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Abstract 

We have developed a novel tuberculosis (TB) vaccine; a combination of the DNA vaccines expressing mycobacterial heat shock 
protein 65 (HSP65) and interleukin 12 (IL-12) delivered by the hemagglutinating virus of Japan (HVJ)-envelope and –liposome 
(HSP65 + IL-12/HVJ).  An IL-12 expression vector (IL-12DNA) encoding single-chain IL-12 proteins comprised of p40 and p35 
subunits were constructed.  This vaccine provided remarkable protective efficacy in mouse and guinea pig models compared to the 
BCG vaccine on the basis of C.F.U of number of TB, survival, an induction of the CD8 positive CTL activity and improvement of the 
histopathological tuberculosis lesions.  This vaccine also provided therapeutic efficacy against multi-drug resistant TB (MDR-TB) 
and extremely drug resistant TB (XDR-TB) (prolongation of survival time and the decrease in the number of TB in the lung) in murine 
models. Furthermore, we extended our studies to a cynomolgus monkey model, which is currently the best animal model of human 
tuberculosis.  This novel vaccine provided a higher level of the protective efficacy than BCG based upon the assessment of mortality, 
the ESR, body weight, chest X-ray findings and immune responses.  All monkeys in the control group (saline) died within 8 months, 
while 50% of monkeys in the HSP65+hIL-12/HVJ group survived more than 14 months post-infection (the termination period of the 
experiment).  Furthermore, the BCG priming and HSP65 + IL-12/HVJ vaccine (booster) by the priming-booster method showed a 
synergistic effect in the TB-infected cynomolgus monkey (100% survival). In contrast, 33% of monkeys from BCG Tokyo alone group 
were alive (33% survival).  Furthermore, this vaccine exerted therapeutic efficacy (100% survival) and augmentation of immune 
responses in the TB-infected monkeys.  These data indicate that our novel DNA vaccine might be useful against Mycobacterium 
tuberculosis including XDR-TB and MDR-TB for human therapeutic clinical trials. 
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1. Introduction 

Tuberculosis is a major global threat to human health, with about 2 million people dying every year from 
Mycobacterium tuberculosis (TB) infection.  The only tuberculosis vaccine currently available is an attenuated strain of 
Mycobacterium bovis BCG (BCG), although its efficacy against adult TB disease remains controversial.  Furthermore, 
multi-drug resistant tuberculosis (MDR-TB) and extremely drug resistant TB (XDR-TB) are becoming big problems in 
the world.  In such circumstances, the development of therapeutic vaccine against TB as well as prophylactic vaccine 
against TB is required.  Therefore, we have recently developed a novel TB vaccine, a DNA vaccine expressing 
mycobacterial heat shock protein 65 (HSP65) and interleukin-12 (IL-12) delivered by the hemagglutinating virus of 
Japan (HVJ)-liposome (HSP65 + IL-12/HVJ).  This vaccine was 100 fold more efficient than BCG in the murine model 
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on the basis of the elimination of M. tuberculosis mediated by the induction of CTL [1,2]. Futhermore the HSP65 + 
IL-12/HVJ vaccine using HVJ-envelope was 10,000 fold more efficient than BCG in the murine TB-prophylactic model.  
A nonhuman primate model of TB will provide information for vaccine development.  In fact, in the previous study we 
evaluated the protective efficacy of HSP65 + IL-12/HVJ in the cynomolgus monkey model, which is an excellent model 
of human tuberculosis [1,4].  In the present study, we observed the synergistic effect of the HSP65 + IL-12/HVJ and 
BCG using a priming-booster method in the TB-infected cynomolgus monkeys.  The combination of the two vaccines 
showed a very strong prophylactic efficacy against M. tuberculosis (100% survival) as we have seen previously in the 
murine model of TB [2,5].  Moreover, we evaluated therapeutic effect of this vaccine on the MDR-TB infection and 
XDR- TB infection in murine and monkey models, indicating that the vaccine exerts therapeutic efficacy against TB, 
MDR-TB and XDR-TB. 

2. Method for the evaluation of the efficacy of vaccines on the M.tuberculosis-infected mice 

DNA vaccines encoding M.tuberculosis HSP65 and human IL-12 were encapsulated into HVJ-Envelope or 
HVJ-liposomes [6].  CTL activity was assessed by 51Cr-release assay[1,7]. At 5 and 10 weeks after intravenous 
challenge of M.tuberculosis H37RV, the number of CFU in the lungs, spleen, and liver were counted and therapeutic 
efficacy of HVJ-Envelope DNA vaccines was evaluated [1].  Therapeutic efficacy was also evaluated by chronic TB 
infection model of mice using aerosol challenge of TB (15CFU/mouse: Madison aerosol exposure chamber, University 
of Wisconsin).  

3. Method for the evaluation of the efficacy of the vaccine on the M.tuberculosis-infected monkeys 

Cynomolgus monkeys were housed in a BL 3 animal facility of the Leonard Wood Memorial Research Center.  The 
animals were vaccinated nine times with the HVJ-envelope with expression plasmid of both HSP65 and human IL-12 
(HSP65 + hIL-12/HVJ: 400ug i.m.), one week after the challenge with the M.tuberculosis Erdman strain (5×102) by 
intratracheal instillation.  Immune responses and survival were examined as described in our previous studies [2,5]. 

4. Results and Discussion 

(a) Prophylactic efficacy 

All 4monkeys in the control group (saline) died within 8 months, while 50% (2monkeys out of 4) of monkeys in the 
HSP65+hIL-12/HVJ group survived more than 14 months post-infection (the termination period of the experiment)(data 
not shown). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Protective efficacy (survival) of HSP65+IL-12/HVJ and BCG using priming- booster method against TB challenged cynomolgus monkey 350 
days after TB using cynomolgus monkey models. 
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Table 1.  Efficacy of HSP65 + IL-12 DNA Vaccine in Monkey 

 

 

 

 

 

 

 

 

 
Furthermore, using 32 monkeys, the protective efficacy of the HSP65+IL-12 /HVJ and BCG using the 

priming-booster method in the TB infected cynomolgus monkeys was very strong.  All four monkeys from the group of 
BCG-priming and the DNA vaccine (HVJ-liposome/HSP65+IL-12 DNA vaccine) booster were alive more than 12 
months post-infection (Fig.1).  In contrast, only 2 monkeys out of 6 from the BCG Tokyo group were alive (33% 
survival).  50% of the monkeys from the saline control group and DNA vaccine-priming and the BCG Tokyo vaccine 
booster group, respectively, were alive more than 12 months in the study.  In addition, HSP65+hIL-12/HVJ improved 
both ESR and chest X-ray findings.  IL-2 and IL-6 production were augmented in the group vaccinated with BCG 
vaccine-priming and the DNA vaccine-booster (Table1).  Furthermore, proliferation of PBL was strongly enhanced.  
Taken together, these results clearly demonstrate that BCG priming and the HSP65+hIL-12/HVJ booster could provide 
extremely strong protective efficacy against M.tuberculosis in the cynomolgus monkey model. 

(b)Therapeutic efficacy 

The survival of vaccinated mice after XDR-TB (extremely drug resistant TB) was investigated.  All mice in the 
control group died of TB within 160 days after XDR-TB infection.  In contrast, mice treated with HVJ-Envelope/HSP65 
DNA+IL-12 DNA prolonged the survival periods significantly by statistical analysis(p<0.05). (data not shown)  It was 
demonstrated that this vaccine had a therapeutic activity against XDR-TB (Table 2A). 

At 5 and 10 weeks after intravenous challenge of MDR-TB, the CFU of TB in the lungs, spleen, and liver were 
counted and therapeutic efficacy of HVJ-Envelope DNA vaccine was evaluated. 

HVJ-Envelope/HSP65 DNA +IL-12 DNA vaccine treatment significantly reduced the bacterial loads of MDR-TB as 
compared to saline control group(P<0.05) (Table2). 

Therapeutic efficacy of HVJ-Envelope/HSP65 DNA + IL-12 DNA was also observed, using in vivo humanized 
immune models of IL-2 receptor -chain disrupted NOD-SCID mice constructed with human PBL (SCID-PBL/hu)[8,9]. 
Therapeutic vaccination with HVJ-Envelope/HSP65 DNA+IL-12 DNA group resulted in significantly therapeutic 
activity even in SCID-PBL/hu mice which exerted human T cell immune responses(Table 2A). 

Table 2A.  The Development of Novel Vaccines for M.tuberculosis using animal model 
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Furthermore, the therapeutic activity of this vaccine was evaluated in a nonhuman primate model infected with 

M.tuberculosis.  
Immune responses of cynomolgus monkey at 11 weeks after challenge of M.tuberculosis Erdman strain by 

intratracheal instillation were augmented.  The proliferation of PBL in therapeutic vaccination of monkeys in the group 
with HVJ-Envelope/HSP65 DNA +IL-12 DNA was augmented (data not shown).  This vaccine also improved the 
survival of monkeys, compared to the saline (control) group, after TB challenge(Fig.2).  All five monkeys from the 
group of HVJ-Envelope/HSP65DNA+IL-12DNA vaccine were alive (100% survival).  In contrast, 3 monkeys out of 5 
from the saline control group were alive (60% survival).  These results demonstrate that HVJ-Envelope/HSP65DNA+ 
IL-12DNA vaccine could provide strong therapeutic efficacy against TB, MDR-TB or XDR-TB in the cynomolgus 
monkey models as well as murine models 
 

 

 

 

 

 

 

 

 

 

Fig 2. Therapeutic efficacy (survival) of HVJ-Envelope/HSP65DNA+IL-12DNA vaccine 130 days after TB infection using cynomolgus monkey 
models. 

(c) Discussion 

The HSP65+hIL-12/HVJ vaccine exerted a significant prophylactic effect against TB, as indicated by: 1) extension of 
survival for over a year; 2) improvement of ESR and chest X-ray findings; 3) increase in the body weight; 4) 
augmentation of immune responses, in a cynomolgus monkey model which closely mimics human TB disease.  It is very 
important to evaluate the long survival period in a monkey model, as human TB is a chronic infection disease.  
Furthermore, the decrease in the body weight of TB patients is usually accompanied by a progression of the disease. [10] 

DNA vaccine are a relatively new approach to immunization for infectious diseases.1,2,5,11-14 

Prophylactic and therapeutic DNA vaccines were established by using several kinds of vectors such as (1) 
HVJ-liposome, (2) HVJ-envelope, (3) adenovirus vector, (4) adeno-associated virus vector (AAV), (5) lenti-virus 
vector.1,2,9 

We have developed a hemagglutinating virus of Japan envelope (HVJ-Envelope) using inactivated Sendai virus, as a 
nonviral vector for drug delivery.15-17 It can deliver very efficiently DNA, siRNA, proteins and anti-cancer drugs into 
cells both in vitro and in vivo15,18,19. Therefore, HVJ-Envelope was used as an efficient and safe vector for DNA vaccine 
against TB in the present study. 
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In the guinea pig model, HSP65+gpIL-12/HVJ provided better protection against the pulmonary pathology caused by 
pulmonary infection with TB than BCG vaccination (data not shown).  In the present study, it was demonstrated that 
BCG vaccine priming and HSP65+h IL-12/HVJ booster could provide extremely strong (100% survival) efficacy against 
M.tuberculosis compared to BCG alone (33% survival) in the cynomologus monkey model.  In Japan and other 
countries, the BCG vaccine is inoculated into human infants (0~6months after birth).  Therefore, BCG priming in infants 
and HSP65+h IL-12/HVJ boosters for adults (including junior high school students, high school students and old 
persons) may be required for the significant improvement of clinical protective efficacy against TB. 

Furthermore, the HSP65+hIL-12/HVJ vaccine exerted a significant therapeutic effect against TB, as indicated by: (1) 
extension of survival of mice infected with XDR-TB, (2) decrease in the CFU of TB in lungs, liver and spleen of mice 
infected with MDR-TB as well as drug-sensitive TB(H37RV), (3) decrease in the CFU of TB in these organs of mice 
challenged with TB in the in vivo humanized immune model of SCID-PBL/hu, (4) augmentation of immune responses, in 
a cynomologus monkey model which closely mimics human TB disease.  It is important to evaluate the survival of 
monkey [7,8]. Increases in the survival rate of the monkeys treated with this vaccine were observed, compared to the 
control monkeys treated with saline.  Increase in the survival rate of the monkeys treated with 
HVJ-Envelope/HSP65DNA+IL-12DNA+Ag85B DNA+Ag85A DNA was also strongly observed in the therapeutic 
models of monkeys(Table 2B).  In the recent study, it is demonstrated that granulysin vaccine shows therapeutic efficacy 
against TB in mice(Table 2B).  Therefore, the combination of these therapeutic vaccines might be useful in the future. 

MDR-TB and XDR-TB are becoming big problems in the world.  About 500,000 new patients with MDR-TB are 
shown every year.  However, the effective drugs against MDR-TB are few. 

The HVJ-Envelope/HSP65DNA+IL-12DNA vaccine exerted the therapeutic activity even against XDR-TB, which is 
resistant to RFP, INH, SM, EB, KM, EVM, TH, PAS, LVFX, PZA and only sensitive to CS.  Thus, our results with the 
HVJ-Envelope/HSP65 DNA+IL-12 DNA vaccine in the murine therapeutic model and cynomolgus monkey therapeutic 
model should provide a significant rationale for moving this vaccine into clinical trial.  Furthermore, we have 
established chronic TB disease model using mouse infected with TB in the aerosol chamber (data not shown).  By using 
this model, therapeutic efficacy of this vaccine was also observed. 

Thus, we are taking advantage of the availability of multiple animal models to accumulate essential data on the 
HVJ-envelope DNA vaccine in anticipation of a phase I clinical trial.  

5. Acknowledgements 

This study was supported by Health and Labour Science Research Grants from MHLW, international collaborative 
study grants from Human Science foundation and Grant-in-Aid for Scientific Research(B) from the Ministry of 
Education, Culture, Sports, Science and Technology Japan, and Grant of Osaka Tuberculosis Foundation.. 

6. References 

1. Yoshida S, Tanaka T, Kita Y, et al. DNA vaccine using hemagglutinating virus of Japan-liposome encapsulating combination encoding 
mycobacterial heat shock protein 65 and interleukin-12 confers protection against Mycobacterium tuberculosis by T cell activation.  Vaccine 
2006, 24 1191-1204. 

2. Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, et al. Evaluation of a novel vaccine(HVJ-liposome/ HSP65 
DNA+IL-12 DNA) against tuberculosis using the cynomologus monkey model of TB. Vaccine 2007; 25(16):2990-3 

3. Okada M, Kita Y. Tuberculosis vaccine development ; The development of novel (preclinical) DNA vaccine. Human Vaccines 6:3,1-12 2010 
4. Walsh GP, Tan EV, dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, et al. The Philippine cynomolgus monkey provides a new 

nonhuman primate model of tuberculosis that resembles human disease. Nat Med 1996;2(4):430-6. 
5. Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, et al.  Novel recombinant BCG and DNA-vaccination against tuberculosis 

in a cynomolgus monkey model.  Vaccine 2005;23:2132-2135. 
6. Saeki Y, Matsumoto N, Nakano Y, Mori M, Awai K, Kaneda Y. Development and characterization of cationic liposomes conjugated with 

HVJ (Sendai virus). Hum Gene Ther. 1997;8(17):2133-41. 
7. Okada M, Yoshimura N, Kaieda T, Yamamura Y, Kishimoto T. Establishment and characterization of human T hybrid cells secreting 

immunoregulatory molecules. Proc Natl Acad Sci U S A. 1981; 78(12):7717-21. 
8. Oada M, Okuno Y, Hashimoto S, Kita Y, Kanamaru N, Nishida Y, et al. Development of vaccines and passive immunotherapy against SARS 

corona virus using SCID-PBL/hu mouse models. Vaccine 2007;25:3038-3040. 
9. Tanaka F, Abe M, Akiyoshi T, Nomura T, Sugimachi K, Kishimoto T, et al. The anti-human tumor effect and generation of human cytotoxic 

T cells in SCID mice given human peripheral blood lymphocytes by the in vivo transfer of the Interleukin-6 gene using adenovirus vector. Cancer 
Res 1997;57(7):1335-43. 

10.  Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001; 19:93-129. 
11.  Huygen K. DNA vaccines: application to tuberculosis. Int J Tuberc Lung Dis 1998;2(12):971-8. 
12.  Lowrie DB. DNA vaccines against tuberculosis. Curr Opin Mol Ther 1999;1(1):30-3. 
13.  Hoft D. Tuberculosis vaccine development:goals, immunological design, and evaluation. Lancet 2008;372:164-75. 



Okada M. et al. / Procedia in Vaccinology 2 (2010) 34–39 39

14.  Gupta UD, Katoch VM, McMurray DN. Current status of TB vaccines. Vaccine. 2007;25:3742-51. 
15.  Kaneda Y, Nakajima T, Nishikawa T, Yamamoto S, Ikegami H, Suzuki N et al. Hemagglutinating virus of Japan (HVJ) envelope vector as a 

versatile gene delivery system. Mol Ther 2002; 6: 219–226. 
16.  Kaneda Y. New vector innovation for drug delivery: development of fusigenic non-viral particles. Curr Drug Targets 2003; 4: 599–602. 
17.  Kaneda Y, Yamamoto S, Nakajima T. Development of HVJ envelope vector and its application to gene therapy. Adv Genet 2005; 53: 307–332. 
18.  Ito M, Yamamoto S, Nimura K, Hiraoka K, Tamai K, Kaneda Y. Rad51 siRNA delivered by HVJ envelope vector enhances the anti-cancer 

effect of cisplatin. J Gene Med 2005; 7: 1044–1052. 
19.  Mima H, Yamamoto S, Ito M, Tomoshige R, Tabata Y, Tamai K et al. Targeted chemotherapy against intraperitoneally disseminated colon 

carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol Cancer Ther 2006; 5: 1021–1028. 


