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On the contiguous relations of hypergeometric series
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Abstract

Contiguous relations are a fundamental concept within the theory of hypergeometric series and orthogonal
polynomials. Their study goes back to Gauss who gave a list of 15 “fundamental” relations for the 2F1 hypergeometric
series. In this paper we will prove some consequences of contiguous relations of 2F1.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The series

1 + ab

c

z

1! + a(a + 1)b(b + 1)

c(c + 1)

z2

2! + a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)

z3

3! + · · · (1)

is called the Gauss series or the ordinary hypergeometric series, where it is assumed that c �= 0, −1, −2,

−3, . . . so that no zero factors appear in the denominators of the terms of the series. This series con-
verges absolutely for |z| < 1. It is usually represented by the symbol 2F1[a, b; c; z] and customary to use
F [a, b; c; z]. The variable is z, and a, b and c are called the parameters of the function. If either of the
quantities a or b is a negative integer −n, the series has only a finite number of terms and becomes in
fact a polynomial 2F1[a, b; c; z].
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Two hypergeometric functions with the same argument z are contiguous if their parameters a, b and
c differ by integers. For example, F [a, b; c; z] and F [a + 10, b − 7; c + 3; z] are contiguous. For any
three contiguous 2F1 functions there is a contiguous relation, which is a linear relation, with coefficients
being rational functions in the parameters a.b, c and the argument z [1]. For example

a(z − 1)F [a + 1, b; c; z] + (2a − c − az + bz)F [a, b; c; z]
+ (c − a)F [a − 1, b; c; z] = 0, (2)

aF [a + 1, b; c; z] − (c − 1)F [a, b; c − 1; z] + (c − a − 1)F [a, b; c; z] = 0, (3)

aF [a + 1, b; c; z] − bF [a, b + 1; c; z] + (b − a)F [a, b; c; z] = 0. (4)

In these relations two hypergeometric series differ just in one parameter from the third hypergeometric
series, and the difference is 1. The relations of this kind were found by Gauss, there are 15 of them. A
contiguous relation between any three contiguous hypergeometric functions can be found by combining
linearly a sequence of Gauss contiguous relations.

Applications of contiguous relations range from the evaluation of hypergeometric series to the derivation
of summation and transformation formulas for such series, they can be used to evaluate a hypergeomet-
ric function which is contiguous to a hypergeometric series which can be satisfactorily evaluated. For
example, Kummer’s identity [1, Corollary 3.1.2]

2F1[a, b; 1 + a − b; −1] = �(1 + a − b)�(1 + a/2)

�(1 + a)�(1 + (a/2) − b)
(5)

can be generalized to

2F1[a + n, b; a − b; −1] = P(n)
�(a − b)�((a + 1)/2)

�(a)�((a + 1)/2 − b)
+ Q(n)

�(a − b)�(a/2)

�(a)�((a/2) − b)
. (6)

Here n is an integer, the factors P(n) and Q(n) can be expressed for n�0 as

P(n) = 1

2n+1 3F2

[
−n

2
, −n + 1

2
,
a

2
− b; 1

2
,
a

2
; 1

]
, (7)

Q(n) = n + 1

2n+1 3F2

[
−n − 1

2
, −n

2
,
a + 1

2
− b; 3

2
,
a + 1

2
; 1

]
, (8)

and similarly for n < 0 [10]. In fact, formula (6) is a contiguous relation between 2F1[a + n, b; a −
b; −1], 2F1[a − 1, b; a − b; −1] and 2F1[a, b; 1 + a − b; −1], where the last two terms are evaluated in
terms of �-function using Kummer’s identity (5), and the coefficients are expressed as terminating 3F2(1)

series.
Contiguous relations are also used to make a correspondence between Lie algebras and special func-

tions. The correspondence yields formulas of special functions [5]. For more details about hypergeometric
series and their contiguous relations, see [1,3,6,10,11].

In this paper, we will prove some new formulas which are consequences of contiguous relations of the
basic hypergeometric functions 2F1. Such new formulas will be of great help in the derivations of several
contiguous relations of 2F1.

The new formulas express arbitrary shifted 2F1 functions in terms of a “diagonally” shifted 2F1 function.
Diagonally shifted functions are proportional to the derivatives of 2F1 functions [8]. In [8], an algorithm to
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obtain contiguous relations of hypergeometric functions of several variable was presented. The algorithm
based on Buchberger’s algorithm [2] for Gröbner basis and it expresses arbitrary shifts of 2F1 basic
hypergeometric functions in terms of a fixed 2F1 function and its derivative.

More information about using the arbitrary shifts in contiguous relations of 2F1 basic hypergeometric
functions can be found in [4,7,9].

The paper is organized as follows. In Section 2, we use well-known forms of the Gauss function to
introduce our computations to prove some simple identities relating shifted 2F1 functions together with
their derivatives. In Section 3, we combine these identities to obtain more general ones; we give their
proofs and we present our main theorem to generalize our main results.

We will always denote the hypergeometric series 2F1[a, b; c; z] by F [a, b; c; z], and we will use the
well-known binomial identities

(
x

y

)
=

⎧⎪⎨
⎪⎩

x

x − y

(
x − 1

y

)
,

x − y + 1

y

(
x

y − 1

)
.

(9)

2. Initial computations

Let us start with

F(z) = 1 + ab

c
z + a(a + 1)b(b + 1)

c(c + 1)

z2

2! + . . .

from which we can rewrite (1) in the form

F [a, b; c; z] =
∞∑

k=0

(
a + k − 1

k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk . (10)

Now, replacing a, b and c by a + �, b + � and c + �, respectively, we can rewrite (10) as

F [a + �, b + �; c + �; z] =
∞∑

k=0

(
a + � + k − 1

k

)(
b + � + k − 1

k

)
(

c + � + k − 1
k

) zk . (11)

Using (9), we can rewrite (11) as follows:

F [a + �, b + �; c + �; z] =
∞∑

k=0

��1,�−1
a �

�1,�−1
b

(
a + �1 + k − 1

k

)(
b + �1 + k − 1

k

)

�
�1,�−1
c

(
c + �1 + k − 1

k

) zk ,

(12)
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where

��1,�−1
a =

�−1∏
i=�1

(
a + k + i

a + i

)
(13)

and

0��1 ��, 0��1 �� and 0��1 ��.

Now, we are going to deduce a recurrence relation between F [a + n, b; c; z] and F [a + n − 1, b; c; z],
therefore, put � = n, �1 = n − 1,� = �1 = � = �1 = 0 in (12), we get

F [a + n, b; c; z] =
∞∑

k=0

�n−1,n−1
a �0,−1

b

(
a + n + k − 2

k

)(
b + k − 1

k

)

�0,−1
c

(
c + k − 1

k

) zk . (14)

From (13), we have

�n−1,n−1
a =

n−1∏
i=n−1

(
a + k + i

a + i

)
= a + k + n − 1

a + n − 1

while

�0,−1
b = �0,−1

c = 1

then (14), can be rewritten as

F [a + n, b; c; z] =
∞∑

k=0

[
1 + k

a + n − 1

] (a + n + k − 2
k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk

that mean

F [a + n, b; c; z] =
∞∑

k=0

(
a + n + k − 2

k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk

+ z

a + n − 1

∞∑
k=0

k

(
a + n + k − 2

k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk−1

or

F [a + n, b; c; z] = F [a + n − 1, b; c; z] + z

a + n − 1
F ′[a + n − 1, b; c; z], (15)
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where

F ′[a, b; c; z] = d

dz
F [a, b; c; z].

As a special case let n = 2, we get

F [a + 2, b; c; z] = F [a + 1, b; c; z] + z

a + 1
F ′[a + 1, b; c; z], (16)

but at n = 1 and using (15), we obtain

F [a + 1, b; c; z] = F [a, b; c; z] + z

a
F ′[a, b; c; z] (17)

combining (16) and (17), we will have

F [a + 2, b; c; z] = F [a, b; c; z] + z

a
F ′[a, b; c; z] + z

a + 1
F ′[a + 1, b; c; z]. (18)

Moreover, differentiating (17) with respect to z, we get

F ′[a + 1, b; c; z] =
(

a + 1

a

)
F ′[a, b; c; z] + z

a
F ′′[a, b; c; z]

from which (18), can be rewritten as

F [a + 2, b; c; z] = F [a, b; c; z] + 2z

a
F ′[a, b; c; z] + z2

a(a + 1)
F ′′[a, b; c; z]

that means

F [a + 2, b; c; z] = F [a, b; c; z] + 2z

a
F ′[a, b; c; z] + z2

a(a + 1)
F ′′[a + 1, b; c; z]. (19)

Example 1. Using the above relations one can easily show that

F [a + 3, b; c; z] = F [a, b; c; z] + 3z

a
F ′[a, b; c; z] + 3z2

a(a + 1)
F ′′[a, b; c; z]

+ z3

a(a + 1)(a + 2)
F ′′′[a, b; c; z].

Now, let us have the following theorem:

Theorem 2. The hypergeometric series F [a, b; c; z] satisfies the following recurrence relation:

F [a + n, b; c; z] =
n∑

i=0

(
n

i

)
(

a + i − 1
i

) zi

i! F (i)[a, b; c; z] (20)
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or

F [a + n, b; c; z] = (a − 1)!
n∑

i=0

(
n

i

)
(a + i − 1)! ziF (i)[a, b; c; z]. (21)

Note that, Theorem 2 can be also extended for b (but not for c), that is, also we can have the following
recurrence relation:

F [a, b + n; c; z] =
n∑

i=0

(
n

i

)
(

b + i − 1
i

) zi

i! F (i)[a, b; c; z] (22)

or

F [a, b + n; c; z] = (b − 1)!
n∑

i=0

(
n

i

)
(b + i − 1)! zi F (i)[a, b; c; z]. (23)

Proof. The proof of the theorem can easily obtained by induction. �

Clearly, One can easily solve the last example by the use of Theorem 2, by replacing n by 3 in (20),
that is

F [a + 3, b; c; z] =
3∑

i=0

(
3
i

)
(

a + i − 1
i

) zi

i! F (i)[a, b; c; z]

= F [a, b; c; z] + 3

a
zF ′[a, b; c; z] + 3

a(a + 1)

z2

2! F ′′[a, b; c; z]

+ 1

a(a + 1)(a + 2)
z3F ′′′[a, b; c; z].

Our next theorem gives an important relation between F (i)[a, b; c; z] and F [a + i, b + i; c + i; z] for
i = 0, 1, 2, . . . , n

Theorem 3.

F (i)[a, b; c; z] =
(

i−1∏
m=0

(a + m)(b + m)

(c + m)

)
F [a + i, b + i; c + i; z].

Proof. In order to prove the theorem, let us first prove the following identity:

F ′[a + n − 1, b; c; z] = b(a + n − 1)

c
F [a + n, b + 1; c + 1; z]. (24)
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Recall that

F ′[a + n − 1, b; c; z] = d

dz
(F [a + n − 1, b; c; z])

= d

dz

⎡
⎢⎢⎣

∞∑
k=0

(
a + n + k − 2

k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk

⎤
⎥⎥⎦

=
∞∑

k=1

k

(
a + n + k − 2

k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk−1. (25)

Using (9), then (25), can be rewritten as

F ′(a + n − 1, b, c, z) = (a + n − 1)b

c

∞∑
k=1

(
a + n + k − 2

k − 1

)(
b + k − 1

k − 1

)
(

c + k − 1
k − 1

) zk−1 (26)

setting l = k − 1, we get

F ′[a + n − 1, b; c; z] = (a + n − 1)b

c

∞∑
l=0

(
a + n + l − 1

l

)(
b + l

l

)
(

c + l

l

) zl

which implies that

F ′[a + n − 1, b; c; z] = (a + n − 1)b

c
F [a + n, b + 1; c + 1; z].

Now, setting n = 1 in (24) and differentiate (i − 1) times with manipulation, we get

F (i)[a, b; c; z] =
(

i−1∏
m=0

(a + m)(b + m)

(c + m)

)
F [a + i, b + i; c + i; z]. � (27)

Corollary 4.

F [a + n, b; c; z] =
n∑

i=0

(
n

i

)
zi

(
i−1∏
m=0

(
b + m

c + m

))
F [a + i, b + i; c + i; z]. (28)

Proof. This result obtained directly by straight forward substitution using formula (21) of Theorem 2
and formula (27) of Theorem 3. �
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Also, we can use (24) and (15) obtained before to have the following interesting contiguous relation:

F [a + n, b; c; z] = F [a + n − 1, b; c; z] + b

c
zF [a + n, b + 1; c + 1; z]. (29)

Example 5. Applying Corollary 4, for n = 3, we get

F [a + 3, b; c; z] =
3∑

i=0

(
3
i

)
zi

(
i−1∏
m=0

(
b + m

c + m

))
F [a + i, b + i; c + i; z]

simplifying, we obtain

F [a + 3, b; c; z] = F [a, b; c; z] + 3
b

c
zF [a + 1, b + 1; c + 1; z]

+ 3
b(b + 1)

c(c + 1)
z2F [a + 2, b + 2; c + 2; z]

+ b(b + 1)(b + 2)

c(c + 1)(c + 2)
z3F [a + 3, b + 3; c + 3; z].

To make our next computations easier, let us have the following notations:

F�,�,� := F [a + �, b + �; c + �, z],
Fi,i,i := F [a + i, b + i; c + i, z] := Fi , (30)

that is

F2,3,5 = F [a + 2, b + 3; c + 5; z],
while

F [a, b; c; z] := F0, F [a + 1, b + 1; c + 1; z] := F1, F [a + 2, b + 2; c + 2; z] := F2, . . . .

Remark 6. As a special case of (27), at i = 1, we have

F ′[a, b; c; z] = ab

c
F [a + 1, b + 1; c + 1; z]

from which and using the previous parameter shift notations, we can easily have the very well-known
relation

F ′
�,�,� = (a + �)(b + �)

(c + �)
F�+1,�+1,�+1. (31)

Now, let us have the following theorem.

Theorem 7.

F�,�,0 =
�∑

i=0

�∑
j=0

(
�
i

)(
�
j

)( i−1∏
m=0

b + � + m

c + m

)⎛⎝j−1∏
n=0

a + i + n

c + i + n

⎞
⎠Fi+j
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or

F�,�,0 =
�∑

j=0

�∑
i=0

(
�
j

)(
�
i

)⎛⎝j−1∏
m=0

a + � + m

c + m

⎞
⎠(i−1∏

n=0

b + i + n

c + i + n

)
Fi+j .

Proof. From (28), we have

F�,0,0 =
�∑

i=0

(
�
i

)
zi

(
i−1∏
m=0

(
b + m

c + m

))
Fi (32)

also, using the symmetry of F [a, b; c; z] with respect to a and b (i.e. F [a, b; c; z] = F [b, a; c; z]), then
we will have

F0,�,0 =
�∑

j=0

(
�
j

)
zj

⎛
⎝j−1∏

m=0

(
a + m

c + m

)⎞⎠Fj (33)

replacing b by b + � in (32), we will have

F�,�,0 =
�∑

i=0

(
�
i

)
zi

(
i−1∏
m=0

(
b + � + m

c + m

))
F [a + i, b + � + i; c + i; z]

which by using (33), and replacing a, b and c by a + i, b + i and c + i, respectively, we will have

F�,�,0 =
�∑

i=0

(
�
i

)
zi

(
i−1∏
m=0

(
b + � + m

c + m

)) �∑
j=0

(
�
j

)
zj

⎛
⎝j−1∏

m=0

(
a + i + m

c + i + m

)⎞⎠Fi+j , (34)

that is

F�,�,0 =
�∑

i=0

�∑
j=0

(
�
i

)(
�
j

)
zi+j

(
i−1∏
m=0

(
b + � + m

c + m

))⎛⎝j−1∏
m=0

(
a + i + m

c + i + m

)⎞⎠Fi+j . (35)

Similarly, if we start with (33), by replacing a by a + � and using (32), we can easily get the similar
formula

F�,�,0 =
�∑

j=0

(
�
j

)
zj

⎛
⎝j−1∏

m=0

(
a + � + m

c + m

)⎞⎠ �∑
i=0

(
�
i

)
zi

(
i−1∏
m=0

(
b + j + m

c + j + m

))
Fi+j , (36)

that is

F�,�,0 =
�∑

j=0

�∑
i=0

(
�
j

)(
�
i

)
zi+j

⎛
⎝j−1∏

m=0

(
a + � + m

c + m

)⎞⎠( i−1∏
m=0

(
b + j + m

c + j + m

))
Fi+j . �

(37)

Note that formula (28) is a special case of both formulas (35) and (37) where � = n and � = 0.
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We can easily check that both formulas (35) and (37) are equivalent. For example, when � = 1 and
� = 1 both formulas gives

F1,1,0 := F [a + 1, b + 1; c; z] = F0 + a + b + 1

c
zF 1 + (a + 1)(b + 1)

c(c + 1)
z2F2.

Also, when � = 2 and � = 1, formulas (35) and (37) gives

F2,1,0 = F0 +
(

a + 2b + 2

c

)
zF 1 +

(
(b + 1)(2a + b + 4)

c(c + 1)

)
z2F2

+
(

(a + 2)(b + 1)(b + 2)

c(c + 1)(c + 2)

)
z3F3.

In addition, for � = 2, � = 2 both formulas (35) and (37) gives

F2,2,0 = F0 + 2

(
a + b + 2

c

)
zF 1 +

(
(a + b)(a + b + 9) + 2ab + 14

c(c + 1)

)
z2F2

+
(

2(a + 2)(b + 2)(a + b + 4)

c(c + 1)(c + 2)

)
z3F3.

Finally, and in addition to the previous recurrence relations, it is necessary to obtain a more general one.
Since

F0 := F [a, b; c; z] =
∞∑

k=0

(
a + k − 1

k

)(
b + k − 1

k

)
(

c + k − 1
k

) zk

then we will have

F�,�,� =
∞∑

k=0

(
a + � + k − 1

k

)(
b + � + k − 1

k

)
(

c + � + k − 1
k

) zk

= 1 +
∞∑

k=1

(
a + � + k − 1

k

)(
b + � + k − 1

k

)
(

c + � + k − 1
k

) zk .

Using (9), we will have

F�,�,� = 1 + (a + �)(b + �)

(c + �)(c + � + 1)

∞∑
k=1

(
c + � + k

k

) (a + � + k − 1
k − 1

)(
b + � + k − 1

k − 1

)
(

c + � + k

k − 1

) zk
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from which by differentiating both sides with respect to z, we get

F ′
�,�,� = (a + �)(b + �)

(c + �)(c + � + 1)

⎡
⎢⎢⎣(c + �)F�+1,�+1,�+2

+
∞∑

k=1

(
a + � + k − 1

k − 1

)(
b + � + k − 1

k − 1

)
(

c + � + k

k − 1

) kzk−1

⎤
⎥⎥⎦ (38)

replacing k − 1 by k in the second term of (38), we get

F ′
�,�,� = (a + �)(b + �)

(c + �)

[
F�+1,�+1,�+2 + z

c + � + 1
F ′

�+1,�+1,�+2

]
, (39)

but from (31), we have

F ′
�+1,�+1,�+2 = (a + � + 1)(b + � + 1)

(c + � + 2)
F�+2,�+2,�+3

using the above expression together with (39), we get

F�+1,�+1,�+1 = F�+1,�+1,�+2 + (a + � + 1)(b + � + 1)

(c + � + 1)(c + � + 2)
zF �+2,�+2,�+3 (40)

or

F�,�,�+1 = (c + � − 1)(c + �)

(a + � − 1)(b + � − 1)

1

z
[F�−1,�−1,�−1 − F�−1,�−1,�]. (41)

Example 8. When � = 2, � = 3 and � = 4, formula (41) gives,

F2,3,5 = (c + 3)(c + 4)

z(a + 1)(b + 2)
[F1,2,3 − F1,2,4].

3. Conclusion and main theorem

We start with two important remarks

(1) The hypergeometric series is symmetric with respect to the parameters a and b, i.e. F [a, b; c; z] =
F [b, a; c; z]. Therefore, we can rewrite any contiguous relation by changing the location of the first
and second parameters in F�,�,� and replacing (a, �; b, �) by (b, �; a, �), for example, identity (29)
can be written as

F0,�,0 = F0,�−1,0 + a

c
zF 1,�,1. (42)
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(2) The notation

F�,�,� := F [a + �, b + �; c + �; z]
enable us to obtain additional formulas from ours that means any formula gives F�,0,0 can be modified
to obtain a general one for F�,�,� by replacing b and c in the original formula by b + � and c + � in
the new one, i.e. formula (29) can be written in a general form as

F�,�,� = F�−1,�,� +
(

b + �

c + �

)
zF �,�+1,�+1 (43)

while, if we use our first note with (43), we will have

F�,�,� = F�,�−1,� +
(

a + �

c + �

)
zF �+1,�,�+1 (44)

and so on.

Now, we are ready to establish our main theorem.

Theorem 9. Let

2F1[a, b; c; z] = 1 + ab

c.1
z + +a(a + 1)b(b + 1)

c(c + 1).1.2
z2 + . . .

denotes the Gauss’ hypergeometric function with argument z and parameters a, b and c, and F�,�,� is
defined as in (30), then

F�,�,� = F�−1,�,� + b + �

c + �
zF �,�+1,�+1 (45)

=F�,�−1,� + a + �

c + �
zF �+1,�,�+1 (46)

=F�,�,�+1 + (a + �)(b + �)

(c + �)(c + � + 1)
zF �+1,�+1,�+2 (47)

= (c + � − 2)(c + � − 1)

(a + � − 1)(b + � − 1)

1

z
[F�−1,�−1,�−2 − F�−1,�−1,�−1] (48)

=
�∑

i=0

(
�
i

)
zi

(
i−1∏
m=0

b + � + m

c + � + m

)
Fi,�+i,�+i (49)

=
�∑

i=0

(
�
i

)
zi

(
i−1∏
m=0

a + � + m

c + � + m

)
F�+i,i,�+i; �, ��0. (50)

=
�∑

i=0

�∑
j=0

(
�
i

)(
�
j

)
zi+j

(
i−1∏
m=0

b + � + m

c + � + m

)⎛⎝j−1∏
m=0

a + i + m

c + � + i + m

⎞
⎠

× Fi+j,i+j,i+j+�; �, ��0. (51)
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Proof. The proof is straightforward from Theorems 2 and 3 and Corollary 4 coupled with the above
two notes. �

Example 10. To find F1,1,1 using the formulas of Theorem 9 above, then: formulas (45), (49) gives

F1,1,1 = F0,1,1 +
(

b + 1

c + 1

)
zF 1,2,2,

formulas (46), (50) gives

F1,1,1 = F1,0,1 +
(

a + 1

c + 1

)
zF 2,1,2,

formula (47) gives

F1,1,1 = F1,1,2 + (a + 1)(b + 1)

(c + 1)(c + 2)
zF 2,2,3,

formula (48) gives

F1,1,1 = c(c − 1)

ab

1

z
[F0,0,−1 − F0,0,0],

while formula (51) gives

F1,1,1 = F0,0,0 +
(

a + b + 1

c + 1

)
zF 1,1,2 + (a + 1)(b + 1)

(c + 1)(c + 2)
z2F2,2,3.

As shown in Example (10), formulas (45), (46) gives the same representations for F1,1,1 as formulas
(49), (50). The situation will be different in case of � > 1 for formulas (45), (49) and in case of � > 1 for
the formulas (46), (50).

Example 11. Formula (45) gives

F2,0,0 = F1,0,0 + b

c
zF 2,1,1

while formula (49) gives

F2,0,0 = F0,0,0 + 2b

c
zF 1,1,1 + b(b + 1)

c(c + 1)
z2F2,2,2.

If we reused formula (45) to find F2,1,1 and F1,0,0 we can easily see that the above two identities
are identical.

It is very important to notice that our formulas can generate many other contiguous relations, for
example replacing � by �+ 1 in (45), and �, � and � by �+ 1, �+ 1 and �+ 1, respectively, in (48), we get

F�+1,�,� = F�,�,� +
(

b + �

c + �

)
zF �+1,�+1,�+1 (52)
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and

F�+1,�+1,�+1 = (c + �)(c + � − 1)

(a + �)(b + �)

1

z
[F�,�,�−1 − F�,�,�] (53)

eliminating F�+1,�+1,�+1 from (52) and (53), we get

F�+1,�,� = F�,�,� + c + � − 1

a + �
[F�,�,�−1 − F�,�,�]

=
[

1 − c + � − 1

a + �

]
F�,�,� + c + � − 1

a + �
F�,�,�−1,

that is

(a + �)F�+1,�,� = [(a + �) − (c + �) + 1]F�,�,� + (c + � − 1)F�,�,�−1

or

(a + �)F�+1,�,� − (c + � − 1)F�,�,�−1 + [(c + �) − (a + �) − 1]F�,�,� = 0, (54)

which by replacing �, �, � by zeros is exactly the same as (3).
Moreover, replacing � by � + 1 in (45) and � by � + 1 in (46), we get

F�+1,�,� = F�,�,� +
(

b + �

c + �

)
zF �+1,�+1,�+1 (55)

and

F�,�+1,� = F�,�,� +
(

a + �

c + �

)
zF �+1,�+1,�+1 (56)

again, if we eliminate F�+1,�+1,�+1 from (55) and (56), we will have

[(a + �) − (b + �)]F�,�,� = (a + �)F�+1,�,� − (b + �)F�,�+1,�,

that is

(a + �)F�+1,�,� − (b + �)F�,�+1,� + [(b + �) − (a + �)]F�,�,� = 0, (57)

which again, by replacing �, �, � by zeros is exactly the same as (4).
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