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Genetic Control of Human Brain Transcript Expression
in Alzheimer Disease

Jennifer A. Webster,1,2,3,16 J. Raphael Gibbs,4,5,16 Jennifer Clarke,6 Monika Ray,7 Weixiong Zhang,7,8

Peter Holmans,9 Kristen Rohrer,4 Alice Zhao,4 Lauren Marlowe,4 Mona Kaleem,4

Donald S. McCorquodale III,10 Cindy Cuello,10 Doris Leung,4 Leslie Bryden,4 Priti Nath,4

Victoria L. Zismann,1,2 Keta Joshipura,1,2 Matthew J. Huentelman,1,2 Diane Hu-Lince,1,2

Keith D. Coon,1,2,11 David W. Craig,1,2 John V. Pearson,1,2 NACC-Neuropathology Group,12

Christopher B. Heward,13,17 Eric M. Reiman,1,2,14 Dietrich Stephan,1,2,14 John Hardy,4,5

and Amanda J. Myers10,15,*

We recently surveyed the relationship between the human brain transcriptome and genome in a series of neuropathologically normal

postmortem samples. We have now analyzed additional samples with a confirmed pathologic diagnosis of late-onset Alzheimer disease

(LOAD; final n ¼ 188 controls, 176 cases). Nine percent of the cortical transcripts that we analyzed had expression profiles correlated

with their genotypes in the combined cohort, and approximately 5% of transcripts had SNP-transcript relationships that could distin-

guish LOAD samples. Two of these transcripts have been previously implicated in LOAD candidate-gene SNP-expression screens. This

study shows how the relationship between common inherited genetic variants and brain transcript expression can be used in the study

of human brain disorders. We suggest that studying the transcriptome as a quantitative endo-phenotype has greater power for discov-

ering risk SNPs influencing expression than the use of discrete diagnostic categories such as presence or absence of disease.
Introduction

Our hypothesis is that genetic variation driving gene

expression is integral to the processes involved in normal

and pathogenic aging of the human cortex. In contrast to

polymorphisms that change the amino acid sequence of

genes, many single-nucleotide polymorphisms (SNPs)

that are responsible for changes in gene expression might

have more subtle phenotype effects that better explain

diseases with complex modes of inheritance, including

many diseases of late onset. We have performed whole-

genome genotyping and transcriptome-expression analysis

on a series of control and neuropathologically confirmed

late-onset Alzheimer disease (LOAD) human brain samples

to uncover human-cortex expression quantitative trait loci

(eQTLs) that are relevant to both health and disease in the

aged brain.

eQTLs are genomic sequence variants (as determined

by genome-wide SNP analysis) that correlate with gene-

expression differences (as determined by transcriptome-

wide microarray experiments). eQTL studies are similar

to traditional genetic-association studies, but instead of
associating genetic markers with discrete traits such as

disease status, eQTL studies correlate genetic markers

with quantitative gene-expression levels. It has been sug-

gested that this could be a powerful and complementary

approach to detection of novel risk loci.1 The outputs

from this type of screen are SNP-transcript pairs in which

gene expression is correlated with genotype in a dose-

dependent fashion.

Human genome- and transcriptome-wide eQTL analysis

has been employed in the study of diseases such as

asthma, cardiovascular disease, hypertension, and obesity

with the use of human EBV-transformed immortalized

B cell lines (ECLs2,3,4,5), as well as adipose5 and liver6

tissue. To our knowledge, other than our screen of control

brain,7 no eQTL studies using human cortical tissues have

been published. Recent tissue microarray surveys report

that a significant proportion of the human transcriptome

is unique to the cortex;8,9 therefore, defining the transcrip-

tome-genome relationship in health and disease through

the use of brain tissue is crucial for unlocking novel risk

loci implicated in neurologic and psychiatric disorders.
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Subjects and Methods

Subjects
Our LOAD cohort was obtained concurrent to our control cohort7

from 20 National Alzheimer’s Coordinating Center (NACC) brain

banks and from the Miami Brain Bank (see Supplemental Data,

available online, for a list of sites). Our criteria for inclusion were

as follows: self-defined ethnicity of European descent, neuropa-

thologically confirmed LOAD or no neuropathology present, and

age of death greater than 65. We restricted the series to samples

with European ethnicity because there are known allele-frequency

differences between groups with different ethnicities and these

differences might distort our genomic SNP-screen results. Neuro-

pathological diagnosis was defined by board-certified neuropa-

thologists as per standard NACC protocols. Samples that had a

clinical history of stroke, cerebrovascular disease, Lewy bodies, or

comorbidity with any other known neurological disease were

excluded. LOAD or control neuropathology was confirmed by pla-

que and tangle assessment, 43% of the entire series having Braak

staging.10 Samples were de-identified before receipt, and the study

met local human studies institutional review board and HIPPA

regulations. This work is declared not human-subjects research

and is IRB exempt under regulation 45 CFR 46. We received a total

of 1174 tissue samples from the sites that replied to our request. Of

those samples, ~65% that met criteria were prepared for DNA and

RNA. Total sample counts equaled 486 LOAD cases and 279 neuro-

pathologically confirmed controls. Of the plated DNA and RNA,

we chose ~60% for inclusion in this pilot study. Inclusion at this

stage was determined by assessment of RNA and DNA quality

through visual inspection on gels.

Genotyping and Expression Profiling
DNA was hybridized to the Affymetrix GeneChip Human Mapping

500K Array Set (502,627 SNPs) as previously described.11,12 Geno-

types were extracted with the use of both SNiPer-HD13 and BRLMM

(Affymetrix, Santa Clara, CA) algorithms. Genotypes that exhibited

less than 98% concordance between calls were excluded. SNPs with

call rates less than 90% were excluded from the analysis. Hardy-

Weinberg equilibrium (HWE) was assessed with exact tests and

the PLINK analysis toolset.14 SNPs with HWE exact-test p values

less than 0.05, as well as SNPs with minor-allele frequencies less

than 1%, were excluded. Allele calls had a mean of 97% and a range

of 90%–99%. cRNA was hybridized to Illumina Human Refseq-8

Expression BeadChip (24,357 transcripts) via standard protocols.

Expression profiles were extracted and rank invariant normal-

ized15–17 with the use of the BeadStudio software available from

Illumina, with the Illumina custom error model used. Rank-

invariant-normalized expression data were log10 transformed,

and missing data were encoded as missing, rather than as a zero

level of expression. Chips with average detection scores less than

0.99 (5% of control chips, 8% of LOAD chips) were excluded from

the analysis. Transcripts that were detected in less than 90% of

the case or 90% of the control series were excluded from our study.

This was a modified criterion from our original report and included

36% of probes on the entire chip. This was done in an effort to

enrich for primary effects, particularly in the disease cohort. We

assessed correlations between 380,157 SNPs and 8650 transcripts.

Analysis
As in our prior report,7 we ran the genotypes from our cohort

concurrently in STRUCTURE,18,19 with seven other populations.
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To determine the degree of relatedness between the samples in

our cohort, we used the pairwise IBS and IBD calculators available

in the PLINK analysis toolset.14 We plotted sample relatedness

data in R, and we used the cmdscale function within the stats

package to perform a multidimensional scaling analysis of the

matrix of genome-wide IBS pairwise distances. For verification of

the reported gender of samples, the sex-check functionality in

the PLINK analysis toolset14 was used. Samples identified as

having a gender mismatch or gender ambiguity were excluded

from analysis.

Single-Locus Analysis

Prior to our analysis, transcript profiles were corrected for several

covariates by use of the R suite of programs. Expression profiles

were regressed against the sample data for several biological cova-

riates (gender, apolipoprotein E [APOE; MIM þ10774], allele dose,

age at death, and cortical region) and several methodological cova-

riates (day of expression hybridization, institute source of sample,

postmortem interval [PMI], and a covariate based on the total

number of transcripts detected in each sample). SNP genotype

was not included in this model, because we were interested in

covariate correction a priori to running our analysis. All covariates

except age at death, APOE 34 allele dose, and postmortem interval

were coded as factors for this analysis. All samples had complete

information for all covariates except PMI (n ¼ 10 LOAD samples,

1 control sample). Average PMI values were used for these samples.

Residuals from this analysis were employed in the single-locus

eQTL analysis.

To determine our single-locus eQTL effects, we regressed the

expression level of each transcript per sample on the number of

minor alleles (0, 1, or 2) for the 380,157 SNPs that met the cutoff

criteria. To capture both the effects that were independent

of disease status and the eQTL effects in which there was an effect

of disease, we included an interaction term for diagnosis in our

model. To allow for situations in which the eQTL effect differs

between LOAD cases and controls, we performed a two degree of

freedom (2 df) test comparing a model in which transcript expres-

sion depends on the additive effects of SNP and disease status,

together with their interaction term, against a model in which

expression depends only on disease status. The main effect of diag-

nosis was included in the model for prevention of spurious associ-

ations occurring when SNP allele frequencies and overall expres-

sion levels differ independently between cases and controls.

Including the interaction term allows the slope of the regression

of expression on minor-allele dosage to differ between cases and

controls. Allowing for differences between cases and controls via

a 2 df test slightly reduces power for detection of SNP effects that

are independent of disease status; however, this method greatly

increases power for detection of effects that are disease specific.

Furthermore, analyzing the entire cohort together considerably

increases power as compared to performing separate tests in cases

and controls. Uncorrected p values were retained from this analysis.

Genome-wide significance levels for each transcript were calcu-

lated by permutation of the subject labels, allowing for both non-

normality of the transcript data and linkage disequilibrium (LD)

among the SNPs. All permutated data sets were generated in the

same manner, through randomly permuting sample identifiers

in the transcript data (thus permuting all transcripts simulta-

neously). The replicate data sets were analyzed in the same way

as the real data. Permutation analysis was performed on the Trans-

lational Genome Research Institute’s IBM System Cluster 1350,

which contains a total of 1024 computing nodes and is housed

on the Arizona State University campus.
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To capture the relative contributions of our case and control

cohorts to the effects recovered in our 2 df model, we performed

individual analysis on each series. We analyzed the same model

without the diagnosis interaction term separately in cases and

controls. Significance of effects was not determined in this

modeling; therefore, permutation corrections were not performed.

The correlation coefficients from these analyses were extracted

with the use of the linear modeling (lm) functionality in R. The

adjusted correlation coefficients (r2adj CO [controls] and r2adj

CA [cases]) represent the portion of the expression variance ex-

plained by the SNP in each cohort, and the beta values (b cases

and b controls) give the magnitude and direction of effects.

Fisher’s exact tests20 were employed for assessing associations

between SNPs and diagnosis status without considering expres-

sion profiles. These were implemented in PLINK14 and should

correct for cases in which the allele frequencies of tested SNPs

are sufficiently small as to make a chi-square test inappropriate.

To determine whether known SNPs mapped to the transcript

probes, thus creating a possible false positive through non-biolog-

ically relevant differential hybridization, we used the Hapmap

CEU data. Hapmap SNPs that were variable in the CEU cohort

were mapped with respect to the transcript probes. LD was deter-

mined by the r2 statistic, and the r2 values between the significant

SNP within our screen and the SNP within the probe from the CEU

Hapmap data set were annotated within our results. It is presumed

that SNP pairs with higher LD are more likely to be putative false

positives if it is true that single SNP changes can affect the hybrid-

ization of the 50-mer transcript probes on the Illumina chips in

a way that is not biologically relevant. However, all data are re-

ported, because we have not made an independent assessment

of the SNP-within-probe effect.

Network Analysis

We incorporated both transcripts that were significantly associ-

ated with allele dosage and those that were differentially expressed

between LOAD cases and controls in our analysis. Our eQTL data

set was defined as transcripts with a SNP-transcript correlation p

value % 0.01 after 1000 permutations and a SNP effect that was

not in LD (r2 R 0.8) with a polymorphism in the probe. Our differ-

entially expressed data set was defined as transcripts identified

through significance analysis of microarrays (SAM21) with a false

discovery rate (FDR) < 1%. We used HQCUT22 to form the

networks from residual corrected transcript data, the Database

for Annotation, Visualization and Integrated Discovery

(DAVID)23,24 to map gene ontologies to the clusters found by

HQCUT, and the Network Edge Orienting program (NEO)25 to

incorporate SNPs into these networks. We determined hub genes

by examining the distribution of the number of links per gene

(n ¼ 1697). The cutoff level for hub genes was determined by

the following formulae: Cutoff threshold ¼ m þ (2 3 S), in which

m is the mean number of links and S is the standard deviation.

Assessment of Disease-Specific Effects

We wanted to assess whether profiling a specific neuropatholog-

ical disease was important in our recovery of new effects or

whether these findings were simply a result of the increase in

power through the doubling of our sample size. This is an impor-

tant distinction, because for some diseases it might be difficult to

sample from individuals with disease profiles; thus, knowing

whether disease effects can be captured in nondisease tissue is

important. To test this, we created a bootstrap control sample

with 364 subjects by using R to sample the genotype and covariate

data from the control portion of our data set with replacement and

introducing a small amount of random variation (smoothed boot-
The Am
strap). We used PLINK14 to evaluate the association between the

minor-allele dose of each SNP and the transcript-expression level

in the bootstrap sample, using the same 2 df model that we em-

ployed in the original analysis. Only SNP-transcript pairs that

were significant (2 df test, a ¼ 0.05) in our original analysis were

analyzed, and these were stratified on the basis of those that had

a significant interaction p value (interaction term a¼0.05, n¼665)

and those that did not (interaction term a > 0.05, n ¼ 1820).

We then evaluated the proportion of SNP-transcript pairs that

were detected in the LOAD and control data set and could be

detected in the bootstrap control sample.

Replication

A portion of our SNP-transcript effects were replicated in our entire

series through Taqman real-time PCR.26 Multiplex single-tube rela-

tive-quantification measurements were obtained with the assays

Hs01028610_m1 (ITPKB [MIM 147522]) and Hs00907680_g1

(DKFZp566B183 [MIM 611623]). Primer-limited beta-2-microglo-

bulin was used as the endogenous control. Efficiencies from

simplex reactions were 97% for Hs01028610_m1 and 100% for

Hs00907680_g1. Comparison of target and endogenous delta-CT

values in simplex reactions showed similar efficiencies; the abso-

lute values for slopes from delta-CT plots verses log input plots

were less than < 0.1, justifying our use of the comparative delta-

delta-CT method. All values were obtained from averages of three

replicate reactions per sample. No-RT reactions for all assays were

negative. Fold-change values were calculated relative to a normal-

izer sample present on all plates. Fold changes were corrected for

all covariates with the use of R. Analysis was performed in PLINK

as before, with the use of the corrected residuals. Multiple test

adjustments were computed with a Dunn-Sidák correction.27

Results

Sample

Table S1 gives all sample information. Two LOAD samples

(WGAAD-75 and WGAAD-270; see Figure S1) were found

to be ethnic outliers and were excluded from our analysis.

Samples were also screened for assessment of whether

they had some degree of relatedness, and all LOAD samples

were found to be unrelated. The following samples were

removed from the analysis because their genetically

predicted gender did not match their reported gender:

WGACON-105 (reported female appears to be male),

WGACON-108 (reported male appears ambiguous), WGA-

CON-212 (reported male appears ambiguous), WGAAD-

252 (reported male appears to be female), WGAAD-465

(reported male appears to be female), and WGAAD-479

(reported female appears to be male). Our total cohort

included 364 human brain tissue samples; 176 LOAD cases

and 188 controls after all exclusions.

Assessment of the expression profiles in the LOAD

cohort found that approximately 58% of the transcripts

on the Illumina Human RefSeq-8 Chip were expressed in

at least 5% of our LOAD cohort. This is the same portion

of the transcriptome that was found expressed in brain

in the control series, suggesting that there is not a major

skew in our LOAD-series profiles. Figure S2 graphs the

portion of significant transcript effects (uncorrected a ¼
0.05) for each covariate in both the LOAD and the control
erican Journal of Human Genetics 84, 445–458, April 10, 2009 447



cohorts. Note that our largest effects were with hybridiza-

tion date (methodological covariate) and APOE status (bio-

logical covariate), other covariates having less of an effect.

PMI was the covariate that had the smallest effect on our

data.

Single-Locus Analysis

Cis effects and trans effects were defined as described previ-

ously;7 cis associations were those that involved SNPs

within 1 Mb of the 50 end of the gene or 1 Mb of the 30

end of the gene and within the gene. This criterion was

utilized for consistency with our previous study. From

a practical perspective, it means that for each transcript,

~1% of the genome is defined as cis and 99% as trans. It

is important to note that all analyses were performed

genome-wide, such that all SNPs irrespective of location

were run against each transcript and permutations were

performed to obtain genome-wide significance. Thus, for

any of our SNP-transcript pairs, other definitions of cis

versus trans localizations can be applied, because our

significance calculations do not rely on distance.

After correction with 1000 permutations, approximately

9% of the transcripts showed a genome-wide significant

correlation with SNP genotype in the combined sample

of cases and controls (p % 0.05, 1000 permutations). We

identified 1829 SNP-transcript pairs with effects in cis in

the total cohort and 656 trans pairs, in which the SNP map-

ped greater than 1 Mb from the 50 or 30 end of the gene. We

found that 27% of all eQTL had a significant interaction

with diagnosis. For each phase of our study, 37% of cis

LOAD-interacting candidate transcripts in this screen over-

lap with those found in our first report, which considered

only control brains.7 The overlap with a large subset of

candidates found in the analysis of disease-free controls

suggests that end-stage neuropathological tissue does not

create a bias in expression profiling and that contributions

stemming from signal degradation and potential sampling

differences are minimal. This also suggests that within our

study, several of the SNP-transcript LOAD effects are risk

factors, much like the APOE E4 allele, and appear in

a portion of controls. For these effects, we assume that

within LOAD, there are additional environmental or unas-

sessed biological risk factors that cause predisposition to

LOAD. There is an 18% overlap with our previous report

considering both cis and trans results with no interaction

with diagnosis, and there is a 9% overlap with our previous

report considering all results with a positive interaction

term.

Figure 1 plots the �log of the uncorrected p value (�log

(p value)), the b values (slope), and the adjusted correlation

coefficients (adjusted r2) versus distance from the tran-

scription start site (TSS) for all of our cis effects. Many of

our cis effects mapped far downstream or upstream of the

TSS (Figure 1A). Although it is possible that there are regu-

latory elements that act over such long distances, finer

mapping will need to be performed for determination of

the extent to which they are true effects and of the extent
448 The American Journal of Human Genetics 84, 445–458, April 10
to which they reflect LD in these regions. In Figures 1B and

1C, it is of note that the size of effect is inversely propor-

tional to the distance from the TSS, as measured by either

the proportion of variance explained (Figure 1B) or the

slope (Figure 1C). This suggests that it is probable that

true effects map close to the TSS. We found approximately

as many cis negative correlations (minor allele is high

expresser) as cis positive correlations (major allele is high

expresser), greater differences being found between the

alleles mapping closer to the TSS (see Figure 1C). Table 1

lists the top eQTL results in which there was a significant

interaction with diagnosis, and Table 2 lists the top eQTL

results in which there appeared to be no diagnosis effect.

All results are listed in Tables S5 and S6.

Although each SNP-transcript pair is unique to either the

LOAD-interacting data set (Table 1, Table S5) or the nonin-

teraction data set (Table 2, Table S6), some of our transcripts

overlap between these lists. For our top results in Tables 1

and 2, abhydrolase domain-containing 12 (ABDH12), an-

kyrin repeat domain 27 (ANKRD27), ninein-like protein

(KIAA0980, [MIM *609580]), kinesin family member 1B

(KIF1B, [MIM *605995]), inorganic pyrophosphatase 2

(PPA2, [MIM *609988]), and peptidylprolyl isomerase-like

protein 3 (PPIL3) all occur on both Table 1 (diagnosis inter-

action effect) and Table 2 (no interaction). To investigate

why this overlap is occurring, we examined the SNPs

mapping to these transcripts and found two effects. In the

first case, the main effect appears to be with diagnosis, but

some SNPs just missed our cutoff for having a significant

interaction term (a¼0.05). For SNPs in ABDH12, ANKRD27,

KIAA0980, and KIF1B, as the LD between the main-effect

SNPs in Table 1 and the additional SNPs in the gene gets

weaker, the significance of the interaction term erodes until

it slips below our a¼0.05 cutoff, causing these subthreshold

lower-LD SNPs to occur in Table 2. In the second case, for the

transcripts PPA2 and PPIL3, there are actually separate LD

blocks that both contain eQTL SNPs, but only one of the

blocks has a significant interaction term. In this situation,

two separate eQTL effects are observed for the single tran-

script, and only one of them has a significant interaction

with LOAD. This effect is biologically plausible in that

SNPs in each block might be changing different transcrip-

tion-factor binding sites, one of which is implicated in

LOAD risk and the other of which is not.

Network Analysis

In our original report, each transcript was treated as a single

unit and run against the SNP profiles for the entire

genome. This type of analysis does not consider the inter-

dependence of transcript profiles or the network of effects

that might occur within the human brain. To capture this

additional information, we performed an initial network

analysis of a subset of our eQTL transcripts. For this anal-

ysis, we also included transcripts for which there was no

correlation of expression with genotype but was a signifi-

cant difference in transcript expression between cases

and controls. This would help in determining whether
, 2009



Figure 1. Cis Association Metrics Versus Distance from Transcription Start Site
Plotted on the x axis is the distance from the TSS mapped on the human genome build 36. y axis metrics are given, with slope in Figure 1C
corresponding to the b values from the correlations. Note that�log(p value) values were calculated in the 2 df model with the use of the
entire series, whereas the b values and the adjusted correlation coefficients were calculated separately in cases and controls, but all
values are plotted.
there were additional effects of our eQTL on downstream

expression that were relevant to disease and would not

be captured in a single-locus analysis.

Of the transcripts we used for our network analysis,

~27% were significantly correlated with minor-allele dose

(eQTL data set defined by 1000 permutations, a ¼ 0.01).

The remaining transcripts were included because they

were defined as being differentially expressed through

significance analysis of microarrays (SAM21) with an FDR

cutoff % 0.1% (differentially expressed [DE] data set).

The HQCUT algorithm recovered nine clusters in this

data set. Ten transcripts did not cluster within the network.

These transcripts were all from our eQTL data set. Figure 2

shows the resulting adjacency matrix. Table 3 gives

summary statistics for each cluster, including the major
The Am
ontology group mapped with the DAVID annotation for

each cluster.23,24 The full list of top ontology keywords

for each cluster is given in Tables S2A and S2B. Several of

these ontology groupings matched results from previous

LOAD-expression-only screens.28

To further assess our network, we examined whether any

transcripts within the network had an overrepresentation

of links to other transcripts (‘‘hub genes’’), suggesting

that they were controlling many downstream effects. The

essential nature of hub genes has been demonstrated

within studies using yeast.29 In our data set, the mean

number of links in our network was 56 and the standard

deviation was 38.78; thus, our cut off was 134 links, which

is indicated in Figure S3. Within our eQTL and DE network,

there were 62 hub genes, which are shown in Table 4.
erican Journal of Human Genetics 84, 445–458, April 10, 2009 449



Inter p Valuel r2 CAm r2 COn Dir.o

3.770 3 10�2 0.44 0.38 þ
4.160 3 10�2 0.17 0.31 -

7.080 3 10�7 0.13 �0.05 þ/�
9.490 3 10�4 0.12 �0.04 -

4.520 3 10�2 0.04 0.13 -

2.900 3 10�2 0.08 0.27 -

3.440 3 10�6 0.14 �0.05 �/þ
1.050 3 10�6 0.15 �0.05 �/þ
7.120 3 10�2 �0.01 0.13 þ
5.820 3 10�4 0.24 0.41 þ
3.110 3 10�2 0.15 0.01 -

4.230 3 10�2 0.14 0.33 -

1.270 3 10�2 0.24 0.14 -

2.990 3 10�3 0.12 �0.05 -

2.580 3 10�2 0.29 0.15 þ
3.530 3 10�2 0.5 0.41 -

3.120 3 10�2 0.48 0.27 þ
1.090 3 10�3 0.12 �0.04 -

1.050 3 10�3 0.13 �0.04 -

3.550 3 10�5 0.04 0.32 -

3.380 3 10�2 0.27 0.1 -

2.800 3 10�2 0.21 0.02 -

2.470 3 10�2 0.02 0.13 -

2.740 3 10�2 0.51 0.33 þ
1.790 3 10�3 0.14 �0.05 þ
1.760 3 10�3 0.13 �0.04 þ/�
2.330 3 10�2 0 0.14 þ
2.510 3 10�2 0.12 �0.02 þ

diagnosis interaction term. Listed is a subset of the

irical p value from 1000 simulations % 0.05, gene-

eQTL SNP and any polymorphism in probe (r2< 0.8),

d in alphabetical order. All data are also represented
Table 1. Top Transcript-SNP Pairs with a Significant Effect of Diagnosis

Probe IDa Symbolb Chr.c Bp Positiond Best SNPe S_Chr.f S_Pos.g Otherh Loc.i Raw p Valuej 1K p Valuek

GI_34147330-S ABDH12 20 25.2–25.3 rs6050598 20 25.3 40 cis 1.540 3 10�65 9.990 3 10�4

GI_14149802-S ANKRD27 19 37.8–37.9 rs259228 19 37.8 13 cis 1.190 3 10�31 9.990 3 10�4

GI_14916517-S AP3M1 10 75.6 rs26133 5 14.2 1 trans 3.280 3 10�9 1.500 3 10�2

GI_38261968-S APG12L 5 115.2 rs2483589 10 116.4 1 trans 7.930 3 10�9 2.000 3 10�2

GI_29739147-S ARL16 17 77.3 rs6565624 17 77.3 3 cis 4.360 3 10�12 9.990 3 10�4

GI_38327635-S C14orf4 14 76.6 rs1120277 14 76.5 0 cis 1.840 3 10�27 9.990 3 10�4

GI_23346408-S C20orf111 20 42.3 a-2038955 1 19.6 0 trans 2.040 3 10�9 2.000 3 10�2

GI_25092657-S C7orf27 7 2.5–2.6 rs3936086 16 13.6 1 trans 5.520 3 10�9 1.600 3 10�2

GI_37059735-S CWF19L1 10 102 rs11594333 10 101.9 6 cis 4.650 3 10�11 9.990 3 10�4

GI_39995081-S FLJ20303 5 6.7 rs4701742 5 66.7 10 cis 1.180 3 10�51 9.990 3 10�4

GI_32698961-S GDPD1 17 54.7 rs7223491 17 54.6 5 cis 5.770 3 10�15 9.990 3 10�4

GI_30061497-I GGTL3 20 32.9 rs6087619 20 32.8 23 cis 2.220 3 10�33 9.990 3 10�4

GI_22095346-S IGSF4 11 114.5–114.9 rs7125361 11 114.6 5 cis 3.020 3 10�26 9.990 3 10�4

GI_29171690-I ILVBL 19 15.1 rs11851301 14 94.2 0 trans 1.780 3 10�9 5.990 3 10�3

GI_37059782-S KIAA0980 20 25.4–25.5 rs6132819 20 25.2 35 cis 1.750 3 10�29 9.990 3 10�4

GI_41393558-I KIF1B 1 10.2–10.4 rs12120191 1 10.3 22 cis 1.530 3 10�79 9.990 3 10�4

GI_42658911-S LOC401470 8 93.2 rs11171739 12 54.8 5 trans 4.540 3 10�58 9.990 3 10�4

GI_38455399-S MADH5 5 135.5 rs2483589 10 116.4 1 trans 3.010 3 10�8 2.100 3 10�2

GI_5174552-S MFAP1 15 41.9 rs17546037 5 7.3 1 trans 7.340 3 10�9 5.990 3 10�3

GI_7662347-S MONDOA 12 121.0–121.2 rs3741452 12 121.2 1 cis 2.620 3 10�28 9.990 3 10�4

GI_31881619-A PPA2 4 106.5–106.6 rs2866799 4 106.7 19 cis 1.260 3 10�24 9.990 3 10�4

GI_45439315-I PPIE 1 40 rs1180341 1 39.8 2 cis 3.260 3 10�14 9.990 3 10�4

GI_19557635-A PPIL3 2 201.4–201.5 rs6715380 2 201.9 14 cis 2.340 3 10�12 9.990 3 10�4

GI_15011935-S RPS26 12 54.7 rs11171739 12 54.8 5 cis 1.150 3 10�70 9.990 3 10�4

GI_7657430-S SND1 7 127.1–127.5 rs1408015 13 106.9 1 trans 3.150 3 10�8 3.800 3 10�2

GI_5730084-S TCTEL1 6 159 rs10843090 12 28.1 0 trans 1.430 3 10�8 3.000 3 10�2

GI_8922751-S TYW1 7 66.1–66.3 rs6966142 7 66 8 cis 1.180 3 10�12 9.990 3 10�4

GI_41281748-I ZNF323 6 28.4 rs149970 6 28.1 8 cis 8.350 3 10�10 6.990 3 10�3

This table shows the list of transcript-SNP pairs that had transcript-specific empirically significant p values by our 2 df model and where there was a significant

effects, generated from the full list of associated transcript-SNP pairs (Table S5). Criteria for generation of subset includes: transcript-specific 2 df model emp

expression detection rate within both cases and controls R 99%, SNP call rate R 99% overall, minor-allele frequency R 5% in cases and controls, no LD between

and SNP accounting for 12% or greater of the variance in transcript expression in either cases of controls (adjusted r2 in cases or controls R 0.12). Genes are liste

in Table S5.
a GI illumina probe identifiers.
b Correlated transcripts.
c Transcript chromosome.
d Transcript position (listed in Mb).
e SNP with the smallest 2 df model–corrected (1000 permutations) p value for that transcript (dbSNP or Affymetrix identifiers listed).
f SNP chromosome.
g SNP position (listed in Mb).
h Number of other SNPs with a 2 df model p value for the transcript that was significant after 1000 permutations (a ¼ 0.05).
i Where the SNP was in cis or trans to the transcript.
j Uncorrected p value for the 2 df model.
k p value after correction of the 2 df model using 1000 permutations.
l p values for the interaction term in the 2 df model.
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Further examination of our network analysis found that

proportionally, most of our eQTLs were located in clusters

5 (44%), 2 (42%), and 3 (40%). Thirty-four percent of

cluster 2 transcripts had a significant interaction with diag-

nosis with at least one SNP, a higher proportion than any

other cluster (see Table 3). From at our list of hub effects

(see Table 4), 6% of LOAD eQTL transcripts in cluster 2

had greater than 134 genes linked to them, a greater

portion of hub transcripts than in any other cluster.

Thus, for clarity in this preliminary report, we focused on

cluster 2; however, all data are available for analysis on

the additional clusters (see Web Resources). To analyze

this cluster, we used the program NEO.25 We used SNPs

to anchor the edges of the network and infer causal rela-

tionships between pairs of coregulated transcripts. A

portion of the resulting network is diagrammed in Figure 3.

Taqman Replication of Effects

For our data sets, we have replicated several effects via other

methodologies. First, within these samples, we had previ-

ously shown that expression of the Microtubule-Associated

Protein Tau gene (MAPT [MIM þ157140]) is affected by

SNPs mapping to the gene, by using qRT-PCR.30 Analysis

of our data from the genome-wide screen is consistent with

our previous data on these samples, in that alleles that occur

on the major haplotype of MAPT (H1) are associated with

higher Tau transcript expression. This provides an internal

positive control within our full-genome screen in that look-

ing genome-wide, we can find effects that we have seen in

candidate-gene analysis of our samples. Additionally, we

have replicated our SNP-transcript-diagnosis relationship

for ITPKB and rs12125724 (Dunn-Sidák-adjusted 2 df test p

value ¼ 2.76 3 10�4) by using Taqman assays and the same

model that we applied to the whole-genome and transcrip-

tome data; however, for DKFZp566B133 and rs9309291,

our Taqman analysis results did not survive multiple testing

correction.

Candidates—cis eQTL

In terms of LOAD-specific effects, two LOAD candidate-

gene studies have been performed, examining SNP varia-

tion and gene expression. We have replicated both of these

results; however, more work clearly needs to be done in

independent series for determination of whether a greater

portion of our results replicate. In the first candidate study,

Lambert et al.31 examined the Transcription Factor CP2

gene (TFCP2/LBP-1c/CP2/LSF [MIM 189889]) and found

that a SNP within the 30 UTR of the gene had a genetic asso-

ciation with LOAD risk. Additionally, this report examined

expression in lymphoblasts from patients genotyped for

the 30 UTR polymorphism and found that absence of the

A allele at this site was associated with a lower transcript

expression. In our screen, although we did not obtain

a significant association by considering only SNP geno-

types localized to this gene, we did obtain a significant

eQTL effect when considering expression in combination

with genotype and diagnosis.m
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Inter p Value r2 CA r2 CO Dir.

5.2030 3 10�2 0.43 0.38 þ
7.0820 3 10�1 0.34 0.32 -

2.0130 3 10�1 0.25 0.13 -

1.3840 3 10�1 0.23 0.31 þ
3.374 3 10�1 0.23 0.19 þ
5.860 3 10�1 0.29 0.20 -

6.905 3 10�1 0.48 0.45 þ
7.053 3 10�1 0.24 0.19 -

5.377 3 10�2 0.27 0.17 þ
2.428 3 10�1 0.31 0.27 þ
8.820 3 10�2 0.43 0.40 -

2.312 3 10�1 0.12 0.21 -

7.537 3 10�1 0.24 0.20 -

2.113 3 10�1 0.25 0.15 þ
4.611 3 10�1 0.26 0.31 þ
7.180 3 10�2 0.27 0.26 -

3.401 3 10�1 0.23 0.23 -

2.100 3 10�1 0.31 0.19 -

6.832 3 10�1 0.22 0.18 -

4.383 3 10�1 0.23 0.12 -

7.720 3 10�1 0.20 0.24 þ
6.109 3 10�1 0.25 0.31 -

9.318 3 10�1 0.24 0.18 þ
8.078 3 10�1 0.22 0.20 -

6.970 3 10�1 0.29 0.19 -

1.424 3 10�1 0.34 0.26 -

1.721 3 10�1 0.32 0.14 þ
5.155 3 10�2 0.25 0.09 -

6.325 3 10�1 0.25 0.23 -

2.506 3 10�1 0.42 0.40 -

3.116 3 10�1 0.43 0.46 þ
9.659 3 10�1 0.20 0.21 -

5.462 3 10�1 0.33 0.26 -

nosis interaction term. Criteria for selection of the

ll data set is available in Table S6. All headers are as
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Table 2. Top Transcript-SNP Pairs without a Significant Diagnosis Interaction

Probe ID Symbol Chr. Bp Position Best SNP S_Chr S_Pos Other Loc. Raw p Value 1K p Value

GI_34147330-S ABDH12 20 25.2–25.3 rs4815412 20 25.3 40 cis 6.890 3 10�64 9.990 3 10�4

GI_8923854-A AD-017 3 52.7 rs1961958 3 52.6 31 cis 1.450 3 10�53 9.990 3 10�4

GI_22748838-S AHSA2 2 61.3 rs720201 2 61.2 19 cis 8.940 3 10�24 9.990 3 10�4

GI_14149802-S ANKRD27 19 37.8–37.9 rs438268 19 37.8 13 cis 1.840 3 10�36 9.990 3 10�4

GI_23238227-S CHST7 X 46.3 rs760697 X 46.3 3 cis 1.890 3 10�23 9.990 3 10�4

GI_25306276-S EFG1 3 159.8–159.9 rs9832803 3 159.9 7 cis 1.420 3 10�34 9.990 3 10�4

GI_31542792-S FN3K 17 78.3 rs11078015 17 78.4 16 cis 3.130 3 10�79 9.990 3 10�4

GI_24431963-S HBS1L 6 135.3–135.4 rs4646871 6 135.3 15 cis 1.080 3 10�27 9.990 3 10�4

GI_37059782-S KIAA0980 20 25.4–25.5 rs2258719 20 25.2 35 cis 1.860 3 10�28 9.990 3 10�4

GI_21314694-S KIAA1449 3 39.1 rs811971 3 39.1 22 cis 5.080 3 10�39 9.990 3 10�4

GI_41393558-I KIF1B 1 10.2–10.4 rs10492972 1 10.3 22 cis 1.650 3 10�66 9.990 3 10�4

GI_4826813-A KTN1 14 55.1–55.2 rs10137340 14 55.1 4 cis 2.650 3 10�23 4.995 3 10�3

GI_24308385-S LOC115294 8 52.9 rs17212214 8 53 21 cis 2.020 3 10�28 9.990 3 10�4

GI_37546921-S LOC339804 2 61.2 rs720201 2 61.2 13 cis 1.590 3 10�25 9.990 3 10�4

GI_40786403-S LOC374969 1 43.0–43.1 rs323720 1 43 12 cis 6.260 3 10�37 9.990 3 10�4

GI_28603839-S MGC10120 10 102 rs6584356 10 102 3 cis 9.020 3 10�37 1.998 3 10�3

GI_33859747-S MGC2752 19 63.8 rs10413586 19 63.8 1 cis 3.940 3 10�32 9.990 3 10�4

GI_31652223-A MRPL21 11 68.4 rs478647 11 68.5 10 cis 1.850 3 10�35 9.990 3 10�4

GI_28872733-I MRPL43 10 102.7 rs4917916 10 102.7 5 cis 1.520 3 10�23 9.990 3 10�4

GI_29826284-A MRPL47 3 180.8 rs10513762 3 180.8 2 cis 1.750 3 10�25 9.990 3 10�4

GI_6912539-S NUBP2 16 1.8 rs3848348 16 1.8 18 cis 9.170 3 10�31 9.990 3 10�4

GI_40288186-A PDLIM2 8 22.5 rs2291232 8 22.5 11 cis 8.470 3 10�43 9.990 3 10�4

GI_30179910-A PILRB 7 99.8 rs1000215 7 99.4 6 cis 4.330 3 10�28 9.990 3 10�4

GI_31881619-A PPA2 4 106.5–106.6 a-1897043 4 106.5 19 cis 3.770 3 10�28 9.990 3 10�4

GI_19557635-A PPIL3 2 201.4–201.5 rs10205561 2 201.5 14 cis 2.210 3 10�32 9.990 3 10�4

GI_28274698-S RAB3IP 12 68.4–68.5 rs11177823 12 68.4 3 cis 1.280 3 10�44 9.990 3 10�4

GI_14149701-S RNF167 17 4.8 rs238237 17 4.4 4 cis 2.600 3 10�29 9.990 3 10�4

GI_4506738-S RPS6KB2 11 67 rs1476792 11 67 2 cis 1.990 3 10�21 9.990 3 10�4

GI_34147665-S STK25 2 242.1 rs3755400 2 242 1 cis 2.170 3 10�31 9.990 3 10�4

GI_6912707-S TIMM10 11 57.1 rs2729371 11 57.1 6 cis 1.590 3 10�72 9.990 3 10�4

GI_15451941-S UBA52 19 18.5 rs1468475 19 18.5 6 cis 3.550 3 10�81 9.990 3 10�4

GI_4557872-S UROS 10 127.5 rs1571278 10 127.5 14 cis 7.880 3 10�28 9.990 3 10�4

GI_37622342-A ZNF266 19 9.4 rs4804436 19 9.4 23 cis 6.870 3 10�44 9.990 3 10�4

This table lists transcript and SNP pairs that had transcript-specific empirically significant p values by our 2 df model and where there was a nonsignificant diag

subset is as described in Table 1, except that the SNP had to account for greater than 20% of the variance in transcript expression in either cases or controls. The fu

described in Table 1.



Figure 2. Adjacency Matrix of the eQTL and DE Network
Figure 2A shows the adjacency matrix for our HQCUT network analysis. Modules in this figure are labeled c1–c9. Genes are listed by map
number (1–1697) that was assigned during the clustering procedure and is arbitrary. Dots represent inter- and intramodule relationships
between transcripts. Figure 2B shows the number of transcripts per cluster.
Our second LOAD hit that has been implicated in prior

studies is the glutathione-S-transferase (GSTO 2 [MIM

612314]) locus on chromosome 10q. This gene maps

within a linkage peak found in many family-based LOAD

linkage screens (for meta-analysis, see Hamshere et al.32)

and thus was studied as a LOAD candidate gene by Li

and colleagues.33 Their approach was slightly different

than a standard eQTL, in that they did not map expression

profiles directly in the linkage pedigrees but instead per-

formed expression profiling on separate samples and

then looked for differentially expressed genes that mapped

within linkage peaks and followed those candidates. They

found associations with SNPs both in GSTO 1 (p ¼ 0.007

[MIM 605482]) in and GSTO 2 (p ¼ 0.005), both of which

are tightly linked on chromosome 10, but only GSTO 1 was

differentially expressed. We did not see a significant eQTL

result with GSTO 1, and our analysis examining only

expression failed to detect differential expression at this

locus. We did see a GSTO 2 effect that had a significant

interaction with diagnosis. Running the GSTO 2 Illumina

Chip hybridization probe through Blat to determine

whether there was cross-talk between GSTO 1 and GSTO 2

with respect to our hybridization signal yielded a single

hit in the entire genome, mapping specifically to the 30

UTR of GSTO 2. Given that the Li et al. study expression

profiling was performed in a separate cohort that was just

3% of the size of this one (n ¼ 6 LOAD, 2 control brains)

and that we performed our expression and genotyping

using the same cohort, we feel that it is likely that the

true effect at this locus on chromosome 10q is with

GSTO 2. This speaks to the power of examining both
The Am
expression and genotypes in the same cohort because

correlations will detect linear relationships with gene

dosage, a method more powerful and accurate than simply

looking at gene expression alone. Additionally, trans effects

will be captured only by examining the relationship

between SNPs and expression together and will be missed

if SNPs and transcripts are assessed as separate data sets.

Finally, in both our control screen and our analysis of the

entire cohort, we replicated a result from one of the first

published eQTL screens using EBV-transformed lympho-

blasts from the Centre d’Etude du Polymorphisme Hu-

maine (CEPH) cohort.34 This study, using different plat-

forms for whole-genome and transcriptome analysis than

those used in our analysis, found one transcript that had

a similar cis association. This transcript was ribosomal

protein S26 (RPS26 [MIM 603701]), which encodes a ribo-

somal protein that is a component of the 40S subunit. For

RPS26, Cheung and colleagues reported significant associ-

ation with marker rs2271194, which is in complete LD

with two out of our six associated SNPs. This replicated

result suggested that this SNP-transcript pair is unlikely

to be a false positive. Additionally, two more recent screens

have also found an effect with RPS26, further validating

the result.2,6 One of those studies, using human liver

samples, has implicated RPS26 in diabetes pathways,6

and we have found it to have a significant interaction

with diagnosis in our screen. These observations suggest

that the function of ribosomal proteins might not be

limited to stability and efficiency of the ribosome. Ribo-

somal proteins may participate in the regulation of specific

transcripts or families of transcripts being processed by the
erican Journal of Human Genetics 84, 445–458, April 10, 2009 453



ribosome, and many of those might be integral to disease

processes.35

Candidates—trans eQTL

Although it is more difficult to capture validated trans

effects because of the fact that there are no distance limita-

tions placed upon their discovery, some trans effects are

likely to be real and of great interest for disease. Conceptu-

alization of how trans effects could occur is less obvious

than that of cis effects, but it is important to remember

that our screen captures only the expression profiles of

poly-A tailed mRNA. Thus, trans effects could be occurring

because the trans SNP is affecting an intermediary (such as

miRNA) that we have not captured within our screen.

Another possible scenario is that trans effects occur though

interchromosomal relationships in transcription of mRNA.

Nunez and colleagues used chromatin-conformation

capture to demonstrate that interchromatin pairing of

disparate DNA sequences (in their example genes on chro-

mosomes 21 and 2) is a common feature of estrogen

receptor-a-mediated transcription.36 Thus, there could be

direct action of trans SNPs on target transcripts located

on different chromosomes.

Our network analysis is informative for assessing the

trans effects in our screen. In our preliminary analysis we

focused on cluster 2, because this cluster contained the

Table 3. Summary Statistics for the eQTL and DE Network

Cluster Total eQTL LOAD Top Process Score Count p Value

1 8% 16% 7% *organ

morphogenesis

1.72 8 2.900 3 10�3

2 4% 42% 34% zinc finger,

C2H2 type

0.99 8 4.100 3 10�3

3 6% 40% 12% cell growth 1.12 5 2.400 3 10�2

4 20% 33% 16% *negative

regulation of

transcription,

DNA dependent

2.05 13 2.400 3 10�3

5 6% 44% 19% protein kinase

cascade

2.06 9 2.200 3 10�3

6 9% 12% 9% KRAB box 2.11 9 5.500 3 10�5

7 19% 21% 10% ligase activity,

forming carbon-

nitrogen bonds

1.78 12 6.400 3 10�3

8 14% 35% 15% mitochondrion 3.02 33 8.200 3 10�6

9 14% 19% 10% glycoprotein 3.42 49 3.900 3 10�6

Shown are the proportion of transcripts, out of the total number of tran-

scripts networked, that map to each cluster (Total), that had a significant

(corrected p value < 0.05 after 1000 permutations) correlation with allele

dose (eQTL), and that had significant interaction term in the 2 df model

(LOAD). Top processes were defined as ontology groups that had the lowest

p value within the annotation cluster with the highest enrichment score.

The exception to this definition is indicated by an asterisk; for clusters 1

and 4, all of the ontology groups within the top enrichment-score bin

were the same for these two clusters (see Table S2B for ontology groupings

in this set). Therefore, for these clusters, top processes are listed within the

next most significant grouping of ontologies. Enrichment scores (Score),

numbers of transcripts within the top annotation cluster (Count), and p

values for the EASE scores for each process (p Value) are given. Table S2A

lists all top ontologies for each cluster.
454 The American Journal of Human Genetics 84, 445–458, April 10
highest proportion of transcripts that had LOAD eQTL

relative to the other clusters. Within this network, the

main effects were with the transcript C6orf29 (171 links

total, 58 links within cluster 2, accounting for 90% of the

cluster [OMIM 606107]) and the SNP rs9309291 (signifi-

cant effect with 63 transcripts; all effects had a significant

interaction with diagnosis, and ten of those transcript

mapped to cluster 2). C6orf29 is a member of a family of

three transporters, one of which was cloned because of

its ability to suppress a yeast choline transport mutation.37

Although currently the best LOAD biomarker is beta-

amyloid (for review see study by J. Hardy38), it has been

proposed that cholinergic systems are involved in Alz-

heimer disease.39 It is known that cholinergic neurons

are particularly susceptible to Alzheimer disease pathogen-

esis, further implicating this network in the pathogenesis

of LOAD. Thus, C6orf29 is a putative trans target in our

screen.

Discussion

We have performed a genome- and transcriptome-wide

screen to assess the downstream effects of risk variation

for LOAD on mRNA expression. The importance of work

and data is clear.

First, by focusing on a quantitative endo-phenotype

(expression) as opposed to a discrete phenotype (diag-

nosis), we have considerable power to detect subtle regula-

tory effects in a relatively small cohort. Statistical calcula-

tions have predicted that sample sizes on the order of

100 are sufficient for 80% power for eQTL studies.40 This

is an order of magnitude less than that predicted for

genome-wide association studies (GWAS).41 We can clearly

see this by comparing this current analysis to our previous

GWAS.11 The cohort in this report was a part of our larger

GWAS sample and is approximately one-quarter the

sample size of that report (n ¼ 1411 in Reiman et al.,11

364 samples in this study). In our GWAS screen with an

unstratified analysis, our only result after correction for

multiple testing was with APOE.12 With rank ordering of

our uncorrected GWAS p values, it is of note that 6% of

our permutation-corrected eQTL SNPs fall within the top

5% of our uncorrected GWAS effects. Given that these

effects were statistically significant in the smaller eQTL

cohort but not in the larger GWAS screen, eQTL quantita-

tive analysis might be more powerful for detection of

expression effects than discrete trait analysis. Of course,

this does not obviate the need for large GWAS studies,

because our approach would not capture coding changes

or other types of risk variants not associated with changes

in expression; however, it is clear that eQTL approaches in

smaller cohorts can capture regulatory risk effects that

would be found only in GWAS screens of considerably

larger size.

Second, assaying the tissue relevant to the disease of

interest is crucial. Expression studies profiling different
, 2009



Table 4. Table of Hub Transcripts in the eQTL and DE Network

Cluster Probe ID Name Entrez No. Links

2 GI_37620215-S LOC253827 253827 134
4 GI_21314672-S CLST11240 51751 134

2 GI_34577082-A RSU1 6251 136
4 GI_4505876-A PLEC1 5339 136

7 GI_29740938-S KIAA1136 57512 136

7 GI_4504482-S HPRT1 3251 136

8 GI_4505718-S PEX11B 8799 136

7 GI_4503064-S CRYM 1428 137

2 GI_21389426-S MGC29891 126626 138

4 GI_34577104-A RNPC1 55544 138

4 GI_4758085-S CSRP1 1465 138

7 GI_27734858-S LOC285533 285533 139
7 GI_37221176-S NUDT11 55190 139
3 GI_34222376-S MGC44287 340547 142

4 GI_41152085-S SERPINB6 5269 142

4 GI_4508040-S ZNF91 7644 142
7 GI_21264573-S TM4SF13 27075 143
4 GI_13899238-S MGC10812 54858 144
3 GI_37538660-S IPLA2(GAMMA) 50640 146

4 GI_27754195-S MTND3 4537 146

4 GI_31982916-S FLJ23042 5829 146
4 GI_34147573-S ITGB5 3693 146

4 GI_8922566-S FLJ10647 55194 146

4 GI_31543199-S C7orf21 83590 147

2 GI_33589825-S APG10L 819941 148
3 GI_31543151-S MGC14817 84298 148

4 GI_38569399-S ITPKB 3707 148
4 GI_4755133-S DOK1 1796 149

4 GI_6005923-S TU3A 11170 149

1 GI_37550007-S KIAA0121 9686 150

3 GI_41393596-S CSAD 51380 150

1 GI_38788287-S ZNF160 90338 151
4 GI_19923329-S CTDSP2 10106 151

1 GI_28558992-I TG737 8100 153

4 GI_24308106-S DKFZp566C0424 26099 153

7 GI_21361148-S RGS7 6000 155

4 GI_38176295-I LASS1 10715 156

8 GI_34335244-A NMNAT2 23057 156

4 GI_11968040-S DCLRE1C 64421 158

4 GI_30795118-A FBXO18 84893 159
8 GI_19913427-S ATP6V1B2 526 159

1 GI_8922963-S SYNJ2BP 55333 163

4 GI_13376551-S FLJ14346 80097 163

4 GI_24308252-S DTX2 113878 163

4 GI_25453471-A EEF1D 1936 164

4 GI_4755141-S INPPL1 3636 168
2 GI_14249467-I C6orf29 80736 171
1 GI_14249445-S FLJ14431 84869 175

8 GI_23111022-S SNX10 29887 177

8 GI_10863934-S RTN1 6252 178

4 GI_19923612-S FLJ21128 80153 179
3 GI_42655861-S KIAA0492 57238 180

4 GI_19913359-S TBL1X 6907 180
4 GI_5803097-S MYST3 7994 182

8 GI_31542527-S DKFZP566B183 25977 186
1 GI_36030972-S UBXD4 165324 188

4 GI_38569463-S SASH1 23328 195

8 GI_20357538-A ATP6V1G2 534 202

8 GI_5454069-S SLC9A6 10479 202

4 GI_28558997-A PTBP1 5725 209

8 GI_45238856-S LOC114928 114928 214
4 GI_27478393-S LOC285919 285919 230
The Ame
human tissues have shown that the human brain transcrip-

tome is unique.8,9 Additionally, recent eQTL work exam-

ining phenotypes involved in body mass found that there

was an order of magnitude difference between the effects

that they found by transcriptome sampling in blood verses

adipose tissue, many more significant traits being found in

adipose, their tissue of interest.5 We are focused on neurode-

generative disease; therefore, we have sampled brain tissue.

A possible argument could be put forth that postmortem

tissue does not have relevance for disease in living subjects;

however, recent in vivo work profiling MAPT in human

cerebral spinal fluid and examining the relationship

between Tau levels and MAPT genotype has recapitulated

our findings in postmortem samples,30,42,43 suggesting

that postmortem findings are relevant to in vivo disease

processes. This last point is crucial, because these eQTL

targets could be the next generation of biomarkers. eQTL

biomarkers have the added benefit of not only being molec-

ular but having mapped genotype profiles, which might be

easier to assay than a molecular marker. Identifying

biomarkers that could further classify preclinical subgroups

and identify subclasses of rapid converters would help

significantly reduce the cost of drug trials.

Third, by coupling SNP variation with changes in expres-

sion, we are able to map the neurobiological consequences

of our genetic findings. We began this screen because we

were frustrated with our own and others’ efforts in mapping

novel risk factors for late onset Alzheimer disease. As of

2006, 355 additional candidate genes for LOAD have been

examined.44 Of the subset of genes providing enough infor-

mation for meta-analysis, only ~20% had variants that

replicated. The majority of the replicated risk variants

were noncoding; thus, the biological consequences of those

changes are unknown. We felt that examining downstream

functionality of putative risk variants would help in distin-

guishing between true risk variants and those that were

merely markers of disease. Clearly, our efforts have had

some success, in that we are able to distinguish the genetic

effects of GSTO 2, the true risk gene, from GSTO 1, which

most likely associated with risk only because of high LD.

Fourth, although not crucial for detection of all effects, it

was important that our study sampled disease tissue. In

this study, over half the LOAD-associated effects that we

detected were not seen in our screen using control tissue.7

This could be due to differences in power between the first

Listed are all of the transcripts with greater than 134 links (see Supple-

mental Data). Transcripts correlated with SNP genotype are highlighted

in bold. Cluster number (cluster), probe number from the Illumina

RefSeq-8 chip (Probe ID), transcript name from the Illumina RefSeq-8

chip (Name), Entrez gene identity number (Entrez), and the number of tran-

scripts linked to the target (No. Links) are given. All eQTL transcripts high-

lighted in bold have a significant diagnosis interaction (a ¼ 0.05), have

SNPs mapping in trans, and are differentially expressed between cases

and controls (SAM FDR < 0.1%), with the exception of MGC10812, which

met other the criteria but was not differentially expressed.
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Figure 3. Cluster 2 C6orf29 Network
Diagrammed in the figure are the predicted
transcript relationships given from our
analysis using NEO25 to impart direction-
ality on the transcript-transcript correla-
tions that we predicted from HQCUT22 for
the transcripts in cluster 2. For clarity,
only transcripts that had correlations with
SNP genotype and an interaction with
C6orf29 are listed (25% of cluster 2). In
the figure, SNP-transcript relationships are
given by dashed arrows and transcript-tran-
script relationships by solid arrows. Tran-
scripts are indicated by circles, gray circles
indicating transcripts where there was
a significant interaction with diagnosis in
the eQTL analysis and white circles indi-
cating no significant interaction term. Bidi-
rectional arrows indicate a feedback loop
between the two transcripts analyzed as
predicted by NEO analysis. Bidirectional
arrows divided by black circles indicate
that NEO predicted an unmapped hidden
confounder in the analysis of the relation-
ship between the two transcripts.
screen and our second screen, which was approximately

double the sample size; however, there is the possibility

that there are effects specific to disease tissue. To examine

these outcomes, we performed a bootstrap analysis to

create from the control cohort data a data set that was

equal to the total cohort sample size in our LOAD screen

(n ¼ 364). Comparison of the permuted control data set

to our entire cohort showed that there were few differences

in the profiles of the two samples (see Table S3). We then

tested whether within this larger control cohort we could

detect our LOAD effects. We stratified the results into those

that had a significant interaction term in our 2 df model

(LOAD set n ¼ 665, a ¼ 0.05) and those that were signifi-

cant for allele dosage but did not have a diagnosis effect

(non-LOAD set n ¼ 1820, a ¼ 0.05). The bootstrap sample

captured all of the non-LOAD set effects at an a ¼ 0.001

and 95% at an a ¼ 1 3 10�7, which was the minimum

p value that is able to survive the permutation correction.

We were able to detect a much smaller portion of the

effects with a significant interaction term, capturing only

66% of the LOAD set at an a ¼ 0.001. Results are shown

in Figure 4 and Tables S3 and S4. This suggests that

mapping disease-associated regulatory loci is more efficient

and effective if the sampling cohort includes samples with

known disease phenotypes; however, it is of note that we

did capture LOAD effects in control tissue; thus, for prelim-

inary screens, disease phenotypes might not be an issue.

Finally, the full public release of these data constitutes

a resource to the community of researchers working on

this prevalent and devastating disease. The data files and

sample information used in generating the analysis for

this paper are available at the website of A.J.M. Additional
456 The American Journal of Human Genetics 84, 445–458, April 10
genotype files are available at the Translational Genomics

Research Institute website. Additional expression data

and information have been deposited in NCBI’s Gene

Expression Omnibus (GEO GSE15222). DNA from the

samples employed in this screen is available on request

through the National Cell Repository for Alzheimer’s

Disease for fine mapping of particular effects.

Supplemental Data

Supplemental Data include Supplemental Acknowledgments,

three figures, and four tables and can be found with this article on-

line at http://www.ajhg.org/.
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Blat, http://genome.ucsc.edu/cgi-bin/hgBlat?command¼start

DAVID suite of programs, http://david.abcc.ncifcrf.gov/home.jsp
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Figure 4. SNP-Transcripts Specific to Disease Are More Likely
to Be Discovered in a Cohort with Disease-Specific Samples
The proportion of effects that we could detect from our current
study, utilizing brains from LOAD cases and nondemented controls,
in a sample of equal size (n¼ 364) generated by bootstrapping our
control data is plotted. The alpha cutoff is plotted on the x axis and
the proportion of effects detected is on the y axis. The proportion
of eQTLs detected of those that showed a significant diagnosis
interaction (a ¼ 0.05 for the interaction term in our 2 df model)
is shown by the filled circles and solid line. The proportion de-
tected of those that did not have a significant diagnosis effect
(interaction term p value R 0.05) is shown by the open circles
and dotted line. Counts and alphas used to generate this graph
are given in Table S4.
The Am
National Cell Repository for Alzheimer’s Disease, http://ncrad.iu.

edu/

NACC protocols, http://www.alz.washington.edu

NCBI’s Gene Expression Omnibus, http://www.ncbi.nlm.nih.gov/

geo/

Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/omim/

PLINK analysis toolkit, http://pngu.mgh.harvard.edu/~purcell/

plink/index.shtml

R suite of software, http://www.r-project.org/

Translational Genomics Research Institute website, http://www.

tgen.org/
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