\mathfrak{F}-Sets and Permutation Groups

Michael Aschbacher*
Department of Mathematics, California Institute of Technology, Pasadena, California 91109
Communicated by M. Hall, Jr.

Received May 30, 1973

Let \mathfrak{F} be an isomorphism class of groups and G a finite group. Following Fischer, an \mathfrak{F}-set of G is a collection Ω of subgroups; such that Ω is normalized by and generates G, and such that any pair of distinct members of Ω generates a subgroup in \mathfrak{F}.

If G is a doubly transitive permutation group on a set $\Omega^{\prime}, \alpha \in \Omega^{\prime}$, and Q is a normal subgroup of G_{α}, then $\Omega=Q^{G}$ is an \mathfrak{F}-set of $\left\langle Q^{G}\right\rangle$ where $\mathfrak{F}=$ $\left\{\left\langle Q, Q^{g}\right\rangle\right\}$ for any $g \in G-H$. This fact can be used to investigate the following conjecture.

Conjecture. Let G^{Ω} be a doubly transitive permutation group, $\alpha \in \Omega$, and $1 \neq Q \unlhd G_{\alpha}$, with Q semiregular on $\Omega-\alpha$. Then one of the following holds:
(1) G^{n} has a regular normal subgroup,
(2) $L=\left\langle Q^{G}\right\rangle$ is isomorphic to $L_{2}(q), S z(q), U_{3}(q)$, or $R(q)$, and acts in its natural doubly transitive representation on Ω.
(3) $L \cong L_{2}(8)$ and $G=R(3)$ has degree 28.

Hering has established this conjecture if Q has even order [13]. Further O'Nan has recently shown that if G^{S} is a doubly transitive permutation group then either (i) G^{Ω} is a known group, (ii) the socal of G_{α} is simple, or (iii) G^{Ω} satisfies the hypothesis of the conjecture.

It is the purpose of this paper to prove the following.

Theorem 1. Let Ω be an $\mathcal{\mathscr { y }}$-set of G with G^{Ω} transitive, $Q \in \Omega$, and $\mathscr{F}=\{L\}$ with L quasisimple. Then
(1) If $|Q|=q=3^{n}>3$ and $L / Z(L) \simeq L_{2}(q)$, with $Z(L)$ a 3^{\prime}-group, then $G / Z(G) \cong L_{2}(q)$ or $U_{3}(q)$.

[^0](2) If Q is a 3 -group and $L \cong L_{2}(8)$ then $G=L$.
(3) If Q is strongly closed in a Sylow 3 -subgroup of L and $L / Z(L) \cong R(q)$, then $G=L$.
$R(q)$ denotes a group of Ree type and order $q^{3}\left(q^{3}+1\right)(q-1)$.
Theorem 1 together with work of the author and M. Hall yield the following corollaries.

Theorem 2. Let G^{Ω} be a minimal counterexample to the conjecture. Then
(1) $G=\left\langle Q, Q^{g}\right\rangle$, for each $g \notin G_{a}$.
(2) $C_{G}(Q)$ is semiregular on $\Omega-\alpha$.

Actually something stronger than Theorem 2 is proved. See Section 4.
Theorem 3. Let G^{Ω} be a doubly transitive permutation group, $\alpha \in \Omega$, and assume $1 \neq Q$ is a normal cyclic subgroup of G_{α}. Then one of the following hold:
(1) G^{Ω} has a regular normal subgroup.
(2) $L-\left\langle Q^{G}\right\rangle$ is isomorphic to $L_{2}(q)$ or $U_{3}(q)$ in its natural 2-transitive representation.
(3) $L \cong L_{2}(8)$ and $G=R(3)$ has degree 28.

Theorem 1 also has application in the study of rank 3 permutation groups in which the stabilizer of a point has a nonfaithful orbit.

1. Notation

Let G be a permutation group on a set $\Omega, X \subseteq G$, and $\Delta \subseteq \Omega$. Let $F(X)$ be the set of fixcd points of X on Ω. Let $C(4)$ and C_{Δ} be the global and pointwise stabilizer of Δ in G, respectively. Let $G^{\Delta}=G(\Delta) / G_{\Delta}$ with induced permutation representation.

The group theoretic notation is standard and taken from [12].
$O_{\infty}(G)$ denotes the largest normal solvable subgroup of G.
Given positive integral n and prime p, n_{p} is the largest power of p dividing n.

2. Preliminary Results

Theorev 2.1. Let p be an odd prime, Q an elementary abelian p-subgroup of $G, \Omega=Q^{G}$, and $\mathfrak{F}=\{L\}$. Assume Ω is an \mathscr{F} set of G. Then
(1) If $|Q|=q$ and L is quasisimple with $L \mid Z(L) \cong L_{2}(q)$ and $Z(L)$ is a 3^{\prime}-group, then $G / Z(G) \cong L_{2}(q), U_{3}(q)$, or is Frobenius of order $3 \cdot 4^{n}$.
(2) If $L \mid Z(L)$ is Frobenius with compliment Q and kernel $L^{\prime} \mid Z(L)$ of odd order, then $G / Z(G)$ has the same form.
(3) If $L / Z(L)$ is Frobenius with compliment Q and elementary 2-group kernel $L^{\prime} \mid Z(L)$ and either $Z(L)=1$ or $\Omega_{1}\left(L^{\prime}\right) \leqslant Z(L)$ with $\left|L^{\prime}\right|>8$, then G has the same form.
(4) If Q is strongly closed in a Sylow 3-group of the quasisimple group L and $L / Z(L) \cong R(q)$, then $G=L$.
(5) If $|Q|=3$ and $L \cong L_{2}(8)$ then $G=L$.

Proof. This is a restatement of Theorem 1 and results in [4, 6, 7].

Theorem 2.2 O'Nan, [17]. Let G^{Ω} be a doubly transitive permutation group, $\alpha, \beta \in \Omega$, and X a normal subgroup of G_{α}. Then $G^{F\left(X_{\beta}\right)}$ is doubly transitive.

Lemma 2.3. Let Q be a subgroup of prime order p in G, R a 2 -subgroup of G and $Z=C_{R}(Q)$. Assume $R Q \leq G, R=[Q, R], Z \leq G$, and G is transitive on $(R / Z)^{*}$. Then either $\Omega_{1}(R) \leqslant Z$ or R is elementary abelian.

Proof. Let G be a minimal counter example, and $X=\Phi(Z) . R=[Q, R]$ and $Z=C_{R}(Q) \unlhd G$, so $Z \leqslant Z(R)$.

Suppose $X \neq 1$, and set $\bar{G}=G / X$. Then minimality of G implies $\Omega_{1}(\bar{R}) \leqslant Z(\bar{R})$. Therefore $\Omega_{1}(R) \leqslant Z$, contradicting the choice of G as a counter example.

So $X=1$ and Z has exponent 2. Now if a is an involution in $R-Z$ then every element in $Z a$ is an involution. Then as G is transitive on $(R / Z)^{\neq}, R$ has exponent 2 and therefore is elementary abelian.

Lemma 2.4. Let L be a quasisimple group with $L / Z(L) \cong R(q)$. Then the center of L and the outer automorphism group of L are of odd order, and $Z(L)$ is a 3^{\prime}-group.

Proof. Suppose $Z=Z(L)$ is of even order. We may assume Z has order 2. Let $S \in \operatorname{Syl}_{2}(L)$. Then S / Z is elementary of order 8 , so $S-Z$ contains an involution. As G has one class of involutions each coset of Z in S consists of involutions, so S is abelian. Now Gaschuetz's theorem yields a contradiction.

Next assume L is simple and x is a 2 -element inducing an outer automorphism on L. Let S be an x-invariant Sylow 2-group of L. We may assume
$x^{2} \in S$. Let a be an involution in $C_{S}(x)$. Then $C_{L}(a)=\langle a\rangle \times K$ with $K \simeq L_{2}(q)$. Then x centralizes an involution $b \in S \cap K$.

Let $T=\langle x, S\rangle$. If x induces an outer automorphism on K then $\langle b\rangle=T^{\prime}$. But as a and b are in the center of T and conjugate in L, a is conjugate to b in the normalizer of T, a contradiction. So x induces an inner automorphism on K and T is abelian. If $x^{2}=a$ then a is not conjugate to b in $N(T)$. So T is elementary and we find an isolated involution in $T-S$, contradicting the Z^{*}-theorem.

In [2] Alperin and Gorenstein prove the Ree groups have a trivial multiplier. The same proof shows if $L / Z(L)$ is of Ree type, then $Z(L)$ is a 3^{\prime}-group.

Lemma 2.5. Let L be quasisimple with $L \mid Z(L) \cong L_{2}(q)$ and $Z(L)$ a 3'-group. Then $L \cong L_{2}(q)$ or $S L_{2}(q)$.

Proof. See [11].
Lemma 2.6. Let $G \cong R(q), P \in \operatorname{Syl}_{p}(G)$, a an involution normalizing P and $Q \neq 1$ a strongly closed subgroup of P in G. Then
(1) If a fixes P^{g} then a induces the same automorphism on P and P^{g}.
(2) $\left|C_{P}(a)\right|=q=|Z(P)|$. a inverts $Z(P)$.
(3) Q equals $P, C_{P}(a) Z(P)$, or $Z(P)$.

Proof. All these facts can be easily derived from [19].
Lemma 2.7. Let $L=L_{2}(q), q=3^{n}>3, \quad G=\operatorname{Aut}(L), \quad Q \in \operatorname{Syl}_{3}(L)$, $H=N_{G}(Q), t$ an involution in $L-H, D=H \cap H^{t}, \Omega=Q^{G}$ and $E=C_{D}(t)$. Then
(1) If $e \in E$ is of order m then $\left\langle C_{Q}(e)^{C(e)}\right\rangle \cong L_{2}\left(3^{n / m}\right)$, and is 2-transitive on $F(e)$.
(2) For each prime divisor p of order $(q-1) / 2, D$ contains a unique subgroup X of order p with $C_{O}(X)=1$.
(3) If $n \equiv 0 \bmod 4$ and X is a cyclic 2 -subgroup of D semiregular on $Q^{=}$ then X is normalized by an involution $a \in D$ with $C_{0}(a) \neq 1$.
(4) $[D, t]$ is contained in a cyclic subgroup regular on $\Omega-\{Q, Q t\}$, inverted by t and containing $L \cap D$ of index 2 .
(5) Q is regular on $\Omega-Q$.

Proof. (1), (4), and (5) are well known. Let p be a prime divisor of $(q-1) / 2$. As Q is self centralizing and there is a unique automorphism inverting Q, in proving (2) we may take p odd. Let $P \in \operatorname{Syl}_{p}(D)$. If P is cyclic, (2) follows from (4), so we may assume P is not cyclic. Then $P=(P \cap L)(P \cap E)$ is metacyclic. By 5.4.10 in [12], P contains a normal noncyclic subgroup Y of order p^{2}. As P is metacyclic, $Y-\Omega_{1}(P)$. By (1),
$q=r^{p}$ and $\left|C_{L \cap D}(x)\right|$ divides $r-1$, where $\langle x\rangle=Y \cap E$. So $r \equiv 1 \bmod p$. Then $(q-1) /(r-1) \equiv 0 \bmod p$, so x does not centralize P. Thus all cyclic subgroups in $Y-(Y \cap L)$ are conjugate in P. This proves (2).

Let $n \equiv 0 \bmod 4$ and $X=\langle x\rangle$ a cyclic 2 -subgroup of D semiregular on Q^{*}. Let $X \leqslant S \in \operatorname{Syl}_{2}(D)$ and a an involution in S with $C_{Q}(a) \neq 1$. Then X contains the involution u inverting Q, and $\langle u, a\rangle \unlhd S$. So $[x, a]=u$ or 1 and then $a \in N(X)$.

Lemma 2.8. Let G be a simple group, $Q \leqslant G$, and assume the pair (G, Q) satisfies the hypothesis of Theorem 1, part (1). Then
(1) $H=N_{G}(Q)$ does not contain a proper 2-generated core of G.
(2) If G has semidihedral Sylow 2-subgroups and $|\Omega|$ is even then $G \cong U_{3}(q)$.

Proof. Let $L=\left\langle Q, Q^{g}\right\rangle$. Then $L \cong L_{2}(q)$ or $S L_{2}(q), q=3^{n}>2$. Assume H contains a proper 2-generated core of G. Then by [5], $O(H)=1$, a contradiction.

Next assume G has semidihedral Sylow 2-subgroups. By [1] $G=M_{11}$, $L_{3}(r)$ or $U_{3}(r), r$ odd. Notice $U_{3}(r) \leqslant L_{3}\left(r^{2}\right)$. Now $L_{3}(r)$ contains a subgroup isomorphic to L only if r is a power of 3 . (e.g., [10]). Let $Q \leqslant P \in \operatorname{Syl}_{p}(G)$. As Q is a strongly closed abelian subgroup of P and $Z(P)^{\#}$ is fused in G, we get $Z(P) \leqslant Q$. If $G=U_{3}(r)$ then $Z(P)$ is the unique strongly closed abelian subgroup of P, so $Q=Z(P)$ and $r=q$. If $G=L_{3}(r)$ then $|Z(P)|=r$, and choosing K to be the stabilizer of a point in the action of G on the projective plane, with $Z(P) \leqslant O_{3}(K)$, we get $\left\langle Z(P)^{K}\right\rangle=O_{3}(K) \leqslant Q$. Then $Q=O_{3}(K)$ has order r^{2}, and G contains no subgroup isomorphic to L. Finally if $G=M_{11}$ then $Q=P$ and $\left|P^{G}\right|$ is odd.

Lemma 2.9. Let q be a prime power, $q \equiv-1 \bmod 4$ with $\left(q^{2}+1\right) / 2 a$ power of a prime. Then q is prime.

Proof. Let $r^{e}=\left(q^{2}+1\right) / 2, q=p^{a b}$. As $q \equiv-1 \bmod 4, a$ and b are odd and $2 r^{e}=\left(p^{2 a}+1\right) A(a, b)$, with $\left(p^{2 a}+1, A(a, b)\right)$ dividing b. Thus if $a b \neq 1$ we must have $2 r=p^{2}+1$ and $A(1, r)=r$, which is impossible.

3. Semiregular Groups

In this section we operate under the following hypothesis.
Hypothesis 3.1. $Q \neq 1$ is a subgroup of odd order of the group $G, \Omega=Q^{G}$, and $H=N_{G}(Q)$. Represent G by conjugation on Ω and assume $H \neq G$ and Q acts semiregularly on $\Omega-Q$.

Lemma 3.2. Let $K \leqslant G, p$ prime, and $P \in \operatorname{Syl}_{p}(Q)$. Then
(1) P is strongly closed in S with respect to G for any $P \leqslant S \in \operatorname{Syl}_{p}(G)$.
(2) K acts transitively on the set $\Delta=\left\{Q^{g}:\left|K \cap Q^{g}\right|_{p} \neq 1\right\}$.
(3) If $1 \neq K \cap Q$ and $K * H$ then the pair $(K, K \cap Q)$ has Hypothesis 3.1.
(4) If $K \unlhd G$ either $G=H K$ or $K \cap Q=1$ and the pair (G / K, QK/K) has Hypothesis 3.1.

Proof. (1) P fixes the unique point $Q \in \Omega$. Therefore $S \leqslant H$. Now if $x \in P^{*}$ and $x^{g} \in S$, then x^{a} fixes Q and Q^{g}, so as Q is semiregular on $\Omega-Q$, $Q=Q^{g}$. Then $x^{g} \in S \cap Q^{g}=S \cap Q=P$.
(2) Assume $Q \in \Delta$ and let $P \in \operatorname{Syl}_{p}(K \cap Q)$. P fixes the unique point $Q \in \Omega$, so letting $P \leqslant S \in \operatorname{Syl}_{p}(K), S \leqslant H$. Similarly if $Q^{g} \in \Delta$, then $K \cap H^{g}$ contains $S_{1} \in \operatorname{Syl}_{p}(K)$. Now $S_{1}=S^{k}$, for some $k \in K$, so $Q^{g}=F\left(S_{1}\right)=$ $F\left(S^{k}\right)=F(S)^{k}=Q^{k}$.
(3) Trivial.
(4) Assume $G \neq H K$. It suffices to show that if x is a p-element in Q^{*} and $Q^{g x} \leqslant Q^{g} K$, then $Q^{g} K=Q K$. But if $Q^{g x} \leqslant Q^{g} K$ then x normalizes $Q^{g} K$. Let $P \in \operatorname{Syl}_{p}\left(Q^{g}\right)$. We may assume $\langle x, P\rangle$ is a p-group. Then by (1), $x \in P \leqslant$ Q^{g}, so $Q^{g}=Q$ and $Q K=Q^{g} K$.

Lemma 3.3. Let p be a prime divisor of the order of Q, K a normal subgroup of G contained in H, and assume $G=\langle\Omega\rangle$. Then
(1) $K \leqslant Z(G)$.
(2) $O_{p}(G) \leqslant Z(G)$.
(3) If $m(Q)>1$ then $O_{\infty}(G)=Z(G)$.

Proof. By 3.2.4, $[K, Q] \leqslant K \cap Q=1$, so as $G=\langle\Omega\rangle, K \leqslant Z(G)$. Let $P \in \operatorname{Syl}_{p}(Q)$. Then $P O_{p}(G)$ is a p-group, so by 3.2.1, $O_{p}(G) \leqslant N(P) \leqslant H$. Similarly if $m(P)>1$ and $X=O_{x^{\prime}}(G)$, then $X=\left\langle C_{X}(y): y \in P^{\neq}\right\rangle \leqslant H$. Now (1) implies (2) and (3).

Lemma 3.4. Assume $G=\langle\Omega\rangle$, some Sylow q-subgroup of Q is not cyclic, and let $K \unlhd G$ with $K \cap Q=1$. Then $K \leqslant Z(G)$.

Proof. We may assume Q is an elementary abelian q-group and K is a minimal normal subgroup of G. Then K is the direct product of isomorphic simple groups and by 3.3 we may assume K is not solvable. As $K \not Z(G)$ and $G=\langle\Omega\rangle,[K, Q] \neq 1$, so we may assume $G=K Q=\left\langle Q, Q^{g}\right\rangle$ for any $g \in G-H$. As Q is abelian and $K \cap Q=1, H=C_{G}(Q)$. Also if $g \in G-H$
then $H \cap H^{g} \leqslant C\left(\left\langle Q, Q^{g}\right\rangle\right)=Z(G)=1$. Finally by 3.2.1, H is selfnormalizing. It follows that G is a Frobenius group with compliment Q. But this is impossible as Q is not cyclic.

Lemma 3.5. Assume $G=\langle\Omega\rangle$ and some Sylow group of Q is not cyclic. Then $G=Q G^{\prime}, G^{\prime}$ is quasisimple, and $Q \cap G^{\prime} \neq 1$.

Proof. We may assume $Z(G)=1$. Let K be a minimal normal subgroup of G. By 3.2 .4 and $3.4, Q \cap K \neq 1$ and then $G=H K$. As $G=\langle\Omega\rangle$, $G=K Q$. Let P be a noncyclic subgroup of order p^{2} in Q. We may assume $G=K P$.

Let L be a component of K. Then $K=\left\langle L^{P}\right\rangle$. We may assume $K \neq L$, so $P \leqslant N(L)$. If $N_{P}(L)=1$ then for each prime r and each $R \in \operatorname{Syl}_{r}(L)$, $R_{1}=\left\langle R^{P}\right\rangle \in \operatorname{Syl}_{r}(K)$. But as P is not cyclic, $R_{1}=\left\langle C_{R_{1}}(x): x \in P^{*}\right\rangle \leqslant H$, so $G=P K \leqslant H$, a contradiction.

Let $x \in P-N(L)$. It follows that $K=L L^{x} \cdots L^{x^{p-1}}$, and $C_{K}(x)=$ $J-\left\{l l^{x} \cdots l^{x^{p-1}}: l \in L\right\}$. Then $J \leqslant I I$. By 3.4 there exists a prime r such that $1 \neq R \in \operatorname{Syl}_{r}(Q \cap K)$. Let $R \leqslant R_{1} \in \operatorname{Syl}_{r}(K)$. Then $R_{1} \leqslant H$ by 3.2.1, so $K=\left\langle R_{1}, J\right\rangle \leqslant H$, a contradiction.

4. Theorems 2, 3, and 4

We now prove something slightly stronger than Theorem 2.
Theorem 4. Let \mathscr{C} be a class of groups satisfying the hypothesis of the conjecture and possessing the following closure property:
$\left(^{*}\right)$ If $\Delta \subseteq \Omega$ with G^{Δ} doubly transitive and $Q \leqslant G(\Delta)$, then $G^{\Delta} \in \mathscr{C}$. Let G be of minimal order subject to belonging to \mathscr{C} and not satisfying the conjecture. Then
(1) $G=\left\langle Q, Q^{g}\right\rangle$, for each $g \notin G_{\alpha}$.
(2) $C_{G}(Q)$ is semiregular on $\Omega-\alpha$.

Proof. Fix $g \notin G_{\alpha}=H$ and set $L=\left\langle Q, Q^{g}\right\rangle$. We may take $\Omega=Q^{G}$, $\alpha=Q$. [13] implies Q is of odd order. We may assume Q is a minimal normal subgroup of H, so Q is an elementary abelian p-group for some odd prime p.

Now double transitivity of G^{Ω} implies Ω is an \mathfrak{F}-set of $\langle\Omega\rangle$ where $\mathscr{F}=\{L\}$. Let $\Delta=\Omega \cap L$. If (β, γ) is a pair of distinct points in Δ, then there exists $x \in G$ with $\left(\beta^{x}, \gamma^{x}\right)=\left(Q, Q^{g}\right)$. Then $L^{x}=\langle\beta, \gamma\rangle^{x}=\left\langle\beta^{x}, \gamma^{x}\right\rangle=L$. So $N_{G}(L)=G(\Delta)$ is doubly transitive on Δ. Then by hypothesis $G^{\Delta} \in \mathscr{C}$.

Assume $L \neq G$. Then minimality of G implies G^{Δ} satisfies the conjecture. So $L^{\Delta} \cong L_{2}(q), R(q), L_{2}(8)$, or L^{4} is a Frobenius group whose kernel R^{4} is an
elementary abelian r-group for some prime r. Now $L_{\Delta} \leqslant H$, so by 3.3, $L_{\Delta}=Z(L)$, and L is the central extension of L^{Δ} by $Z(L)$.

Suppose $L^{4} \cong L_{2}(q)$ and a Sylow 3-group Z of $Z(L)$ is nontrivial. By [11] $q=9$. Then $Q Z \in \operatorname{Syl}_{3}(L)$ and by 3.2.4, $Q \cap Z=1$. Now Gaschuetz's theorem implies a contradiction. If R^{4} is a regular normal subgroup for L^{4} then by 2.3, either $R Q \cong S L_{2}$ or $R \underset{\sim}{Q}$ satisfies the hyothesis of 2.1.2 or 2.1.3. But now 2.1 implies G satisfies the conjecture.

So $G=L$. Next let $X=C_{G}(Q)$, and assume X is not semiregular on $\Omega-Q$. Let $D=H \cap H^{g}$ and $Y=X \cap D$. Then $Y \neq 1$ and by 2.2, $G^{F(Y)}$ is 2 -transitive. But then $L \leqslant G(F(Y))<G$, a contradiction. This establishes Theorem 4.

Next the proof of Theorem 3. Let G be a minimal counter example. We may assume Q has prime order. As the class \mathscr{C} of doubly transitive groups with Q cyclic has the closure property $\left({ }^{*}\right)$ of Theorem 4 , that theorem implies $C_{G}(Q)$ is semiregular on $\Omega-Q$. Recall $D=H \cap H^{g}$. Then $C_{D}(Q)=1$, so D is isomorphic to a subgroup of the automorphism group of Q. As Q is of prime order, D is cyclic. But now a theorem of Kantor, O'Nan, and Seitz [15], yields a contradiction.

5. Parts (2) and (3) of Theorem 1

In this section assume the hypothesis of part (2) or part (3) of Theorem 1. Let $H=N_{G}(Q)$ and $I=C_{G}(Q)$. We may take $Q \in \operatorname{Syl}_{3}(L)$.

Suppose a is an involution in I. If a fixes but does not centralize $Q^{g} \in \Omega$ then a acts on $L=\left\langle Q, Q^{g}\right\rangle$. By $2.4 a$ induces an inner automorphism on L, so by $2.6, a$ induces the same automorphism on Q and Q^{g}, a contradiction. So $F(a)=C_{\Omega}(a)$. Let $\left(P, P^{a}\right)$ be a cycle of a on Ω and set $L=\left\langle P, P^{a}\right\rangle$. Then again a induces an inner automorphism on L, so by $2.6, a$ fixes but does not centralize some member of $L \cap \Omega$, a contradiction. So I has odd order.
Next let a be an involution in $G,\left(Q, Q^{a}\right)$ a cycle in a, and $L=\left\langle Q, Q^{a}\right\rangle$. By $2.4 a$ induces an inner automorphism on L, so as I has odd order, $a \in L$. Suppose $x^{2}=a$. a fixes two points of $L \cap \Omega$, so there exist points P and R of Ω, which we may choose in L, either fixed or permuted in a cycle of length 2. So x normalizes L, and by 2.4 induces an inner automorphism on L. But a Sylow 2 -subgroup of L is of exponent 2.

So a Sylow 2 -subgroup of G is of exponent 2.
Now the pair (G, Q) has hypothesis 3.1 , so by 3.5 , cither G^{\prime} is quasisimple or $L \cong L_{2}(8)$. In the latter case one easily shows G to be quasisimple. (e.g., 3.1.5 in [4]). As G^{\prime} has abelian Sylow 2-subgroups and contains $L, G^{\prime} \cong L_{2}\left(2^{n}\right)$ or $R\left(q_{0}\right)$ [18].

Suppose $G^{\prime} \cong R\left(q_{0}\right)$ and let $Q \leqslant P \in \operatorname{Syl}_{3}(G)$. As Q is strongly closed in $P, 2.6$ implies that $Z(P) \leqslant Z(Q)$ is of order q_{0} and a inverts $Z(P)$. As $R(3)^{\prime}=L_{\mathrm{e}}(8), q_{0}>3$, and then $Z(P)$ is not cyclic. So $Z(Q)$ is not cyclic and then $L \nVdash L_{2}(8)$. So $C_{\mathrm{Q}}(a) \neq 1$ and then as Q is strongly closed in P, 2.6 implies that $q=\left|C_{Q}(a)\right|=q_{0}$. So $L=G$.

So $G^{\prime} \cong L_{2}\left(2^{n}\right)$. Then $\left\langle a^{G} \cap C(a)\right\rangle=O_{2}(C(a))$, so $L \cong L_{2}(8)$ and G is simple. If n is even then Q normalizes a Sylow 2 -group T of G and $\left\langle Q, Q^{t}\right\rangle$ is Frobenius for $t \in T^{*}$. So n is odd and $N_{G}(Q)$ is dihedral of order $2\left(2^{n}+1\right)$. Then $v=|\Omega|=\left(2^{n}-1\right) 2^{n-1}$. L is self normalizing in G, so $b=\left|L^{G}\right|=$ $\left(2^{2 n}-1\right) 2^{n} / 504$. Counting the number of pairs of distinct elements in Ω in two ways we get $v(v-1)=28.27 .6$. Then $\left(2^{n}-1\right) 2^{n-1}-1=v-1=$ $3\left(2^{n}+1\right)$, so $-1 \equiv(v-1)=3\left(2^{n}+1\right) \equiv 3 \bmod 2^{n-1}$. Thus $2^{n-1}=4$ and $G=L$.

6. Thforem 1, Part (1)

In this section assume G is a minimal counter example to Theorem 1, part (1). Let $H=N_{G}(Q), I=C(Q), t$ a 2-element with cycle (Q, Q^{\prime}) in $L=\left\langle Q, Q^{t}\right\rangle, K=C(L), D=H \cap H^{t}, D^{*}=D\langle t\rangle$, and Γ the union of conjugacy classes with a representative in Q^{*}.
Notice that 2.5 implies $L \cong L_{2}(q)$ or $S L_{2}(q)$.
The proof involves a long series of reductions.
Lemma 6.1. Let $x \in G$ fix $P, Q \in \Omega$. Then $\left|C_{Q}(z)\right|=\mid C_{P}(x)$.
Proof. x acts on $\langle P, Q\rangle \cong S L_{2}(q)$ or $L_{2}(q)$. Now apply 2.7.
Lemma 6.2. (1) The pair (G, Q) satisfies hypothesis 3.1.
(2) G is simple.
(3) If $X \leqslant H$ and $G_{0}=\left\langle C_{O}(X)^{c(X)}\right\rangle \neq 1$ then letting $\Omega_{0}=C_{O}(X)^{G_{0}}$, $q_{0}=\left|C_{Q}(X)\right|, L_{0} \leqslant L$ isomorphic to $L_{2}\left(q_{0}\right)$ or $S L_{2}\left(q_{0}\right)$, and $\mathscr{F}_{0}=\left\{L_{0}\right\}$, then Ω_{0} is an $\tilde{\mathscr{F}}_{0}$-set for G_{0}.

Proof. (1) is easy. Minimality of G implies $Z(G)=1$. So by $3.5, G=O G^{\prime}$ with G^{\prime} simple. As L is perfect, $G=G^{\prime}$. This yields (2). (3) follows from 6.1 and 2.7.

Lemma 6.3. Let $X \leqslant H$ with $C_{O}(X)$ of order $q_{0} \neq 1$. Then one of the following holds:
(1) $Q=F(X)$.
(2) $|F(X)|=q_{0}+1$ or $q_{0}{ }^{3}+1,\left\langle C_{\Gamma}(X)\right\rangle \cong L_{2}\left(q_{0}\right), S L_{2}\left(q_{0}\right)$ or $U_{2}\left(q_{0}\right)$, and $C(X)^{F(X)}$ is 2 -transitive.
(3) $|F(X)|=4^{i}, q_{0}=3$, and $\left\langle C_{\Gamma}(X)\right\rangle$, modulo its center, is Frobenius of order 3.4^{i}.

Proof. By 6.1, if $Q^{g} \in F(X)$ then X acts on $\left\langle Q, Q^{9}\right\rangle \cong L_{2}(q)$ or $S L_{2}(q)$ and by 2.7, $C_{Q g}(X) \in C_{Q}(X)^{C_{L}(X)}$. So if $q_{0}>3$ then 6.3 follows from 6.2.3 and minimality of G. If $q_{0}=3,6.2 .3$ and [7] imply 6.3 .

Lemma 6.4. (1) G^{2} has even degree.
(2) If a is an involution then $|\Omega| \equiv|F(a)| \bmod 4$.

Proof. Assume $|\Omega|$ is odd. If for each choice of $g \in G-H, m(D) \leqslant 1$, then 2.8 yields a contradiction. So assume D contains a 4 -group U. Then L^{\prime} contains an involution u with $C_{Q}(u) \neq 1$. So by $6.3,|F(u)|$ is even, a contradiction.
Let a be an involution in G. By $6.2, G$ has no subgroup of index 2 , so a induces an even permutation on Ω. This yields (2).

Lemma 6.5. Let $p \neq 3$ be prime and $1 \neq X \leqslant P \in \operatorname{Syl}_{p}(K)$. Then
(1) $P \in \operatorname{Syl}_{p}(I)$.
(2) Either $L=\left\langle C_{\Gamma}(X)\right\rangle$ or $K \cap L$ has even order and $X \neq K \cap L$.
(3) $H=I N_{H I}(L)=I D$.

Proof. Let $L_{0}=\left\langle C_{\Gamma}(X)\right\rangle$. By $6.3, L_{0}=L$ or $L_{0} \cong U_{3}^{\prime}(q)$. In the latter case $L \cong S L_{2}(q)$ contains a central involution u. Then $u \in L \leqslant\left\langle C_{\Gamma}(u)\right\rangle=L_{1}$, so $L_{1} \neq U_{3}(q)$. So $L=L_{1}$ and $X \neq K \cap L$. In any event $|F(P)|=q^{i}+1 \neq$ $1 \bmod p$, so a Sylow p-subgroup of $N_{l}(P)$ fixes 2 points of $F(P)$. Then by 6.3, P is Sylow in $N_{t}(P)$, yielding (1). Choosing $p=2$ if necessary we may assume $L-\left\langle C_{\Gamma}(P)\right\rangle$. By a Frattini argument, $I I=I N_{H}(P)=I N_{K I}(L)=$ $I Q D=I D$.

Lemma 6.6. Let $x \in G$ fixes 2 or more points and assume for each $\alpha, \beta \in F(x)$ that $x \in(L \cap D) K,|x K| K \mid>2$, and x is not inverted in D. Then
(1) There exists no $y \in H t$ with $[x, y] \in I^{t}$, and
(2) $|F(x)|=2$.

Proof. Assumc $y \in H t$ with $[x, y] \in I^{t}$. Then y centralizes $x \bmod I^{t}$. As $x \in(L \cap D) K, t$ inverts $x \bmod K$. So $y t$ inverts $x \bmod I$.
Suppose $H=I N_{H}(L)$. Then by hypothesis x is not inverted in H / I, a contradiction. So by $6.5, K$ is a 3 -group. We may assume x is a p-element
where p divides $q-1$, so K is a p^{\prime}-group. Then as $x \in(L \cap D) K, x \in L \cap D$, and then $\langle x\rangle \unlhd D$.

If $Q^{y^{-1}}=Q^{t}$ then $y \in D t$, so as $\langle x\rangle \unlhd D$ and t inverts x but x is not inverted in $D,[y, x] \neq 1$. This is impossible as $[x, y] \in I^{t}$. Now $\left[x, y^{-1}\right] \in I$, so as above $x \in(L \cap D)^{y^{-1}}$ and there exists a 2-element s with cycle $\left(Q, Q^{y^{-1}}\right.$) inverting x. Then $t s \in C(x)$ and $\left(Q^{t}\right)^{t s}=Q^{y^{-1}}$, so again there exists r with cycle $\left(Q^{y}, Q^{y^{-1}}\right)$ inverting x. Then trs $\in H$ inverts x, so there exists a 2-element $h \in H$ inverting x.

If h fixes a second point $Q^{u} \in F(x)$ then x is inverted in $H \cap H^{u}$ contrary to hypothesis. So $F(x) \cap F(h)=Q$ and thus $|F(x)|$ is odd.

So t fixes a point $Q_{1} \in F(x)$. If $q \equiv 1 \bmod 4$ then t inverts $Q_{2} \in L \cap \Omega$, so by 6.1, t inverts Q_{1}. Then $x^{2}=[t, x] \in C\left(Q_{1}\right)$, a contradiction. So $q \equiv-1$ $\bmod 4$ and t does not invert Q_{1}. But by $6.4,|\Omega|$ is even, so t fixes a point $Q_{3} \neq Q_{1}$ of Ω. Then t acts on $\left\langle Q_{1}, Q_{3}\right\rangle$, so as $q \equiv-1 \bmod 4, t$ inverts Q_{1}, a contradiction. This yields (1).

Next assume $Q^{s} \in F(x)-\left\{Q, Q^{t}\right\}$. Let P be an x-invariant Sylow p subgroup of I. (Recall x is a p-element.) If $1 \neq P \leqslant K$ then by 6.3, $F\left(\langle x\rangle C_{P}(x)\right)=\left\{Q, Q^{t}\right\}$, so $C_{P}(x)$ moves Q^{s}, contrary to (1). So by $6.5, K$ is a p^{\prime}-group and then $x \in L \cap D$. So t inverts x. Similarly we may pick s with cycle $\left(Q, Q^{s}\right)$ to invert x. Then $t s \in C(x)$ moves Q, contradicting (1).

Lemma 6.7. Let $x \in L \cap D$ and set $q=3^{n}$ where $n=2^{\circ} m, m$ odd. Assume either $|x|$ is an odd prime divisor of $3^{m}-1$ or $e>0$ and $|x|=|L \cap D|_{2}$. Then $|F(x)|=2$ and if $e=1$ then I has even order.

Proof. Unless $e=1$ and $|x|=|L \cap D|_{2}, x$ is not inverted in $\operatorname{Aut}_{H}(L)$. Further by 6.1 and 2.7, the same holds for each pair $\alpha, \beta \in F(x)$.

If x has odd order then by 6.1 and 2.7, $x \in(L \cap D) K$ for each $\alpha, \beta \in F^{\prime}(x)$. Assume $e>1$ and $|x|=|L \cap D|_{2}$. Choose t so that D contains a Sylow 2-subgroup S of $H=G_{\alpha}$. If $\gamma \in F(x)-\alpha$ and $C(\langle\alpha, \gamma\rangle)$ has even order then x centralizes an involution $a \in C(\langle\alpha, \gamma\rangle)$. By 6.3, $|F(x) \cap F(a)|=2$. So assume $C(\langle\alpha, \gamma\rangle)$ has odd order. If a is an involution in $G_{\alpha \gamma}$ with $C_{Q}(a) \neq 1$ then by 2.7, a normalizes $X=\langle x\rangle$ and again by 6.3, $|F(x) \cap F(a)|=2$. So $N_{H}(X)$ is transitive on the set Δ of points $\gamma \in F(x)-\alpha$ with $m\left(G_{\alpha \gamma}\right)>1$. By the choice of β, if $\Delta \neq \varnothing$, then $\beta \in \Delta$. Let $\theta=F(x)-\Delta-\alpha$. Then $x \in\langle\alpha, \gamma\rangle_{\alpha \gamma}$ for each $\gamma \in \theta$, so there exists a 2-element s with cycle (α, γ) in $\langle\alpha, \gamma\rangle$ inverting x. Thus $N(X)$ is transitive on $\theta \cup \alpha$. Suppose $N(X)^{F(x)}$ is not transitive. Then $\theta \cup \alpha$ and Δ are the orbits of $N(X)^{F(x)}$. But $\beta \in \Delta$ and as $x \in L \cap D, t$ inverts x and has cycle (α, β), a contradiction. So $N(X)^{F(x)}$ is transitive. Thus $X^{G} \cap H=X^{H}$.

Let $\bar{H}=H / I . \bar{S}=\bar{Y} \bar{W}$ with $\bar{X} \leqslant \bar{Y}$ inducing a cyclic group of automorphism in $P G L_{2}(q)$ on \bar{L} and \bar{W} inducing field automorphisms on \bar{L}. If \bar{a}
is an involution in \bar{W} then $C_{o}(a) \neq 1$ so $\bar{a}^{\bar{F}} \cap \bar{Y}$ is empty. Then transfer implies \bar{W} has a normal compliment in \bar{H}. Thus $X^{G} \cap S=X^{H} \cap S \subseteq Y I$. In particular it follows that for all $\alpha, \beta \in F(x), x \in(L \cap D) K$. Now by 6.6 , $|F(x)|=2$.
So assume $e-1$. If $L \cong S L_{2}(q), 6.3$ yields the conclusion, so $L \cong L_{0}(q)$. Assume $|F(x)|>2$ and let $u=x^{2}$. Suppose $a \neq u$ is an involution centralizing x. If a fixes 2 points $Q_{i} \in F(x)$ then as a acts on $\left\langle Q_{1}, Q_{2}\right\rangle=L_{1}$, either $a=u \bmod C\left(L_{1}\right)$ or $C_{Q_{1}}(a) \neq 1$. But if $Q_{1} \neq C_{Q_{1}}(a) \neq 1$ then $[a, x] \neq 1$, so $a \in K$. Thus $\langle u, a\rangle \cap K \neq 1$ and by $6.3,|F(\langle x, a\rangle)|=2$. Then a inverts or centralizes Q_{1} and has a cycle $\left(Q_{3}, Q_{3}{ }^{a}\right)$ in $F(x)$. As a centralizes x and acts on $L_{3}=\left\langle Q, Q^{u}\right\rangle, a$ induces a field automorphism on L_{3}. So $Q_{3} \neq C_{Q_{3}}(a) \neq 1$ for some $Q_{3} \in L_{3} \cap \Omega$, contradicting 6.1.

So letting $x \in S \in \operatorname{Syl}_{2}(H)$, if $|F(x)|>2$ then $\langle\mu\rangle=\Omega_{1}\left(C_{S}(X)\right.$), and in particular I has odd order.

So we may assume I has odd order. $|\Omega|$ is even, so S fixes a second point Q_{1} and then acts on $L_{1}=\left\langle Q, Q_{1}\right\rangle$. So S is quaternion, dihedral, or semidihedral. Let $s \in L_{1}$ have cycle $\left(Q, Q_{1}\right)$ with $S^{*}=\langle S, s\rangle$ a 2 -group.
Assume S is quaternion. Then L_{1} admits no field automorphism and arguing as above $\langle u\rangle=\Omega_{1}\left(C_{T}(x)\right)$ where $x \in T \in \operatorname{Syl}_{2}(C)$. Now by 5.4 .8 in [12], T is semidihedral. So 2.8 yields a contradiction.
So S contains an involution a inducing a field automorphism on L_{1}. Then letting $q=q_{0}^{2}$, by $6.3, L_{0}=\left\langle C_{F}(a)\right\rangle \cong L_{2}\left(q_{0}\right)$ or $q_{0}=3$ and L_{0} is Frobenius of order 3.4i. Further u induces an outer automorphism on L_{0}. In any event $C(a)^{F(a)}$ is transitive, so $a \cap H=a^{H}$.
Suppose S is dihedral and let $u \in R \in \operatorname{Syl}_{2}\left(\langle u\rangle L_{0}\right)$. If $L_{0} \cong L_{2}\left(q_{0}\right)$, then $R \leqslant L_{1}\langle a\rangle$ and $R=\langle a\rangle \times\left(R \cap L_{1}\right)$. Also all involutions in $R \cap L_{1}$ are in u^{G}, and as $a^{G} \cap H=a^{H}, a$ is not fused to $a u$ or u. Now if $R \notin \operatorname{Syl}_{2}(G)$ then there exists a 2 -element in $N(R)$ moving a. But $a^{G} \cap Z(R)=\{a\}$. Thus $R \in \operatorname{Syl}_{2}(G)$. But now considering the transfer of G to $R /\left(R \cap L_{1}\right), G$ has a subgroup of index 2, a contradiction. Similarly if L_{0} is Frobenius let R_{1} be the kernel of $L_{0}, R_{1}=\left\langle u^{C} \cap R_{1}\right\rangle$ and in S^{*} the product of any two commuting conjugates of u is in u^{G}. Also each $r \in R_{1}{ }^{*}$ acts fixed point free on $F(a)$, so $a r$ is not fused to a. Now we argue as above to the same contradiction.
So S is semidihedral. Then S^{*} is the holomorph of Z_{8}. Let Y be the cyclic subgroup of order 8 in S. Y is weakly closed in S and not inverted in D, so we may argue as in 6.6 to show $|F(Y)|=2$. Now $X=\langle x\rangle=S^{* \prime}$ is characteristic in S^{*}. Set $\bar{S}^{*}=S^{*} / X$. Let a be an involution in S with $C_{O}(a) \neq 1$. Then Xya contains all clements in $S^{*} \ldots X$ of order 4, so $\langle X, y a\rangle \leq N\left(S^{*}\right)$. Also all elements of order 8 in $S^{*}-X$ are in $X y$ and Xyat. So if $Y \nsubseteq N\left(S^{*}\right)$ then $\bar{y} \rightarrow \bar{y} \bar{a} \bar{t}$. So $\bar{a}=\bar{y}(\bar{y} \bar{a}) \rightarrow \bar{y} \bar{a} \bar{t}(\bar{y} \bar{a})=\bar{t}$. But $X a \subseteq a^{C}$ while $X t \subseteq t^{G} \neq a^{G}$. So $Y \leq N\left(S^{*}\right)$. Thus $S^{*} \in \operatorname{Syl}_{2}(G)$, so
$|\Omega| \equiv 2 \bmod 4$. But $\left|C_{Q}(a)\right|=3^{m}$, so $|F(a)| \equiv 0 \bmod 4$ by 6.3. This contradicts 6.4.

Lemima 6.8. G^{Ω} is doubly transitive.
Proof. By 6.7 there exists a prime p such that for each $\alpha, \beta \in \Omega$ there exists a p-subgroup X with $F(X)=\{\alpha, \beta\}$. It follows that $G_{\alpha \beta}$ contains a Sylow p-subgroup P of G_{α} and $F(P)=\{\alpha, \beta\}$. Now Sylow's theorem implies G_{a} is transitive on $\Omega-\alpha$.

Lemma 6.9. Let $a \in D$ with $|F(a)|>2$ and $|a K| K \mid=p$ prime. Then
(1) Either $C(a)^{F(a)}$ is double transitive or $\left\langle C_{\Gamma}(a)\right\rangle$ is a Frobenius group of order $3 \cdot 4^{i}$, modulo its center.
(2) If a is an involution in $Z^{*}(D)$ then $a \in Z^{*}(H)$.

Proof. (1) By 6.3 we may assume $C_{Q}(a)=1$. If $P \in F(a)$ then by 6.1 and 2.7, a centralizes $\langle Q, P\rangle_{P, Q}$. Now 6.7 and the argument in 6.8 implies $C(a)^{F(a)}$ is 2-transitive.
(2) Let $b \in C_{H}(a) \cap a^{G}$. As $|\Omega|$ is even, b fixes 2 points of $F(a)$. As $a \in Z^{*}(D)$ the last case of (1) cannot occur, so $C(a)^{F(a)}$ is 2-transitive. Thus we may take $b \in a^{G} \cap C_{D}(a)=a^{D} \cap C(a)=\{a\}$. Then the Z^{*}-theorem yields the result.

Lemma 6.10. Let π be the set of primes dividing $|\Omega|-1$, and assume $H=O(I) D$. Then $H=O_{\pi}(I) D, O_{\pi}(I)$ is not nilpotent, and $O_{3}(K)=$ $O_{\pi}(I) \cap D \neq 1$.

Proof. Set $P=O_{\pi}(I)$ and let $R / P \leqslant O(I) / P$ be a minimal normal subgroup of H / P. Then R / P is a r-subgroup for some prime $r \notin \pi$, so $R=R_{1} P, R_{1} \in \operatorname{Syl}_{r}(R)$. By a Frattini argument, $H=P N_{H}\left(R_{1}\right)=P D$ by 6.3. By [14], $P \cap D \neq 1$, while by [16], P is not nilpotent. By $6.5, P \cap D=$ $O_{3}(K)$.

Lemma 6.11. If $q=1 \bmod 4$ then I has even order.
Proof. Assume $q \equiv 1 \bmod 4$ and I has odd order. Let $S \in \operatorname{Syl}_{2}(D)$ and $S^{*}=\langle S, t\rangle$. If S is cyclic, 6.6 implies $|F(S)|=2$, so as S is characteristic in $S^{*}, S^{*} \in \operatorname{Syl}_{2}(G)$. Then $|\Omega| \equiv 2 \bmod 4$ and [3] yields a contradiction. If $q=3^{2 m}, m$ odd, then I has even order by 6.7. Finally, if $q=3^{4 m}$ then $S \cap L$ is a characteristic subgroup of S^{*} with $|F(S \cap L)|-2$ by 6.7. Thus $S^{*} \in \operatorname{Syl}_{2}(G)$ and $|\Omega| \equiv 2 \bmod 4 . S$ is not cyclic so there exists an involution $a \in S$ with $C_{Q}(a) \neq 1$. Every involution in $S^{*} \cap L=T$ is fused in L and as $C_{Q}(a) \neq 1, a^{G} \cap T$ is empty. If S does not contain an element
inducing an outer automorphism r in $P G L_{2}(q)$ on L, let $T=R$. If r exists let $R=\langle T, r a\rangle$. In this case R is semidihedral so again $a^{G} \cap R$ is empty. In any event S^{*} / R is cyclic, so considering the transfer of G to $S^{*} / R, G$ has a subgroup of index 2 , a contradiction.

Lemma 6.12. Suppose $q \equiv-1 \bmod 4$ and u is an involution inverting Q. Then either $|F(u)|=2$, or $C(u)^{F(u)}$ is an extension of $L_{2}(q)$ on $q+1$ letters, $C_{K}(u) \mid \leqslant 2$, and $\langle u\rangle-C(u)_{F(u)}$.
Proof. $q \equiv-1 \bmod 4$, so q is an odd power of 3. Assume $|F(u)|>2$ and let $S \in \operatorname{Syl}_{2}\left(C_{D}(u)\right)$. Then as $q \equiv-1 \bmod 4, S=(S \cap K)\langle u\rangle$, so by 6.3, $S^{F(u)}$ acts semiregularly on $F(u)-\left\{Q, Q^{t}\right\}$. So either $C(u)^{F(u)}$ has a 2-transitive subgroup $X^{F(u)}$ (consisting of even permutations on $F(u)$) of index at most 2 and with $(X \cap H)^{F(u)}$ of odd order, or $|F(u)| \equiv 2 \bmod 4$ and K has even order. But in the latter case letting k be an involution in K, $0 \equiv|F(k)| \equiv|\Omega| \equiv|F(u)| \equiv 2 \bmod 4$, by 6.3 and 6.4.

As $\left[(D \cap L)^{F(u)}, t\right] \neq 1$, it follows from a result of Bender $[8]$ that $C(u)^{F(u)}$ is an extension of $L_{2}(m)$ on $m+1$ letters. If $m \equiv 1 \bmod 4$ then $(K \cap S)^{F(u)} \neq$ 1 and $|F(u)| \equiv 2 \bmod 4$, which we have shown is not the case. So $m \equiv-1$ $\bmod 4$ and $(m-1) / 2=\left|\left[D^{F(u)}, t\right]\right|=(q-1) / 2$. So $m=q$. By 6.3, $C_{K}(u)$ acts semiregularly on $F(u)-\left\{Q, Q^{t}\right\}$, so t inverts $K^{F(u)}$. Thus $\left|C_{K}(u)\right| \leqslant 2$.

Lemma 6.13. Let a be an involution in D with $C(a)^{F(a)}$ 2-transitive. Lei $c=\left|a^{D}\right|, \quad e=\left|a^{G} \cap D^{*}-D\right| \quad$ and $\quad m=|F(a)|$. Then $\quad|\Omega|=$ $m(m-1) e / c+m$.

Proof. Let S be the set of pairs (b, x) where $\bar{b} \in a^{G}$ and x is a cycle in b. Set $n=|\Omega|$. Then $\left|a^{G}\right|(n-m) / 2=|S|=n(n-1) e / 2$. Further as $C(a)^{F(a)}$ is 2-transitive, $\left|a^{G}\right|=n(n-1) c / m(m-1)$.

Lemma 6.14. (1) Let S be a 2 -subgroup of H with $C_{o}(S) \neq 1$. Then $m(S) \leqslant 1$.
(2) $H=O(I) D$.
(3) I has even order.

Proof. Suppose I has odd order. By 6.11, $q \equiv-1 \bmod 4$. By [8], D has even order, so there exists an involution $u \in D$ inverting Q, and $\langle u\rangle$ is Sylow in H. If $|F(u)|=2$ then by $6.4,|\Omega| \equiv 2 \bmod 4$, contradicting [3]. So by 6.12, $C(u)$ has a characteristic subgroup X with $X \mid\langle u\rangle \simeq L_{2}(q)$ and $|F(u)|=$ $q \vdash 1$. Let R be the subgroup of order q in $X \cap H$. Then $H=I C_{H}(u)=$ $I N_{H}(R)=I R D$. As $L \cap D \leqslant N(Q R)$ acts irreducibly on $Q, I R=O(I)$. Now by 6.10 there exists a nontrivial u-invariant Sylow 3-subgroup P of K. By $6.5, F(P)=L \cap \Omega$, so t acts fixed point free on $F(P)$. Thus as $[P, t]=1$,
$|F(t)| \equiv 0 \bmod 3$ ．So $t \notin u^{G}$ ．Therefore $u^{G} \cap D^{*}-D=(u t)^{D}$ ．By 6．12， u inverts K ，so $e=\left|D: C_{n}(u t)\right|=|K|(q-1) / 2$ and $c=\left|D: C_{n}(u)\right|=$ $|K|$ ．Now by $6.13,|\Omega|-1=q\left(q^{2}+1\right) / 2$ ．Therefore $Q P \in \operatorname{Syl}_{3}(I)$ ．Now u inverts Q and P ，so u inverts $Q P$ ．But $1 \neq R$ is a 3－subgroup of I centralized by u ，a contradiction．This yields（3）．

Now 6.5 implies $H=I D$ ．Assume（2）and let S be a 2－subgroup of H with $C_{Q}(S) \neq 1$ ．By $6.10, H=P D$ where $P=O_{\pi}(I)$ ．By 6.3 and 6.10 ， $C_{P}(s)$ is a 3－group for cach $s \in S^{*}$ ，unlcss $q=9$ and $|F(s)|=4^{i}$ ．In the lattcr case choosing k to be an involution in K ，and in $K \cap L$ if possible， $10=$ $|F(k)| \equiv|\Omega| \equiv|F(s)|=4^{i} \bmod 4$ ，by 6.4, a contradiction．It follows that $P=\left\langle C_{P}(s): s \in S^{\#}\right\rangle$ is a 3－group，contradicting 6．10．

So it remains to show（2）．If $K \cap L=\langle z\rangle \neq 1$ then $z \in Z^{*}(D)$ ，so by 6．9，$z \in Z^{*}(H)$ ．Then $H=I C_{H}(z)=O(I) N_{H}(L)=O(I) D$ ．So we may assume $K \cap L=1$ ．Then by $6.5, N_{H}(X) \leqslant N_{H}(L)$ for each non－ trivial subgroup X of K ．Thus $Q K=N_{I}(L)$ is strongly embedded in I ．As $[L \cap D, K]=1,[9]$ implies that $I=O(I) C_{I}(L \cap D)=O(I) K$ by 6.7 ．

For the remainder of this paper define $P=O_{\pi}(I)$ as in 6.10 and set $P_{0}=P \cap D$ ．

Lemma 6．15．（1）$F(x)=L \cap \Omega$ for each $1 \neq X \leqslant K$ ．
（2）$L \cap K=1$ ．
（3）Let u be an involution in K and let $v \in u^{G} \cap C(u)$ have cycle $\left(Q, Q^{t}\right)$ ．
Let P_{1} be a 〈u，v〉－invariant Sylow 3－subgroup of $O(K)$ ．Then v inverts P_{1} ， $\left[u, P_{1}\right] \neq 1$ and v acts fixed point free on $F(u)$ ．

Proof．If $F(X) \neq L \cap \Omega$ then by $6.5, L \cap K \neq 1$ ．So（2）implies（1）． Suppose $1 \neq X \leqslant P_{1}$ with $Y=\left\langle C_{\Gamma}(X)\right\rangle \cong U_{3}(q)$ ．As $N_{K}(X)^{F(X)}$ is a 3＇－group we may take $X=P_{1}$ ．Let $\langle u\rangle=L \cap K$ and let $\left(Q_{1}, Q_{2}\right)$ be a cycle in u ．Then u centralizes its conjugate v in the center of $\left\langle Q_{1}, Q_{2}\right\rangle$ and so v acts on $L=\left\langle C_{\Gamma}(u)\right\rangle$ ．Then v also acts on $P_{0}=O_{3}(K)$ ．So v induces an automorphism of $Y \cong U_{3}(q)$ and fixes points $Q_{i} \in F(X), i=3,4$ ．Then $Q_{1} \in F(v)=\left\langle Q_{3}, Q_{4}\right\rangle \cap \Omega \subseteq F(X)$ ．So $\Omega=F(X)$ ，a contradiction．

Now choose u, v ，and P_{1} as in（3）with $F(u)=L \cap \Omega$ ．Then v acts fixed point free on $F(u)=F(x)$ for each $x \in P_{1^{\text {关 }}}$ ，so $C_{P_{1}}(v)$ acts semiregularly on $F(v)$ ．Thus if $1 \neq C_{P_{\perp}}(v)$ then $0 \equiv|F(v)|=(q+1) \bmod 3$ ，a contradiction． So v inverts P_{1} ．Suppose $\left[P_{1}, u\right]=1$ ．Notice in particular this occurs if $u \in L \cap K$ ．Define e and c as in 6．13．As v inverts $P_{1}, e \equiv 0 \bmod 3$ ．By 6．14，$u \in 7^{*}(H)$ ，so as $\left[P_{1}, u\right]=1, c \neq 0 \bmod 3$ ．Now by $6.13,|\Omega|-1=$ $q[(q+1) e / c+1] \equiv q \bmod 3 q$ ．So $P_{0} Q$ is Sylow in P ．But u centralizes $P_{0} Q$ and inverts a Hall 3^{\prime}－subgroup P_{2} of P ．So $P_{2}=[P, u] \unlhd P$ and then $P_{2}-O_{3^{\prime}}(H)$ ．So $Q P_{2} \unlhd H$ and $Q P_{2}$ is regular on $\Omega-Q$ ，contradicting［15］．

Lemma 6.16. $q \equiv 1 \bmod 4$.
Proof. Assume $q \equiv-1 \bmod 4$. By $6.14, I$ contains a unique class of involutions u^{I}. Let $v \in u^{G}$ have cycle $\left(Q, Q^{t}\right)$. Ás $m(K)=1$ we may take $[u, v]=1$. v acts fixed point free on $F(u)$, so $v \in t K$. As $m(K)=1=$ $[t, K], v=t$ or ut. By 6.15, v inverts P_{1}, so $v \neq t$. Then defining e and c as in 6.13, $e=(q-1) c / 2$. So 6.13 implies $|\Omega|-1=q\left(q^{2}+1\right) / 2$. Let R be a $\langle u\rangle(L \cap D)$-invariant sylow r-subgroup of $P, r \neq 3$. As $q \equiv-1 \bmod 4$, no element of $L \cap D^{*}$ is inverted in D, so $F(x)=\left\{Q, Q^{+}\right\}$for each $x \in L \cap D^{*}$ by 6.6 and 2.7 . Also by $6.5, R$ acts semiregularly on $\Omega-Q$. So $\langle u\rangle(L \cap D)$ acts semiregularly on R^{*} and thus $|R|>q$. As a 3^{\prime}-Hall group of P has order $\left(q^{2}+1\right) / 2,|R|=\left(q^{2}+1\right) / 2$ is a prime power. Then by $2.9, q=3$, a contradiction.

Lemma 6.17. $q \equiv-1 \bmod 4$.
Proof. Assume $q \equiv 1 \bmod 4$. By $6.14, I$ contains a unique class of involutions u^{G}. Let $\tau \in u^{G} \cap C(u)$ have cycle $\left(Q, Q^{t}\right)$. By $6.15, \tau$ inverts P_{1} and $\left[u, P_{1}\right] \neq 1$, so $C_{P_{1}}(u v) \neq 1$. As v acts fixed point free on $F(u)=$ $F\left(C_{P_{1}}(u v)\right),|F(u v)| \equiv 0 \bmod 3$. So by 6.3 and $6.4, u v$ is conjugate to the involution $x \in L \cap D$, or to $x u$. Now $\left[x, P_{1}\right]=1$, so $|F(x)| \equiv 2 \bmod 3$. Thus $u v \in(u x)^{G}$. As $|F(u x)| \equiv|F(u v)| \equiv 0 \bmod 3, C_{P_{1}}(u)=C_{P_{1}}(u x)=1$. So u inverts P_{0}. Therefore $Q=C_{P}(u)$, so u inverts P / Q. as $Q \leqslant Z(P)$, it follows that P is nilpotent, contradicting 6.10.

Now 6.16 and 6.17 yield a contradiction, establishing Theorem 1, part (1).

References

1. J. Alperin, R. Brauer, and D. Gorenstein, Finite groups with quasidihedral and wreathed Sylow 2-subgroups, Trans. Amer. Math. Soc. 151 (1970), 1-261.
2. J. Alperin and D. Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc. 17 (1966), 515-519.
3. M. Aschbacher, On doubly transitive permutation groups of degree $n \equiv 2 \bmod 4$, Ill. J. Math. 16 (1972), 276-279.
4. M. Aschbacher, A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5, Pacific J. Math. 47 (1973), 5-26.
5. M. Aschbacher, Finite groups with a proper 2 -generated core, Trans. Amer. Math. Soc. 197 (1974).
6. M. Aschbacher, A characterization of certain Frobenius groups, Illinois J. Muth., to appear.
7. M. Aschbacher and M. Hall, Jr., Groups generated by a class of elements of order 3, J. Alg. 24 (1973), 591-612.
8. H. Bender, Endliche zweifach transitive Permutationsgruppen, deren Involutions keine Fixpunkte haben, Math. Z. 104 (1968), 175-204.
9. H. Bender, Transitive Gruppen gerader Ordung in denen jede Involution genau einen Punkt festhalt, J. Alg. 17 (1971), 527-554.
10. D. Bloom, The subgroups of $P S L_{3}(q)$ for odd q, Trans. Amer. Math. Soc. 127 (1967), 150-178.
11. W. Feit, 'The current situation in the theory of finite simple groups, Proc. Internat. Cong. Math. 1 (1970), 55-93.
12. D. Gorenstern, "Finite Groups," Harper and Row, New York, 1968.
13. C. Hering, On subgroups with trivial normalizer intersection, J. Alg. 20 (1972), 622-629.
14. C. Hering, W. Kantor, and G. Settz, Finite groups with a split $B N$-pair of rank 1, J. Alg. 20 (1972), 435-475.
15. W. Kantor, M. O’Nan, and G. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic, J. Alg. 21 (1972), 17-50.
16. W. Kantor and G. Seitz, Some results on 2-transitive groups, Inventiones Math. 13 (1971), 125-142.
17. M. O'Nan, A characterization of $L_{n}(q)$ as a permutation group, Math. Z. 127 (1972), 301-314.
18. J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. Math. 89 (1969), 405-514.
19. H. Ward, On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62-89.

[^0]: * Research partially supported by NSF Grant No. GP-35678.

