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1. INTRODUCTION

This paper deals with the existence of homoclinic orbits in H*(R,R")
for second-order time-dependent Hamiltonian systems of the type

g —L(t)g + W,(t,q) =0, (HS)

where ¢ = (gy,...,qy) € RY, W e CYR x RY,R), and L(t) € C(R,RN")
is a positive definite symmetric matrix for all z € R.

The case where L(¢) and W(t, q) are either periodic in ¢ or independent
of ¢, were studied by several authors (see, for instance, Ambrosetti and
Bertotti [1], Coti-Zelati, Ekeland and Séré [4], Coti-Zelati and Rabinowitz
[5], Rabinowitz [15-17], Séré [19], and their references).

In this kind of problem the function L(z) plays an important role; for
example, if L(z) = al, where a > 0 and I, denotes the identity matrix,
Felmer and Silva [8] have showed the existence of homoclinic orbits as the
limit of subharmonic solutions, provided that (HS) is autonomous (see also
Rabinowitz and Tanaka [18]). Serra, Tarallo, and Terracini [20], using an
approach introduced by [4] (see also [19]) treated the (HS) problem
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assuming that W is almost periodic in ¢. If L is neither a constant nor
periodic, the problem is quite different from the ones just described,
because of the lack of compactness of the Sobolev embedding.

The motivation for the paper comes mainly from the paper by Rabi-
nowitz and Tanaka [18], where they have studied (HS) systems without
periodicity assumption both on L and W; more precisely, they assumed
that

the smallest eigenvalue of L(t) — © as [¢| = o, (L.)

and using a variant of the Mountain Pass Theorem of Ambrosetti and
Rabinowitz without (PS) (see, e.g., Mawhin and Willem [13, page 80]), they
showed that (HS) possesses a homoclinic orbit. Omana and Willem [14],
by employing a new compact embedding theorem (see Costa [3]), obtained
an improvement on the latter results, in fact, they verified the (PS)
condition (see also Ding [6]). More recently, Korman and Lazer [10]
removed the technical coercivity condition (L.) and proved the existence
of homoclinic orbits when L and W are even in t.

In this paper, we study (HS) systems without assuming any symmetric or
coercivity conditions like (L.); more exactly, we assume for sake of
simplicity that

a L
V(t,q) = —%Iwz +W(t,q) = —%qz + W(t,q),

where a: R — R is a positive continuous function satisfying the following
conditions:

there exists a, > O such that a(t) > a, VteR (aq)
and
there is a constant a,, > O such that a(t) — a, aslt| > », (a,.)

and W e CYR x RN, R). Furthermore, W is assumed to be su-
perquadratic at infinity and subquadratic at zero in g, that is, W verifies
the following assumptions:

there exists a constant w > 2 such that
0<uW(t,q)<qWy((t,q) VYg+#O0andreR, (W)
and

W,(t,q) =o(lql) aslgl— 0, uniformlyin¢e R. (W)
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Also, we shall impose a condition of the technical nature, on behavior of
W at infinity,

()l

lim ————

e 0 forsome s, + 1 > u, uniformlyint e R. (W;)
lgl— q

We shall study problem (HS) as a perturbation of autonomous problem
(HS),,, namely,
§—aldyq+ W,(q) =0, (HS).
where W is a C* function given by

lim W(t,q) = W(q) uniformly for g bounded. (W,)
|t]— o

We are now ready to state our main result.

THEOREM 1.1.  Suppose (W), ..., (W), (a,), and (a,) hold. Then there
exists a homoclinic orbit q of (HS) emanating from 0 such that

+
0< [ 1gP +L(r)q?di <,

provided that W satisfies the following conditions:

W,(rq)

T

q is nondecreasing with respect to T, Vq fixed, (W)

Ye > 0, there exist constants & > 0 and R > 0 such that

W (t,q) — W(q)| < elgl®, 1tI>R,lql <8, (W)
and
W(t,q) =W(q) and a(t) <a,, (W3)

where the last statement at least one inequality is strict on a subset of positive
measure in R.

Remark 1.2. The result above still holds if L verifies the following
conditions:

L(t) € C(R,R"") is a positive definite symmetric matrix for all € R
(L1)
and
L(1)q-q = a(1)lql’, (Ly)

where a satisfies the conditions (a,) and (a.,).
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2. PRELIMINARY RESULTS

In this section, we shall give some notations, definitions, and basic
lemmas.
Let

E={ qu(RRN)U |q|2+L(t)q)dt<00}
be with the inner product and norm given by

@)= (ap+1L(g-p)di and Nl = g.9).

Note that the embeddings E ¢ HX(R,R") c L?(R,R") for all p € [2, =]
are continuous.
Letting

1 +oo
1(q) = Sllal* = [ W(t.q)ds

then I € CY(E,R) (see, e.g., [5, page 696]), and that any critical point for I
on E, is a classical solution of (HS) with g(+ =) = 0and 0 = g(+ ) (for a
proof see, for instance, [17, page 5] and [15, page 339]).

In the proof of our result, we shall use the following main lemma by
Lions [11] concerning the compactness of the Palais—Smale sequences,
which is well known in the literature as the concentration-compactness
principle.

LEMMA 2.1 (Lions [11]). Let p, be a sequence in L*(R) satisfying p, > 0
in R and [*7p, = A, where A > 0 is a fixed constant. Then there exists a
subsequence which we still denote by p,, satisfying one of the three following
possibilities:

() (Vanishing):

lim supf p,,(t) dt=0 forallR > 0.

n— o yER

(i) (Compactness). There exists y, € R satisfying Ye >0, AR > 0
such that

[ ety de= A~ foralin.
R

y—
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(iii) (Dichotomy): There exist a € (0, A), p} = 0, p? > 0, and p}, p? €
LMR) such that

@ llp, —(pt+ pADlpr = 0asn —
) [fZpM)dt > aasn — .

© [fZpX)dt—> A — a,asn — .

(d) dist(supp p?, supp p?) — © as n — .

In the next section, in order to rule out some of the conditions above,
we shall use the following lemma which is a special case of [12, Lemma
1.1], due to Arioli and Szulkin [2].

LEMMA 2.2 ([2],[12]). Let g, be a bounded sequence in L/(R), 1 < g < o,
such that q, is bounded in L*(R), 1 < p < . If, in addition, there exists
R > 0 such that

R
sup fw lg,()19dt -0 asn — =,
yeR"y—R

then q, = 0 in L'(R), Vr € (g, ).

3. PROOFS

The proof of our result is inspired partly from Jianfu and Xiping [9], but
mainly from a combination of the concentration-compactness principle by
Lions [11, 12] and Ambrosetti and Rabinowitz’s Mountain Pass Theorem.

First, by (W)), (W,), keeping in mind that the embedding £ c L°(R) is
continuous, and adapting the proof given in [18] (see also [14]), it follows
that our functional I verifies the Mountain Pass Geometry, that is,

(i) there exist positive constants p and B such that I(u) > 8 as
gl = p;
(ii) there exists e € E with |le|| > p such that I(e) < 0.

Then, applying the Mountain Pass Theorem without Palais—Smale [(PS)
in short] condition, there exists a (PS) sequence ¢, € E for I at level
¢ > B, where ¢ =inf,_max, I(h(¥)) with T ={h € C(0,1], E);
h(0) = 0 and A(1) = e}.

Using (W), it is routine to verify that {g,} is bounded in E (see, e.g.,
[14]). Therefore there exists g € E such that g, — g (weakly).

The following auxiliary result concerns the behavior of (PS) sequence.
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Lemma 3.1, g, ll = I with I > 0.

Proof. Assume by contradiction that ||g,|l = 0. For € > 0 given, by
using (W,) and (W,) we obtain

W, (t,4,)a,! < e(lg,)* +1g,I""") + Clg,l',  r>2,

where C_ is a positive constant. Then, from Lemma 2.2 and (W), we
conclude

—+ o
f W(t,q,)l >0 asn — o,

hence ¢ = 0, which is a contradiction.
Next, we will check each one of the possible alternatives of Lemma 2.1
for p, = 1g,1> + L(t)q>.
(1) Vanishing: From Lemma 2.2 and using the same argument as in
Lemma 3.1, we can exclude this alternative.

(2) Concentration: Suppose that the concentration occurs. Then,
there exists a sequence y, € R and R, > 0 satisfying

(fy,,—Ro_i_er“
- R

© Ynt Ry

)pn(t) dt < e. (3.1)

Claim 1. 'y, is bounded in R.

Assuming Claim 1 has been proved, for € > 0 given, since E is continu-
ously embedded in L*(R) (s > 1), there exists R, > 0 such that

_ +oo
[ )|q|f <e. (3.2)
e Rl
Taking R = max{R,, R, + sup |y, [}, we have
g, > qin L'([-R,R]), s=1. (3.3)

Note that
f_wm"fn —al' = (f_;R + f:)lqn —ql" + f_RRIq,, -ql’
< c(f_—: ¥ [:)mnr * c(f__: . j:)|q|°' +["la, = at"

which, together with (3.1), (3.2), and (3.3), implies that
g, ~ qin L°(R)suchthat g, > g ae. t€R, foralls>2. (3.4)
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From (W,) and (W), there exist positive constants C, and C, such that
|VVq(I’ qn)Qn| =< C1|qn|2 + C2|Qn|so+1' (35)
Choosing s = 2 and s = s, + 1 in (3.4), we can assume that there exist
functions /2, € L*(R) and h, ., € L"*(R) such that |g,| <h,, V¢ and
g, < h .1, V2, so that from (3.5) we get
|W(t,q,)q,] <H with H e L}(R),

which, together with the Lebesgue Dominated Convergence Theorem,
implies that

+oo0 + o0
/,w W,(1,4,)q, > f,w W,(t,q)q asn - . (3.6)

Similarly, we obtain

+ o0 + o
f,m W,(t.q,)q = /,x W,(t.q)q asn — = (3.7)

Since I'(g,)q — 0, from (3.7) by passing to the limit, we have

0 =llgl* - [ Wyt a)a. (38)

On the other hand, noting that 1'(g,)g, — 0 as n — % and using (3.6),
(3.8), we can conclude that llg,ll = llgll, that is, g, = g in E, and from
Lemma 3.1 we have g # 0. Hence, g is a weak solution of (HS).

Proof of Claim 1. Arguing by contradiction, up to a subsequence, we
can assume that [y,| — o.
From (3.5), (W,), and compactness conditions (ii), we have

— + o
(fy" e )IW(t,qn)|—>O as n — o, (3.9)
* YntR

Let £ € C5(R) be a cut-off function given by £(z) =1 if |¢t| < 1, and
W) =0if || > 2.

Letting ¢, = ¢((-+ y,)/R) and using the same argument as in (3.9), we
obtain

(fynR . fy"+2R)|W(t, £,q,) >0 asn — o (3.10)
R

Yn—2R Ynt
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Now,

[ wa) - w g

<

— R W+ 2R
[ )lW(r,q,» - W(t, £4,)]
Y,—2R y,+R

n

T I [LLOYR]

=1, + 1.

+

From (3.9) and (3.10), we infer that I, — 0 and I, — 0, that is,
—+
‘f (W(t.q,) —W(t, s‘nqn))‘ -0 asn— . (3.11)
On the other hand, from the definition of W and W, we have
+oo _
[ ta) - W)

<

fi:oW(t,qn) - W(t,§,49,)

yn_R += 7
, - W
+ /,x +fyn+R)|W(t 6:dn) — W(£,4,)
| W, g0, - P&
yn_R
=J, +J, + s

From (3.11), we find that J, — 0, and by (W,) we infer that J, — 0.
Finally, since E is continuously embedded in L°(R), combining condition
(i) and (W), we conclude that J, — 0, so that

‘[JF:[W(t:qn) - W( fnqn)]‘ -0 asn — x, (3.12)

Combining condition (ii), (a.), and definition of ¢, it is easy to check that

[ (0 (80,0~ @y (6,07 >0 asnse (319)

y,— 2R

n
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and

-0 asn — . (3.14)

[N &) - ela,r

Yn—2

Now, consider the functional “at infinity” given by
1 .+« o
I"(q) = 5/% (g + a.Iyq?) - fixW(q), q €E.
Using (3.12), (3.13), and (3.14), we infer that

I(q,) = I"(&,q,) —o(1) forall n. (3.15)

Similarly, we obtain

I'(9,)(€29,) = I'(£,4.) €., + (1),
I'(6,4,) 604, = (I7)'(£,4,) €49, + 0(1),
so that
(1) (£,9,) €9, = €, = 0(1).

Define J” =inf,_,, I"(q), where M ={q € E —{0}: (I")(q)q = 0} (if
M = ), we put J* = ).

Making a scalar change z,(t) = £,gq,(ot), o> 0, and arguing as in
[9, page 348], we have

- a'_l(en - fwocEn;q]z)

0'1((0'2 — 1)[_OO E,,ZF + en).

I'(z,)z, = af

Since there exists a positive constant C, such that [*_|£,q,|° > C, > 0,

Vn, we can choose o = o(n) such that (¢? — 1) |&,q,° + €, = 0.
Hence, z, # 0 and z, € M.
Now, noting that o = o(n) — 1, as n - «, and

. —1 .
T ,®© _— g oS e 0 __
I"(z) =5 [ 1&a,f+— [ al&q,l-o*[ W(ka,)

1 CJ—
so (e’ =D 16q,F + (o7 = DI(44,) +17(L4,).
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then from the boundedness of 1“(¢,q,) and jfmlalz, we obtain
I"(&,4,) 2 1°(z,) = o(1) 27" = o(1),
which together with (3.15) implies that
I(g,) =J" —o(1). (3.16)

Therefore, ¢ > J*, which is a contradiction to the next claim.
Claim 2. ¢ <J* and J” > 0.

We postpone the proof of Claim 2 for awhile and prove that dichotomy
condition (iii) can be ruled out. Assume by contradiction that this occurs.
Let Q, be the concentration function of p,, given by Q,(¢) =
Supye R fyyjztpn'

It is well known that, for € > 0 given, there exist y, € R, R, > 0, and
R, — o such that

a—€e<Q,(R), 0,(2R,) <a+ €, VR=R,. (3.17)
Let &, ¢ € C3(R) be two cut-off functions givenby 0 < &, o <1, £=1

if 7l <1, é€=0if [t| =2, o=1if [t|>2,and ¢ =0if |¢t| < 1.
Letting £, = £((-—y,)/R)) and ¢, = (- —y,)/R,), then

. 2
+o0 i —
‘f_ (fnqn)z(fnqn) <=7 f KRdrs anqnl
¢ g,
< — .
=R, qn
so that,
+o0 -\
‘f (64, — (€4,) |~ 0 asn—e (3.18)
by choosing R, > 0 sufficiently large.
Similarly,
+ oo ) 2 R ,—.\
f (énqn) - qn(gnz(’In) - 0 asn — . (319)
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Now, from (3.5) and the continuous embedding E c L°*!, we have

‘f_xxgnzqn%(t! Qn) - fnqnw/q(t' gnqn)

s+1
Yt 2Ry Yot Ry Yt 2Ry Vnt Ry
< Cl(/ _f 2 / _f Pn !
Yn— 2Ry —R; 2R,

p, +C
Vn Yn— Yn—Ry

where C, and C, are positive constants independent of R,.
It follows from (3.17) that

-0 asn— o (3.20)

g a) - s 6

Analogous inequalities to those of (3.18), (3.19), and (3.20) hold for the
function ¢,.
Letting ¢! = & g, and ¢? = ¢,q,, it follows from (3.17) and dichotomy
condition (iii) that
g, —qn — g2l >0 asn — o, (3.21)
then proceeding as in (3.21), one gets

lgi* = a,  llg?l> > A —a asn — . (3.22)

Combining (W,), dichotomy condition (iii), and the continuous embedding
E c L**!, we obtain

\W(t,q,) —W(t.q}) —W(t.q?)| >0 asn—>»  (3.23)

It can be readily shown that

-0

‘/ 4,7 — i - |q2|2)

and

(2 la.? - () - (q,f)z))‘ o,

which together with (3.23) implies that

1(q,) = I(qy) +1(q5) — o(1). (3.24)
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Claim 3. (@) I(g?) = I"(q?) — 6,(e), as {y,} is bounded,
(b) I(¢}) = I"(q}) — 6,(e), as {y,} is unbounded,
where 6(e) - 0,as e = 0,i =1,2.

Proof of Claim 3. First of all, by (a,), note that

+o 52
[ 1L —a.yllg}]

niRn +
- (fy + )'L —a.lyllg,q,l” >0,  (3.25)
- YntR,

as {y,} is bounded and if {y,} is unbounded, we obtain

+o 12
[ 1L —a.ylig}l

“(eg

Ynt2R;

“+

)IL —a.lyll&q,> > 0. (3.26)

Setting A; = {t € R: [¢*(1)| < & and |t — y,| > R,}, we have

TR - wea)]

/ f2\>1/a 5s|q3|s1/a)|W(q3) - W(na)
=L +1,+1,
By (W) and taking |7| > R, — sup |y,|, we infer that
I, - 0 as{y,} is bounded. (3.27)

Now, if the sequence {y,} is unbounded, using (W), we obtain

W(qt) — W(t,q*)| >0 asn — o, 3.28
; (3.28)

where A; ={t € R: |gX(t)l < 6 and |t —y,| < 2R,}.
From (,) and the boundedness of {y,}, we conclude that
I3 -0, (3.29)

and if {y,} is unbounded, using (W,), we get

/:3<|q1|<1/5|(W(qi) B W(t,qi))| -0 asn— o (3.30)
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Now, for all € > 0, from (J#;), one has
2 2150+1 2 1
\W(t,q?)| < elg2l™, gl > = (3.31)
for & sufficiently small. So that, passing to the limit in (3.31), we obtain
— ) 1
W(q?)l < elg2l", g2l > 5 (3.32)

Therefore, since E is continuously embedded in L***, from (3.31) and
(3.32), we conclude that

I, - 0. (3.33)

On the other hand, if {y,} is unbounded, arguing as before, we have
| W (ak) = w(t.ql)l >0 asn -, (3.34)
BS

where By = {t € R: |g}(t)] > 1/§, and |t — y,| < 2R,}. Combining (3.25),
(3.27), (3.29), and (3.33), Claim 3(a) is proven, and by (3.26), (3.28), (3.30),
and (3.34), Claim 3(b) follows.

This finishes the proof of Claim 3.

Next, we shall establish several estimates in order to exclude dichotomy
condition (iii).

Using (W), we obtain

11121x1 1
1(g) = Slail* = 5 [ @ (c.q:)

-2 -
L (MZM )f_wq'%%(t’qul). (3.35)

Noting that 1'(g,)(&7g,) — 0 and applying an analogous argument to
(3.12), (3.13), and (3.14), we conclude that

lgil* = [ qiw,(t.q}) = o, (3.36)
which, combined with (3.22) and (3.35), gives
1 Lt
1(q}) = a + o(1). (3.37)

From Claim 3(a) and arguing as in (3.16), we have

I(g%) =1, — o(1). (3.38)
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Similarly, if {y,} is unbounded, by Claim 3(b), we obtain
mw—2
2u

I(q}) =

yA—a)+dQ (3.39)

and
I(gqy) = J. — o(1). (3.40)
Combining (3.24) with either (3.37) and (3.38) or (3.39) and (3.40), we have
¢ > J,, which is a contradiction to Claim 2 and we may exclude condition
(iii).
Next we will give the proof of Claim 2.

Proof of Claim 2. First of all, we shall verify that J* > 0. It suffices to
consider the case M # .

Note that, by (J,) and passing to the limit in (W,), (W,), and (W), we
have

0<ulW(q) <qWu(q), n>2 (3.41)
and
W,(q)ql < elgl’ + Clq*™*, €. >0, (3.42)

€

where 0 < € < 1 is fixed.
We claim the following.

Claim 4. There exists a positive constant C such that
llgll>C, VgeM.
Proof of Claim 4. Suppose by contradiction (up to subsequence) that
there exists a sequence {g,} in M such that [|g, || — 0.

On the other hand, from (3.42) and keeping in mind that E is continu-
ously embedded in L* (s > 2), we infer that

(1= e)lig,lI” < Clig,lI*"*,

where € < 1 is fixed and C depends only on e.
Hence, since s, + 1 > 2, we reach a contradiction. This proves Claim 4.
Taking ¢ € M, by (3.41) and Claim 4, we get

(n—2)
2p

(n—2)
2u

I"(q)

]f;ﬁé(q)q

(mn—2)
2p

gl > Cc?> 0.

Therefore, J” > 0.
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Next, we shall prove that ¢ < J”.
Let {g,} be a minimizing sequence of I“ on M. From Ekeland’s
variational principle, there exists a sequence {g,} in M such that

I“(g,) »J°, (I")Iu(g,) -0 and g, —gq,—0inE.

Hence, we may assume that {g,} is a (PS) sequence for I~ at level J* = ¢.

Since J* = ¢, from the proof of our result, it follows that we may rule
out dichotomy condition (iii). Also, using Lemma 2.2 and (3.42), we can
exclude vanishing condition (i). Then, noting that I” is independent of ¢,
we obtain g, — g in E (up to translation and extracting a subsequence if
necessary).

Therefore, since I” € C*(E, R), we conclude that I"(g) =J* and g €
M.

By (W) and by a similar argument to [7, page 288], we obtain
sup,. o I"(tg) = I°(g). Without loss of generality, we may assume that
the Lebesgues measure of the set suppg N {t € R: W(t,q) + W(g)} is
positive.

By (W,) and choosing e = sg (for s sufficiently large) in Mountain Pass
Geometry (ii), we have

c<supI(sq) <supl”(sq)=1J".

s>0 s>0
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