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Let & be an isomorphism class of groups and G a finite group. Following
Fischer, an §-set of G is a collection £2 of subgroups; such that £ is normalized
by and generates G, and such that any pair of distinct members of £ generates
a subgroup in §.

If G is a doubly transitive permutation group on a set &', a € &', and Q is
a normal subgroup of G,, then @ = Q¢ is an F-set of (O where § =
{£O,0%>} for any g€ G — H. This fact can be used to investigate the
following conjecture.

CONJECTURE. Let G® be a doubly transitive permutation group, o € 2, and
1 £ 0<1G,, with Q semiregular on Q — «. Then one of the following holds:

(1) G* has a regular normal subgroup,

(2) L = {QFC) is isomorphic to Ly(q), Sz(q), Us(q), or R(q), and acts in
its natural doubly tramsitive representation on $2.

(3) L == L,8) and G = R(3) has degree 28.

Hering has established this conjecture if Q has even order [13]. Further
O’Nan has recently shown that if G% is a doubly transitive permutation group
then either (i) G? is a known group, (ii) the socal of G, is simple, or (iii)) G*
satisfies the hypothesis of the conjecture.

It is the purpose of this paper to prove the following.

THEOREM 1. Let £2 be an §-set of G with G© transitive, Q € 2, and § = {L}
with L quasistmple. Then
() If |Q| =q = 3% >3 and L|Z(L) =~ Ly(q), with Z(L) a 3 -group,
then G|Z(G) = Ly(q) or Uy(q)-
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(2) If O is a 3-group and L =2 L(8) then G = L.
(3) IfQ s strongly closed in a Sylow 3-subgroup of L and L|Z(L) =~ R{q),
then G = L.

R(q) denotes a group of Ree type and order ¢3¢® -+ 1)(g — 1).
Theorem 1 together with work of the author and M. Hall yield the following
corollaries.

TrEOREM 2. Let G be a minimal counterexample to the conjecture. Ther

()Y G=<0,0%, for each g ¢ G, .
(2) CHQ) is semiregular on £ — .

Actually something stronger than Theorem 2 is proved. See Section 4.

TurorEM 3. Let G2 be a doubly transitive permutation group, « € £2, and
assume 1 5= Q is a normal cyclic subgroup of G, . Then one of the following hold:

1} G=® has a regular normal subgroup.
p

(2) L = Q% is isomorphic to Ly(q) or Ugq) in its natural 2-transitive
representation.

(3) L = L,8) and G = R(3) has degree 28.

Theorem 1 also has application in the study of rank 3 permutation groups
in which the stabilizer of a point has a nonfaithful orbit.

1. NoTATION

Let G be a permutation group on a set 2, X C G, and 4 C Q. Let F(X)
be the set of fixed points of X on £2. Let G(4) and G, be the global and
pointwise stabilizer of 4 in G, respectively. Let G4 = G(4)/G ; with induced
permutation representation.

The group theoretic notation is standard and taken from [12].

0,(G) denotes the largest normal solvable subgroup of G.

Given positive integral # and prime p, #,, is the largest power of p dividing n.

2. PRELIMINARY RESULTS

TuroreMm 2.1. Let p be an odd prime, Q an elementary abelian p-subgroup
of G, 2 = QF, and § = {L}. Assume Q2 is an § set of G. Then
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() If | O} = q and L is quasisimple with L|Z(L) =~ Ly(q) and Z(L) is a
3'-group, then G|Z(G) = Ly(q), Us(q), or is Frobenius of order 3 - 4.

(2) If L|Z(L) is Frobenius with compliment Q and kernel L'|Z(L) of odd
order, then G|Z(G) has the same form.

(3) If LIZ(L) is Frobenius with compliment Q and elementary 2-group
kernel L'|Z(L) and either Z(LY = 1 or $,(L") < Z(L) with | L' | > 8, then G
has the same form.

4) If Q is strongly closed in a Sylow 3-group of the quasisimple group L
and LIZ(L) ~ R(q), then G = L.

(5) If|1Q| =3 and L ~ Ly(8) then G =L.

Proof. This is a restatement of Theorem 1 and results in [4, 6, 7].

TuEoREM 2.2 O’Nan, [17]. Let G be a doubly transitive permutation
group, o, 38, and X a normal subgroup of G,. Then GFXB is doubly

transitive.

LemMa 2.3. LetQ be a subgroup of prime order p in G, R a 2-subgroup of G
and Z = Cx(Q). Assume RO <1 G, R = [Q, R], Z <1 G, and G is transitive
on (R|Z)*. Then either ,(R) < Z or R is elementary abelian.

Proof. Let G be a minimal counter example, and X = @(Z). R = [0, R]
and Z = CR(0) <1 G, so Z < Z(R).

Suppose X £ 1, and set G = G/X. Then minimality of G implies
0,(R) < Z(R). Therefore 2,(R) < Z, contradicting the choice of G as a
counter example.

So X = 1 and Z has exponent 2. Now if a is an involution in R — Z then
every element in Za is an involution. Then as G is transitive on (R/Z)*, R
has exponent 2 and therefore is elementary abelian.

Lemma 2.4. Let L be a quasisimple group with L|Z(L) ~ R(q). Then the
center of L and the outer automorphism group of L are of odd order, and Z(L)
is a 3'-group.

Proof. Suppose Z = Z(L) is of even order. We may assume Z has order 2.
Let S eSyly(L). Then S/Z is elementary of order 8, so S — Z contains an
involution. As G has one class of involutions each coset of Z in S consists
of involutions, so S is abelian. Now Gaschuetz’s theorem yields a contra-
diction.

Next assume L is simple and x is a 2-element inducing an outer auto-
morphism on L. Let .S be an x-invariant Sylow 2-group of L. We may assume
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x2S, Let a be an involution in Cg(x). Then Ci(a) = {a) X K with
K = Ly(q). Then x centralizes an involution b S N K.

Let T = {x, 8). If x induces an outer automorphism on K then {b) = 1",
But as ¢ and b are in the center of T and conjugate in L, a is conjugate to &
in the normalizer of T, a contradiction. So x induces an inner automorphism
on K and T is abelian. If ® = a then a is not conjugate to b in N(T'). So T
is elementary and we find an isolated involution in T — S, contradicting
the Z*-theorem.

In [2] Alperin and Gorenstein prove the Ree groups have a trivial multiplier.
The same proof shows if L/Z(L) is of Ree type, then Z(L) is a 3'-group.

Levma 2.5. Let L be quasisimple with L] Z(L) ~ L,(q) and Z(L) a 3'-group.
Then L =~ Ly(q) or SLy(q).

Proof. See [11].

Lemma 2.6. Let G =~ R(q), PeSyl(G), a an involution normaiizing P
and Q # | a strongly closed subgroup of P in G. Then

(1) If a fixes P9 then a induces the same automorphism on P and P?.
(2) | Cp(a)l = q = | Z(P)|. a inveris Z(P).
(3) O equals P, Cp(a) Z(P), or Z(P).

Proof. All these facts can be easily derived from [19].

Levma 2.7. Let L =Ly(q), g =3*>3, G =Aut(L), QO eSyly(L),
H = Ng(0), t aninwolutioninl. — H,D = HN H", Q@ =Q%and E = Cp(2).
Then

(1) Ifee Eis of order m then {Cy(e)¢'®"y ~ Ly(3"/"™), and is 2-transitive
on F(e).

(2) For each prime divisor p of order (g — 1)[2, D contains a unique
subgroup X of order p with Cy(X) = 1.

(3) Ifn = 0mod 4 and X is a cyclic 2-subgroup of D semiregular on O~
then X is normalized by an involution a € D with Cy(a) # 1.

(4) [D,f] is contained in a cyclic subgroup regular on 2 —{Q, 0%,
tnverted by t and containing L N D of index 2.

(5) O is regular on 2 — Q.

Proof. (1), (4), and (5) are well known. Let p be a prime divisor of
(g — 1)/2. As Q is self centralizing and there is a unique automorphism
inverting Q, in proving (2) we may take p odd. Let PeSyl(D). If P is
cyclic, (2) follows from (4), so we may assume P is not cyclic. Then
P = (PN L)YP N E) is metacyclic. By 5.4.10 in [12], P contains a normal
noncyclic subgroup Y of order p2. As P is metacyclic, ¥ = £,(P). By (1),
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g = r? and | Cpp(x)] divides 7 — 1, where (x> = Y N E. Sor = 1 mod p.
Then (g — 1)/(r — 1) = 0 mod p, so & does not centralize P. Thus all cyclic
subgroups in ¥ — (¥ N L) are conjugate in P. This proves (2).

Let = 0mod4 and X = (x> a cyclic 2-subgroup of D semiregular
on 0% Let X < Se&Syly(D) and @ an involution in § with Cy(a) # 1.
Then X contains the involution % inverting O, and <u, @) <1 S. So [», a] = u
or 1 and then a € N(X).

Levmma 2.8. Let G be a simple group, Q < G, and assume the pair (G, Q)
satisfies the hypothesis of Theorem 1, part (1). Then

() H = Ng(Q) does not contain a proper 2-generated core of G.

(2) If G has semidihedral Sylow 2-subgroups and || is even then
G == Uyg).

Proof. Let L =<{0Q,09. Then L ~=L,q) or SLggq), ¢ =3">2.
Assume H contains a proper 2-generated core of G. Then by [5], O(H) = 1,
a contradiction.

Next assume G has semidihedral Sylow 2-subgroups. By [1] G = M,
Ly(r) or Uy(r), r odd. Notice Uyr) <X Ly(r?). Now Ly(r) contains a subgroup
isomorphic to L only if 7 is a power of 3. (e.g., [10]). Let O < P e Syl (G).
AsQ is a strongly closed abelian subgroup of P and Z(P)* is fused in G, we get
Z(P) < Q. If G = Uy(r) then Z(P) is the unique strongly closed abelian
subgroup of P, so Q = Z(P) and 7 = q. If G = Ly(r) then | Z(P)| =7,
and choosing K to be the stabilizer of a point in the action of G on the
projective plane, with Z(P) << O4(K), we get {Z(P)*> = O4K) < Q.
Then Q == O4(K) has order 72, and G contains no subgroup isomorphic to L.
Finally if G = M, then Q = P and | P¢| is odd.

LemMa 2.9. Let q be a prime power, ¢ = —1 mod 4 with (¢* + 1)/2 a
power of a prime. Then q is prime.

Proof. Let r* = (¢ + 1)/2, ¢ = p®™. As g = —1mod4, a and b are
odd and 2r¢ = (p% + 1) A(a, b), with (p2 + 1, A(a, b)) dividing b. Thus
if ab % 1 we must have 2r == % 4 | and A(1, r) = #, which is impossible.

3. SEMIREGULAR GROUPS

In this section we operate under the following hypothesis.

Hyporuesis 3.1. Q 5% 1is a subgroup of odd order of the group G, 2 = QF,
and H = Ng(Q). Represent G by conjugation on 82 and assume H = G and Q
acts semiregularly on Q — Q.
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Levma 3.2. Let K < G, p prime, and P e Syl (Q). Then

(1) P is strongly closed in S with respect to G for any P < S € Syl (G).

(2) K acts transitively on the set 4 = {Q9: | KnQ9|, #* 1}

(3) If1 = KN Qand K < H then the pair (K, K N Q) has Hypothesis
3.1

4 If K< G elther G=HK or KNQ =1 and the pair (GIK,
QK|K) has Hypothests 3.1.

Proof. (1) P fixes the unique point O € £2. Therefore S < H. Now if
x e P* and a9 € S, then x? fixes Q0 and 09, so as O is semiregular on 2 — Q,
O =0 Then e SNPI=SNQ =P

(2) Assume Q€4 and let Pe Syl (K N Q). P fixes the unique point
O e 8, soletting P < S e Syl (K), S < H. Similarly if Q9 € 4, then K n HY
contains §; € Syl (K). Now S; = S¥, for some ke K, so Qf =F(S;) =
F(S*) = F(S)* = O

(3) Trivial.

(4) Assume G = HK. It suffices to show that if x is a p-clement in 0%
and Q% < QK then /K = QK. But if Q9 <{ Q9K then x normalizes QK.
Let P e Syl (Q%). We may assume {x, P) i1s a p-group. Then by (1), xe P <
09, s0 Q9 = Q and QK = O/K.

Lemma 3.3. Let p be a prime divisor of the order of O, K a normal subgroup
of G contained in H, and assume G = {2>. Then

(1) K < Z(6).
(2) O,(G) < Z(G).
() I m(Q) > 1 then O(G) = Z(G).

Proof. By3.24,[K,0] < KNQ =1,s0as G = &, K < Z(G). Let
P e 8yl,(0). Then PO,(G) is a p-group, so by 3.2.1, O,(G) < N(P) < H.
Similarly if m(P) > 1 and X = O(G), then X = (Cy{y): ye P*> < A.
Now (1) implies (2) and (3).

LevMa 3.4, Assume G = {£2), some Sylow g-subgroup of Q is not cyclic,
and let K <1 G with KN Q = 1. Then K << Z(G).

Proof. We may assume Q is an elementary abelian g-group and K is a
minimal normal subgroup of G. Then K is the direct product of isomorphic
simple groups and by 3.3 we may assume K is not solvable. As K € Z(G)
and G = (&, [K, Q] 5 1, so we may assume & = KQ = {Q, 0% for any
geG— H. AsQisabelianand KNQ =1, H = C(Q). Alsoif g G — H
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then H N H? < CKO,0%) = Z(G) = 1. Finally by 3.2.1, H is self-
normalizing. It follows that G is a Frobenius group with compliment Q.
But this is impossible as Q is not cyclic.

Levmma 3.5, Assume G = {2 and some Sylow group of O is not cyclic.
Then G = QG’, G’ is quasisimple, and Q N G' £ 1.

Proof. We may assume Z(G) = 1. Let K be a minimal normal subgroup
of G. By 3.2.4 and 3.4, ON K £ 1 and then G = HK. As G = (£},
G = KQ. Let P be a noncyclic subgroup of order p? in Q. We may assume
G = KP. :

Let L be a component of K, Then K = (L?>. We may assume K = L, so
P < NL). If Np(L) =1 then for each prime » and each R e Syl (L),
R, = (RP> e Syl (K). But as P is not cyclic, R, = (CRI(x) rxeP*> < H,
so G = PK < H, a contradiction.

Let xe P — N(L). It follows that K =LL*--L¥7 and Cylx) =
J={llz-1¢"":1eL}). Then | < H. By 3.4 there exists a prime 7 such
that 1 4 Re Syl (O N K). Let R < R, €Syl (K). Then R, << H by 3.2.1,
so K =<R,, J> < H, a contradiction.

4. TaroremMs 2, 3, anD 4
We now prove something slightly stronger than Theorem 2.

THEOREM 4. Let € be a class of groups satisfying the hypothesis of the
conjecture and possessing the following closure property:
(*) If 4CQ with G2 doubly transitive and Q < G(4), then G €.
Let G be of minimal order subject to belonging to € and not satisfying the
conjecture. Then

(1) G =<Q,0%, for cach g ¢ G,.
(2) C4(Q) s semiregular on 2 — a.

Proof. Fix g¢ G, = H and set L = {0, 0>. We may take £2 = QF,
a = (. [13] implies Q is of odd order. We may assume O is a minimal normal
subgroup of H, so Q is an elementary abelian p-group for some odd prime p.

Now double transitivity of G implies £2 is an §-set of (2)> where § = {L}.
Let 4 = Q2N L. If (B, y) is a pair of distinct points in 4, then there exists
xeG with (8% %) = (0,09). Then L®= = {B,v>* = {p* y*> =L. So
Ng(L) = G(4) is doubly transitive on 4. Then by hypothesis G4 e %.

Assume L = G. Then minimality of G implies G4 satisfies the conjecture.
So L4 ~ L,(g), R(q), Ly(8), or L4 is a Frobenius group whose kernel R4 is an
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elementary abelian #-group for some prime r. Now L, << H, so by 3.3,
L, = Z(L), and L is the central extension of L4 by Z(L).

Suppose L4 o~ Ly(q) and a Sylow 3-group Z of Z(L) is nontrivial. By [11]
g =9. Then QZeS8yly(L) and by 324, O N Z = 1. Now Gaschuetz’s
theorem implies a contradiction. If R4 is a regular normal subgroup for L4
then by 2.3, either RO ~ SL, or RQ satisfies the hyothesis of 2.1.2 or 2.1.3.
But now 2.1 implies G satisfies the conjecture.

So G = L. Next let X == C¢{(Q), and assume X is not semiregular on
Q-0 Let D=HNH and Y =XND. Then ¥ 1 and by 2.2,
GFY) i 2-transitive. But then L < G(F(Y)) < G, a contradiction. This
establishes Theorem 4.

Next the proof of Theorem 3. Let G be a minimal counter example. We
may assume Q) has prime order. As the class € of doubly transitive groups
with O eyclic has the closure property (*) of Theorem 4, that theorem implies
C(Q) is semiregular on 2 — Q. Recall D = Hn H¢ Then Ci(0) =1,
so D is isomorphic to a subgroup of the automorphism group of Q. As Q is
of prime order, D is cyclic. But now a theorem of Kantor, O'Nan, and
Seitz [15], vields a contradiction.

5. Parrs (2) anp (3) oF THEOREM 1

In this section assume the hypothesis of part (2) or part (3) of Theorem 1.
Let H = NgQ) and I = Cgx(Q). We may take Q € Svly(L).

Suppose a is an involution in I. If a fixes but does not centralize 09 € 2
then @ acts on L = <Q, 0%). By 2.4 a induces an inner automorphism on L,
so by 2.6, a induces the same automorphism on Q and 09, a contradiction.
So F(a) = Cya). Let (P, P?) be a cycle of a on £ and set L = (P, P%).
Then again @ induces an inner automorphism on L, so by 2.6, a fixes but
does not centralize some member of L N L2, a contradiction. So I has odd
order.

Next let a be an involution in G, (Q, 0% a cycle in @, and L = {0, 0%.
By 2.4 a induces an inner automorphism on L, so as I has odd order, a e L.
Suppose ¥ = a. a fixes two points of L M £, so there exist points P and
R of £, which we may choose in L, either fixed or permuted in a cycle of
length 2. So x normalizes L, and by 2.4 induces an inner automorphism on L.
But a Sylow 2-subgroup of L is of exponent 2.

So a Sylow 2-subgroup of G is of exponent 2.

Now the pair (G, Q) has hypothesis 3.1, so by 3.5, either G’ is quasisimple
or L o« L,(8). In the latter case one easily shows G to be quasisimple. {e.g.,
3.1.5in[4]). As G’ has abelian Sylow 2-subgroups and contains L, G’ ~ L,(2")

or R(gy) [18].
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Suppose G' =~ R(gy) and let O < P € Syly(G). As Q is strongly closed in
P, 2.6 implies that Z(P) < Z(Q) is of order g, and a inverts Z(P). As
R(3) == Ly(8), gy > 3, and then Z(P) is not cyclic. So Z(Q) is not cyclic
and then L gk Ly(8). So Cy(a) 5= 1 and then as Q is strongly closed in P,
2.6 implies that ¢ = | Cp(@)] = ¢,. So L = G.

So G' == Ly(27). Then <{a® N C(a)y = 04(C(a)), so L =~ Ly(8) and G is
simple. If z is even then Q normalizes a Sylow 2-group 7" of G and {Q, 0% is
Frobenius for 2 € T#. So # is odd and Ny (Q) is dihedral of order 2(2" 4 1).
Thenv = | Q] = (2* — 1) 2L L is self normalizing in G, so b = |L¢| =
(22» — 1) 2/504. Counting the number of pairs of distinct elements in £2 in
two ways we get (v — 1) = 28.27.b. Then 2* — )2" 1 — 1 =2 — 1 =
327+ 1), so =l = (v —1) =312"+ 1) = 3mod 271, Thus 2"1 =4
and G = L.

6. TueoreM 1, Part (1)

In this section assume G is a minimal counter example to Theorem 1,
part (1). Let H = Ng(Q), I = C(Q), t a 2-element with cycle (Q, Q) in
L =<Q,0%, K=C(L), D =Hn H, D* = D{t), and I' the union of
conjugacy classes with a representative in 0%,

Notice that 2.5 implies L =~ L,(q) or SLy(q).

The proof involves a long series of reductions.

LemMa 6.1. Let xe G fix P,Qe Q. Then | Cy(z)] = | Cplx)|.
Proof. x acts on (P, Q> o SLy(q) or Ly(g). Now apply 2.7.

Lemma 6.2. (1) The pair (G, Q) satisfies hypothesis 3.1.
(2) G is simple.

3) If X < H and Gy = (Cpo(X)X 5£ 1 then letting 2y = Co(X)%,
go = | Co(X)|, Ly << L isomorphic to Ly(qo) or SLy(q,), and &, = {L¢}, then
8y is an Fy-set for G, .

Proof. (1) is easy. Minimality of G implies Z(G) = 1. So by 3.5, G = OG’
with G’ simple. As L is perfect, G = G’. This yields (2). (3) follows from
6.1 and 2.7.

LemMa 6.3. Let X < H with Cy(X) of order q, %= 1. Then one of the
Sfollowing holds:

(1) Q=FX).
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(@) |F(X)| = go+ Lor g + 1, <CH{X)) 2= Lfgy), SLalgo) o7 Ulao)
and C{X)FX) is 2-transitive.

(3) |F(X)| = 4, qy = 3, and {CH{X)>, modulo its center, is Frobenius
of order 3.4

Proof. By 6.1, i Q7 e F(X) then X acts on <0, 0% =~ L,(g) or SLy(g) and
by 2.7, Cou(X) e Co(X)X). So if gy > 3 then 6.3 follows from 6.2.3 and
minimality of G. If ¢, = 3, 6.2.3 and [7] implv 6.3.

LemmMa 6.4. (1) G# has even degree.
(2) If a is an involution then | 2| = | F(a)| mod 4.

Proof. Assume | 2| is odd. If for each choice of g G — H, m(D) < 1,
then 2.8 yields a contradiction. So assume D contains a 4-group U. Then U
contains an involution u with Cy(u) = 1. So by 6.3, | F(u)| is even, a contra-
diction.

Let ¢ be an invelution in G. By 6.2, G has no subgroup of index 2, so a
induces an even permutation on &. This yields (2).

LemMmA 6.5. Let p 5= 3 be prime and | = X << Pe Syl (K). Then
(1) PeSyl).
(2} FEither L = (CH{ X)) or KNL has even order and X == KO L.
(3) H = INg(L) =1ID.

Proof. Let Ly = (C(X)). By 6.3, Ly = L or Ly o= Uyq). In the latter
caseL =2 SL,(g) contains a central involution #. Thenu e < {Cr(n)) =1L,,
soLy o= Uylg). SoL = L,and X = KN L. Inanyevent | F(P)| = ¢ -+ 1 =
1 mod p, so a Sylow p-subgroup of N, (P) fixes 2 points of F(P). Then by
6.3, P is Sylow in N, (P), yielding (1). Choosing p = 2 if necessary we may
assume L = (Cp(P)>. By a Frattini argument, H = INg(P) = INy{L) =
I0D = 1ID.

LemMa 6.6, Let x € G fixes 2 or more points and assume for each «, 8 € F(x)
that x (L N DYK, | xK|K | >> 2, and x is not inverted in D. Then

(1) There exists no y € Ht with [x, v] € It, and
@) |FE) =2
Proof. Assume y e Hit with [», ] € I'. Then y centralizes x mod I*. As
xe(L N D)K, t inverts x mod K. So yt inverts x mod I.

Suppose H = INy(L). Then by hypothesis x is not inverted in H/I, a
contradiction. So by 6.5, K is a 3-group. We may assume x is a p-element
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where p divides ¢ — 1, so Kis a p’-group. Thenasxe (L N D)K, xeL ND,
and then (x> <1 D.

If er = QO then ye D¢, so as (x> <] D and ¢ inverts x but x is not
inverted in D, [y, x] # 1. This is impossible as [x, y] € I*. Now [x, y 1] e,
so as above x €(L N D)*"" and there exists a 2-element s with cycle (Q, Q™)
inverting x. Then #s € C(x) and (Q%)* = Qv™, so again there exists r with
cycle (Q¥, 0¥ ") inverting &. Then trs € H inverts x, so there exists a 2-element
k€ H inverting .

If £ fixes a second point Q¥ e F(x) then x is inverted in H N H* contrary
to hypothesis. So F(x) N F(h) = Q and thus | F(x)| is odd.

So ¢ fixes a point Q; e F(x). If ¢ = 1 mod 4 then ¢ inverts O, €L N 2, so
by 6.1, ¢ inverts Q; . Then x* = [¢, x] € C(Q,), a contradiction. So ¢ = —1
mod 4 and £ does not invert Q, . But by 6.4, | 2] is even, so ¢ fixes a point
Qs # Oy of 2. Then ¢ acts on {Q; , 05>, s0 as ¢ = —1 mod 4, ¢ inverts 0, ,
a contradiction. This yields (1).

Next assume Q°eF(x) —{0,0%. Let P be an x-invariant Sylow p-
subgroup of I. (Recall # is a p-element.) If 1 s P < K then by 6.3,
F((x) Cp(x)) = {0, 0%, so Cp(x) moves Q%, contrary to (1). So by 6.5, K is
a p’-group and then xeL N D. So ¢ inverts ». Similarly we may pick s
with cycle (Q, O%) to invert x. Then #s € C(x) moves O, contradicting (1).

Lemma 6.7. Let xeL N D and set ¢ = 3" where n = 2°m, m odd. Assume
either | x | is an odd prime divisor of 3™ — lore > 0and | x| = |LND|,.
Then | F(x)] = 2 and if e = 1 then I has even order.

Proof. Unlesse = land |x| = |L N D|,, xis not inverted in Autgy(L).
Further by 6.1 and 2.7, the same holds for each pair «, 8 € F(x).

If x has odd order then by 6.1 and 2.7, x € (L N D)K for each «, 8 € F(x).
Assume e > 1 and | x| = |L N D |,. Choose ¢ so that D contains a Sylow
2-subgroup S of H = G,. If yeF(x) — o and C({e, y)) has even order
then x centralizes an involution a € C({x, y)»). By 6.3, | F(x) N F(a)] = 2.
So assume C (o, y>) has odd order. If a is an involution in G,, with Cy(a) 5= 1
then by 2.7, a normalizes X = (x> and again by 6.3, | F(x) N F(a)| = 2.
So Ny(X) is transitive on the set 4 of points y e F(x) — o with m(G,,) > 1.
By the choice of 8, if 4 % &, then Bed. Let 6 = F(x) — 4 — «. Then
x €{a, p),, for each y € 6, so there exists a 2-element s with cycle («, y) in
{a, vy inverting x. Thus N(X) is transitive on 8 U «. Suppose N(X)F@® is
not transitive. Then 6 U o and 4 are the orbits of N(X)*®. But Be 4 and
as x €L N D, t inverts x and has cycle («, 8), a contradiction. So N(X)F® is
transitive. Thus X¢ N H = X%.

Let H = H/I. § = YW with X < Y inducing a cyclic group of auto-
morphism in PGL,(q) on L and W inducing field automorphisms on L. If &
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is an involution in W then Co(a) # 1 so @7V is empty. Then transfer
implies W has a normal compliment in H. Thus XN S =X* N SCYIL
In particular it follows that for all «, 8 € F(x), x € (L N D)K. Now by 6.6,
| Flx)| = 2.

So assume e = 1. If L ~ SL,(g), 6.3 yields the conclusion, so L =~ L,(g).
Assume |F(x)] > 2 and let x# = x%. Suppose a = u is an involution
centralizing x. If a fixes 2 points O, € F(x) then as a acts on <Q, ,Q,> =L,
either @ = umod C(L,) or Cy(e) # 1. But if O, # Co,(a) # 1 then
[a,2] %= 1, so ee K. Thus (u,a> " K 7 1 and by 6.3, | F({x, &) = 2.
Then a inverts or centralizes Q; and has a cycle (Q;, 0,%) in F(x). As a
centralizes x and acts on Ly = {Q, 0%, a induces a field automorphism on
L;. S0 Qy # Cg (a) # 1 for some Q3 € Ly N 2, contradicting 6.1.

Se letting x € .S e SyL(H), if | F(x) > 2 then <u> = Q(C{X)), and in
particular I has odd order.

So we may assume [ has odd order. | 2 | is even, so S fixes a second point
0, and then acts on L, = <Q,0;>. So S is quaternion, dihedral, or semi-
dihedral. Let s € L, have cycle (Q, O,) with §* = {S§, s> a 2-group.

Assume S is quaternion. Then L, admits no field automorphism and
arguing as above (u) = ,(Cr{(x)) where x € T e Syly(G). Now by 5.4.8 in
[12], T is semidihedral. So 2.8 yields a contradiction.

So § contains an involution ¢ inducing a field automorphism on Z, .
Then letting g = g2, by 6.3, Ly = {Cp{a)> =2 Ly{g,) or q, = 3 and L; is
Frobenius of order 3 - 4/. Further # induces an outer automorphism on L .
In any event C{a)"@ is transitive, so a N H = 4.

Suppose S is dihedral and let u € R e Syly(Kud> Lg). If Ly o~ Ly(g,), then
R < Liay and R = {a) x (RN L,). Also all involutions in R N L, are
in 4%, and as a® N H = a*, a is not fused to au or u. Now if R ¢ Syly(G)
then there exists a 2-element in N(R) moving a. But 2° N Z(R) = {a}.
Thus R € Syly(G). But now considering the transfer of G to R/(RNLy), G
has a subgroup of index 2, a contradiction. Similarly if L, is Frobenius let
R, be the kernel of L, . R; = <u® N R and in .S* the product of any two
commuting conjugates of # is in #®. Also each r e R,* acts fixed point free
on F(a), so ar is not fused to a. Now we argue as above to the same contra-
diction.

So S is semidihedral. Then S* is the holomorph of Z;. Let Y be the
cyclic subgroup of order 8 in S. ¥ is weakly closed in S and not inverted
in D, so we may argue as in 6.6 to show | F(Y)| = 2. Now X = {x) = S*
is characteristic in S*. Set §* = S*/X. Let a be an involution in § with
Cola) == 1. Then Xya contains all elements in S* — X of order 4, so
(X, ya> <1 N(S*). Also all elements of order 8 in §* — X are in Xy and
Xyat. So if ¥ 41 N(S*) then y — Fal. So & = j(ya) — yai( ja) = t. Bux
XaCa® while” Xt C#° # a% So Y <I N(S*). Thus S*eSyly(G), so
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| 2] = 2mod4. But | Cyla) = 3™, so [F(a) = 0mod4 by 6.3. This
contradicts 6.4.

LeEMMa 6.8. G® is doubly transitive.

Proof. By 6.7 there exists a prime p such that for each «, &2 there
exists a p-subgroup X with F(X) = {«, 8}. It follows that G,; contains a
Sylow p-subgroup P of G, and F(P) = {«, 8}. Now Sylow’s theorem implies

G, is transitive on 2 — a.

Lemma 6.9. Let ae D with |F(a)| > 2 and | aK|K | = p prime. Then

(1) Either C(a)"'® is double transitive or {Cr(a))> is a Frobenius group
of order 3 - &, modulo its center.

(2) If a is an involution in Z*(D) then a c Z*(H).

Proof. (1) By 6.3 we may assume Cy(a) = 1. If PeF(a) then by 6.1
and 2.7, a centralizes {Q, P)p o . Now 6.7 and the argument in 6.8 implies
C(a)7'@ is 2-transitive.

(2) Let beCy(a) Na®. As | L] is even, b fixes 2 points of F(a). As
a € Z¥(D) the last case of (1) cannot occur, so C(a)F® is 2-transitive. Thus
we may take b€a®N Cpla) = a® N C(a) = {a}. Then the Z*-theorem
yields the result.

LemMMa 6.10. Let = be the set of primes dividing | Q2| — 1, and assume
H = O(I)D. Then H = O, (I)D, O,I) is not nilpotent, and O4K) =
o.(HnD 1.

Proof. Set P = O,(I) and let R/P < O(I)/P be a minimal normal
subgroup of H/P. Then R/P is a r-subgroup for some prime r ¢, so
R = R\P, R, eSyl(R). By a Frattini argument, H = PNg(R,) = PD by
6.3. By [14], P N D # 1, while by [16], P is not nilpotent. By 6.5, PN D =
O4(K).

Lemma 6.11. If ¢ = 1 mod 4 then I has even order.

Proof. Assume ¢ = 1 mod 4 and I has odd order. Let S e Syly(D) and
S* = {8, t). If §is cyclic, 6.6 implies | F(S)| = 2, so as .S is characteristic
in §*, §* € S8yly(G). Then | 2| = 2 mod 4 and [3] yields a contradiction.
If ¢ = 32", m odd, then I has even order by 6.7. Finally, if ¢ = 3% then
S NL is a characteristic subgroup of S* with |[F(SNL)| =2 by 6.7.
Thus S* € Syl(G) and | 2| = 2 mod 4. S is not cyclic so there exists an
involution a € § with Cy(a) # 1. Every involution in S* NL = T is fused
in L and as Cgfa) 7= 1, a® N T is empty. If S does not contain an element
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inducing an outer automorphism » in PGLy(g) on L, let 7 = R. If r exists
let R = (T, ra). In this case R is semidihedral so again a® N R is empty.
In any event S*/R is cyclic, so considering the transfer of G to S*/R, G
has a subgroup of index 2, a contradiction.

Lemvma 6.12. Suppose g = —1 mod 4 and u is an involution tnverting Q.
Then either | F(u)l = 2, or C(u)F") 45 an extension of Ly(q) on q - 1 letters,
| Cr(w)| < 2, and {u) = C(u)gq,) -

Proof. g= —1mod4, so ¢ is an odd power of 3. Assume | F(u)j > 2
and let S eSyly(Cp(u)). Then as ¢ = —1mod 4, S = (SN K)uy, so by
6.3, STW gcts semiregularly on F(u) — {Q, 0%} So either C{u)7™ has a
2-transitive subgroup XT® (consisting of even permutations on F(x)) of
index at most 2 and with (X N HY*® of odd order, or | F(x)| = 2 mod 4
and K has even order. But in the latter case letting & be an involution in K,
0= |F(k) =[2]| = |F)| =2mod 4, by 6.3 and 6.4.

As [(D N LY@ 1] 5= 1, it follows from a result of Bender [8] that C(u)"®
is an extension of Ly(m) on m -+ 1 letters. If m = 1 mod 4 then (K N §)F) £
1 and | F(u)| = 2 mod 4, which we have shown is not the case. So m = —1
mod 4 and (m — 1)/2 = |[[DFW, #]| = (g — 1)/2. So m = ¢. By 6.3, Cy(w)
acts semiregularly on F(u) — {Q, O}, so ¢ inverts KF®, Thus | Cy(u)l < 2.

Lemma 6.13. Let @ be an involution in D with C(a)f'® 2-transitive.
Let c=1aP], e=|a*ND*—D| and m = F(a). Then |2] =
m{m — 1) efc + m.

Proof. Let S be the set of pairs (b, x) where & € 4® and x is a cycle in 5.
Set n =[Q1!. Then |a®[(n —m)2 =| S| =n(n— 1)e2. Further as
C(a)™@) is 2-transitive, | a® | = n(n — 1) ¢/m(m — 1).

Levma 6.14. (1) Let S be a 2-subgroup of H with Co{(S) # 1. Then
m(S) < 1.
(2) H=0{D.
(3) {1 has even order.

Proof. Suppose I has odd order. By 6.11, ¢ = —1 mod 4. By (8], D has
even order, so there exists an involution # € D inverting Q, and (u) is Sylow
in H. If | F(u)] = 2 then by 6.4, | 2] = 2 mod 4, contradicting {3]. So by
6.12, C(u) has a characteristic subgroup X with X/{u} = Ly(g) and | F(u)| =
g + 1. Let R be the subgroup of order ¢ in X N H. Then H = ICy(u) =
INyR) = IRD. As LN D < N(QR) acts irreducibly on Q, IR = O(J}.
Now by 6.10 there exists a nontrivial u-invariant Sylow 3-subgroup P of K.
By 6.5, F(P) = L N £, so t acts fixed point free on F(P). Thus as [P, 1] =1,

481/30/183-27
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| F(¢)] = Omod 3. So t¢u®. Therefore u¢ N D* — D = (ut)®. By 6.12,
u inverts K, so e = | D: Cp(ut)] = | K [(g — 1)/2 and ¢ = | D: Cp(u)| =
| K |. Now by 6.13, | £2 | —1 = ¢(¢® + 1)/2. Therefore QP € Syly(I). Now u
inverts O and P, so u inverts QP. But 1 £ R is a 3-subgroup of I centralized
by u, a contradiction. This yields (3).

Now 6.5 implies H = ID. Assume (2) and let S be a 2-subgroup of H
with Co(S) # 1. By 6.10, H = PD where P = O,(I). By 6.3 and 6.10,
Cp(s) is a 3-group for each s € S*, unless ¢ = 9 and | F(s5)| = 4°. In the latter
case choosing & to be an involution in K, and in K N L if possible, 10 =
|F(R) = | 82| = |F(s)] = 4°mod 4, by 6.4, a contradiction. It follows
that P = (Cp(s) : s € S*) is a 3-group, contradicting 6.10.

So it remains to show (2). If KNL = (2> 5= 1 then 2 Z*(D), so by
6.9, ze Z*(H). Then H = ICy(z) = O(I) Ny(L) = O(I)D. So we may
assume KNL =1 Then by 6.5 NgX)< Nyl) for each non-
trivial subgroup X of K. Thus QK = N/(L) is strongly embedded in I. As
[L N D, K] =1, [9] implies that { = O(I) C{(L n D) = O(I)K by 6.7.

For the remainder of this paper define P = O,(I) as in 6.10 and set
P,=PnD.

Levmma 6.15. (1) F(x) =L N2 for each 1 -+ X < K.
2) LnK =1.
(3) Let u be an involution in K and let v € u® N C(u) have cycle (Q, ).

Let Py be a {u, v)-invariant Sylow 3-subgroup of O(K). Then v inverts Py,
[u, P;] = | and v acts fixed point free on F(u).

Proof. If F(X) £ LN & then by 6.5, LN K s 1. So (2) implies (1).
Suppose | #£ X << P, with ¥ = (CH(X))> == Ug(g). As Ne(X)F® is a
3’-group we may take X = P, . Let () = L N K and let (Q, , O,) be a cycle
in u. Then u centralizes its conjugate z in the center of {Q;,0,> and so
acts on L = {Cp{u))>. Then v also acts on Py, = O4(K). So v induces an
automorphism of Y =~ Uyq) and fixes points Q;eF(X), 7 = 3,4. Then
O,eF(v) = {Qy,0 N R2CF(X). So 2 = F(X), a contradiction.

Now choose #, v, and Py as in (3) with F(u) = L N Q. Then v acts fixed
point free on F(u) = F(x) for each x € P,#, so C Pl(v) acts semiregularly on
F(v). Thusif 1 # Cp (v) then 0 = | F(v){ = (¢ + 1) mod 3, a contradiction.
So v inverts P;. Suppose [P, #] = 1. Notice in particular this occurs if
uecL N K. Define e and ¢ as in 6.13. As v inverts P;, e = Omod 3. By
6.14, uc Z*(H),so as [P, ,u] = 1, ¢ 55 Omod 3. Now by 6.13, |2 | — | =
gl(g + 1) eJc + 1] = g mod 3q. So P,Q is Sylow in P. But u centralizes P
and inverts a Hall 3’-subgroup P, of P. So P, = [P, u] <1 P and then
P, = Oy (H). So QP, <1 H and QP, is regular on £2 — O, contradicting [15].
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Lemma 6.16. g = 1 mod 4.

Proof. Assume ¢ = —1mod4. By 6.14, I contains a unique class of
involutions #!. Let veuC have cycle (Q,0QY). As m(K) = 1 we may take
fu, v} = 1. v acts fixed point free on F(u), so veitK. As m(K) =1 =
{t, K], v =t or ut. By 6.15, v inverts P;, so ¢ # {. Then defining e and
casin 6.13, e = (¢ — 1) ¢/2. So 6.13 implies | 2] — 1 = ¢(g* + 1)/2. Let
Rbeauy(L N D)-invariant sylow #-subgroup of P, r 5= 3. As¢ = —1 mod 4,
no element of L N D* is inverted in D, so F(x) = {Q, 0"} for each x e L N D*
by 6.6 and 2.7. Also by 6.5, R acts semiregularly on 2 — Q. So {u)(L N D)
acts semiregularly on R* and thus | R| > g. As a 3’-Hall group of P has
order (¢ - 1)/2, | R| = (¢> + 1)/2 is a prime power. Then by 2.9, ¢ = 3,
a contradiction.

LevMma 6.17. ¢ = —1 mod 4.

Proof. Assume g = 1mod4. By 6.14, I contains a unique class of
involutions u°. Let veu® N C(x) have cycle (O, 0%). By 6.15, v inverts P;
and fu, P;] £ 1, so CPl(u-v) # 1. As v acts fixed point free on F(u) =
F(Cp (wv)), | F(uv)] = Omod 3. So by 6.3 and 6.4, uv is conjugate to the
involution xeL N D, or to axu. Now [x, P;] = I, so |F(x)] = 2 mod 3.
Thus uv € (ux)®. As | F(ux)| = | F(uv)] = 0mod 3, Cp (u) == Cp (ux) = L.
So u inverts P, . Therefore O = Cp(u), so u inverts P/Q. as Q < Z(P), it
follows that P is nilpotent, contradicting 6.10.

Now 6.16 and 6.17 yield a contradiction, establishing Theorem 1, part (1).
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