issue than a conceptual one. Whether,
from the perspective of fixation selection, occlusions are processed
prior to attentional deployment (e.g., by means of estimating
coarse scene layout prior to any object processing, cf. Hoiem,
Efros, & Hebert, 2007; Schyns & Oliva, 2004) remains, however,
an interesting question for further research in databases with sub-
stantial occurrences of such occlusions.
Finally, the issue concerning the relation between parts and
objects has frequently been addressed in parallel in computational
and human vision. Dating back to the works of Biederman (1987),
human object recognition is thought to respect a hierarchy of parts.
On the computational side, mid-level features seem ideal for object
recognition (Ullman, Vidal-Naquet, & Sali, 2002), and many algo-
rithms model objects as constellation (Weber, Welling, & Perona,
2000) or compositions (Ommer & Buhmann, 2010) of generic parts.
The interplay between objects and parts is paralleled on the super-
ordinate levels of scene and object: Humans can estimate scene
layout extremely rapidly and prior to object content (Schyns &
Oliva, 2004) and scene layout estimation aids subsequent compu-
tational object recognition (Hoiem, Efros, & Hebert, 2007). For
human vision, this provides support for a ‘‘reverse hierarchy’’
(Hochstein & Ahissar, 2002) of coarse to fine processing after an
initial quick feed-forward sweep (Bar, 2009). Transferring these
results to the question of attentional guidance and fixation selec-
tion in natural scenes might provide grounds for some reconcilia-
tion between a pure ‘‘salience-view’’ and a pure ‘‘object-view’’. It
is well conceivable that several scales and several categorical levels
(scene, object, proto-objects, parts, features) contribute to atten-
tional guidance. Indeed, recent evidence shows that the intended
level of processing (superordinate, subordinate) biases fixation
strategies (Malcolm, Nuthmann, & Schyns, 2014). The appropriate
hierarchical level might then be dynamically adapted, and – for
sufficiently realistic scenarios – be controlled by task demands
and behavioural goals. The present data show, however, that for
a default condition of comparatively natural viewing conditions,
object-based attention supersedes early salience.
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Appendix A. Colour conditions in experiment 1

Experiment 1 used stimuli in 3 different colour conditions: in
their original colour (Fig. 1A) and in two colour-modified versions
(Fig. A.1A and B): for the colour modification, images were trans-
formed to DKL colour space (Derrington, Krauskopf, & Lennie,
1984) and each pixel was ‘‘rotated’’ by 90� (either clockwise or
counter clockwise) around the luminance (L + M) axis. This manip-
ulation (Frey, König, & Einhäuser, 2007) changes the hue of each
pixel, but keeps saturation (or rather chroma) and luminance
unchanged. Effectively, the manipulation swaps the S � (L + M)
axis (roughly: ‘‘blue–yellow’’) with the L �M axis (roughly: ‘‘red–
green’’) and therefore keeps the sum over these two ‘‘colour-con-
trasts’’, as used in most models of early salience, intact. That is,
while the global appearance of the stimuli changes dramatically,
for most commonly used salience models (including AWS) the
effect of the modification is by definition negligible or absent. As
the modification neither affected the AWS maps nor the PVL maps,
we only used data from the unmodified stimuli for the present
study. For completeness, we repeated the main analysis for the
modified stimuli. As expected, the results are qualitatively very
similar (Fig. A.1C) to the original colour data (Fig. 2A). This indi-
cates that modifications to hue, at least if saturation and luminance
are preserved, has little effect on the selection of fixated locations.
Appendix B. Other models and AWS parameter

For the main analysis, AWS has been chosen as reference, since
Borji, Sihite, and Itti (2013) had identified it as best performing
low-level salience model on the Einhäuser, Spain, and Perona
(2008) data. Our data, especially the result that the AWS model
applied to the original image predicts fixations better than the
model applied to the actual modified stimulus (Section 3.2.4),
however, casts doubt on the characterization of AWS as an ‘‘early’’
salience model. We therefore tested a series of other models
(Fig. B.1A and B): Graph based visual saliency (GBVS; Harel,
Koch, & Perona, 2007), saliency maps following the Itti, Koch, and
Niebur (1998) model in the latest (as of September 2014) imple-
mentation available at http://ilab.usc.edu (‘‘ITTI’’), the ‘‘SUN’’
model (Zhang et al., 2008) and the ‘‘AIM’’ model (Bruce &
Tsotsos, 2009). Since optimizing the model parameters for our
dataset is not within the scope of the present paper, we used the
default parameter settings as suggested by the respective authors
throughout.
With the exception of the AWS model for experiment 1
(t(71) = 1.29, p = 0.20) and the AIM model for experiment 3
(t(71) = 1.03, p = 0.31), all models perform significantly worse than
the PVL map (Fig. B.1C; all other ts > 4.0, ps < 0.001). However, even
in experiment 3 and similar to AWS (Fig. 7), the AIM model still
performs significantly worse than PVL for the 2nd and 3rd fixation
(Fig. B.1D, right; t(71) = 2.30, p = 0.02 and t(71) = 2.06, p = 0.04,
respectively). This indicates that our results are not specific to
the AWS model, and further supports the view that early in the
trial fixation selection is object-based even in the free-viewing task
of experiment 3.

The implementation of the AWS model has one parameter, the
factor by which the input image is scaled (Fig. B.2). For the unmod-
ified images of experiment 1 (Fig. B.2A), a reduction by a factor of
0.5 does not change the prediction (t(71) = 0.14, p = 0.89), if any-
thing, it yields a tiny improvement. With further reduction of the
scaling factor, prediction performance monotonically decreases,
but remains above chance (ts(71) > 6.2, p < 0.001) for all tested
scales down to 1/32 (Fig. B.2C). At a factor of 1/64, prediction is
indistinguishable from chance (t(71) = 0.05, p = 0.96). In experi-
ments 2 and 3, a similar picture emerges: prediction performance
decreases monotonically with decreasing scaling factor and
becomes indistinguishable from chance at factors of 1/16 (exp. 2)
or 1/32 (exp. 3, Fig. B.2C).

Appendix C. Alternative analyses by subject

For the main analysis, we first pool fixations within an image
across all observers and then perform a ‘‘by-item’’ analysis, with
the images being the items. Pooling over observers allows us to
obtain a robust estimate of AUCs for each image. This is especially
critical for those analyses that separate data by fixation number, as
without pooling over observers the ‘‘positive set’’ for the AUC
would contain only a single data point. For the main analysis,
which aggregates over fixations, we alternatively could compute
the AUC individually for each observer, then average over images
and finally perform the statistical analysis over observers for these
means. For completeness, we tested this ‘‘by-subject’’ analysis for
the comparison between AWS and PVL for all three experiments
as well as for all the object models for experiment 1 (Fig. C.1).
The pattern of data looks similar to the main analysis (Figs. 2 and
7). For experiment 1, there is a significant effect of object model
(F(4,92) = 19.4, p < 0.001, rmANOVA). Unlike in the main analysis,
all pairwise comparisons, including the one between AWS and
PVL, show significant differences (all t(23) > 3.3, all ps < 0.003):
PVL performs better than any other model, followed by AWS,
UNI, nOOM and OOM (Fig. C.1). Similarly, the difference between
PVL and AWS for experiment 2 and 3 is significant (exp. 2:
t(7) = 8.96, p < 0.001; exp. 3: t(7) = 4.00, p = 0.005): PVL outper-

http://ilab.usc.edu
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forms AWS. This analysis not only supports our conclusions of
object-based salience outperforming AWS, but also shows this
effect already for experiment 1.
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