NOTE

CORRECTION TO A CONSTRUCTIVE DECOMPOSITION AND FULKERSON'S CHARACTERIZATION OF PERMUTATION MATRICES

Patrick E. O'NEIL
Department of Mathematics, University of Massachusetts, Boston, Mass., USA

Received 23 August 1974

The purpose of this note is to point out an error in the paper [2], named in the title atove, published under my authorsisip in this Journal in 1971.

Consider the set P of $n \times n$ matrices $X=\left(x_{i j}\right)$ for which

$$
\sum_{i \in I} \sum_{j \in J} x_{i j} \geqslant|I|+|J|-n .
$$

for all $I, J \subseteq\{1,2, \ldots, n\}$, with $x_{i j} \geqslant 0$ for all $i, j \in\{1,2, \ldots, n\}$.
In [2], I presented what I thought was an elementary constructive proof of the theorem:

Theorem 1. Any matrix $X \in P$ may be decomposed as $X=S+N$, where S is a doubly stochastic natrix and N is non-ncgative in all entries.

The result is true and had previously been proven by Fulkerson [1]. The proof in [2], however, is invalid.

In [2], the following lemma was stated with adequate proof:
Lemma 1. If X is a matrix in P with at least one row suin or column sum greater than 1 , then there exists a row i with row sum greater than 1 and a column ; with column sum greater than 1 , such that $x_{i j}>0$.

The invalid proof that if $X \in P$ then $X=S+N$ runs as follows. If no row sum of S is greater than 1, then X is doubly stocnastic. Otherwise, X has a row i and column j as specified in Lemma 1. Lower the value of $x_{i j}$ unit either (a) row sum $i=1$, or (b) column sum $j=1$, or (c) $x_{i j}=0$.

This gives a new matrix $X^{(1)}$. Continuing in this manner, we note that in finite time a matrix $X^{(k)}$ will result, where no row sums are greater than one. Thus $X=X^{(k)}+N$, where $X^{(k)}$ is doubly stochastic and N has entries corresponding to the non-negative entries subtracted from X.

In 1973 I received a letter from Allan B. Cruse, University of San Francisco, pointing out that the indaction hypothesis required that each successive $X^{(i)}$ be in P, but that this was not proved. In fact it is not true, as the following counterexample shows. Consider the matrix

$$
M=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

It is easily seen that the matrix M iies in P since it contains the permutation matrix

$$
\pi=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Note too that: row sum $1=2>1$ and column sum $3=2>1$. But if the entry $M(1,3)$ is reduced to zero (as the proof above would have it), the result is not in P and contains no doubly stochast:c matrix; to see this, let $I=\{1,3\}$ and $J=\{1,3\}$.

I have had no success in finding a correct elementary constructive proof. A.B. Cruse has produced a generalization of this theorem which I find admirable. I hope it will soon be published. My own paper retains some value since it contains a proof that a subset of the inequalities defining P are "essential", as asserted by Fulkerson in [1] without proof.

References

II D.R. Fulkerson. Biorking Polyhedra, Graph Theory and ite Applications (Academic Press, New York, 1970).
[21 P.E. O'Neil, A construcive decompceition and Fulkerson's characterization of permutation matrices, Discrete Math. 1 (2) (1971) 197-201.

