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a b s t r a c t

The International Committee on Taxonomy of Viruses (ICTV) recognized the Polydnaviridae in 1991 as a
virus family associated with insects called parasitoid wasps. Polydnaviruses (PDVs) have historically
received limited attention but advances in recent years have elevated interest because their unusual
biology sheds interesting light on the question of what viruses are and how they function. Here, we
present a succinct history of the PDV literature. We begin with the findings that first led ICTV to
recognize the Polydnaviridae. We then discuss what subsequent studies revealed and how these findings
have shaped views of PDV evolution.

& 2015 Elsevier Inc. All rights reserved.
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Introduction

In the recent inaugural issue of The Annual Review of Virology
(ARV), Summers (2014) examined the question of what viruses are
and the ever-changing ways virologists have defined them since
their discovery in the 19th century. In the same issue, we reviewed
the Polydnaviridae (Strand and Burke, 2014), which was recog-
nized as a family of insect viruses by the International Committee
on Taxonomy of Viruses (ICTV) in 1991 but has largely languished
in obscurity in the broader virology literature. Even among insect
virologists, polydnaviruses (PDVs) have historically received

limited attention because their life cycle makes them difficult to
work with and their unusual biology was a disincentive for labs
vested in other, primarily model, species. Yet advances in recent
years have elevated interest in PDVs, precisely because their
unusual biology sheds interesting light on virus evolution and
what the essential qualities of viruses are. These considerations
also underlie why we were asked to provide a review on PDVs for
the 60th anniversary issue of Virology. We cannot avoid overlap
here with other recent summaries including the aforementioned
ARV article (Beckage and Drezen, 2012; Burke and Strand, 2012a;
Strand and Burke, 2012, 2013, 2014; Gundersen-Rindal et al., 2013;
Herniou et al., 2013). However in keeping with an anniversary
issue, we orient this paper a bit differently by discussing the PDV
literature in largely historical order. We begin with the findings
that first led ICTV to recognize PDVs as viruses. We then discuss
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what later studies found and how these results have progressively
shaped views of PDV evolution.

Early years: formal recognition of PDVs as a virus family

The study of PDVs began in the late 1960s and 1970s when
particles resembling viruses were observed by electron micro-
scopy (EM) in the reproductive tracts of a few insect species called
parasitoid wasps (Hymenoptera) (Rotheram, 1967; Vinson and
Scott, 1975; Stoltz et al., 1976). These insects are well known to
entomologists because of their widespread abundance, high spe-
cies diversity, and importance as biocontrol agents for many pest
species in agriculture and forestry. In contrast, they are generally
not familiar to other life scientists including virologists because of
their small size and specialized habits. In brief then, parasitoid
wasps are defined as insects that are free-living during their adult
stage, which reproduce by laying eggs on or in the bodies of other
arthropods referred to as hosts (Godfray, 1994; Pennacchio and
Strand, 2006). Wasp progeny develop into adults by feeding
parasitically on a single host and the host usually dies as a
consequence of being parasitized. Most parasitoid wasps are also
specialists that parasitize only one or a few host species.

The Hymenoptera is one of the largest insect orders (4200,000
species) and is divided into several superfamilies and many families.
Most of these taxa consist primarily or exclusively of parasitoids.
Studies in the late 1970s and early 1980s, however, suggested that
PDVs are only associated with wasps in one superfamily, the
Ichneumonoidea, which is divided into two families named the
Braconidae and Ichneumonidae (Krell and Stoltz, 1979, 1980; Stoltz
and Vinson, 1979). Studies during this period also noted that PDV
particles from braconid and ichneumonid wasps morphologically
differ from one another with the former having cylindrical, often
tailed nucleocapsids surrounded by a single envelope that resembled
some non-occluded baculoviruses (see below), and the latter having
fusiform nucleocapsids with two envelopes (Stoltz and Vinson, 1979).

Despite their dissimilar morphology, early studies also showed
that PDVs from braconids and ichneumonids share several features
including a common life cycle. Both persist in all cells of braconid or
ichneumonid wasps as integrated proviruses (Stoltz, 1990; Fleming
and Summers, 1991). Both also only replicate in pupal and adult
stage female wasps in nuclei of cells located in the ovaries called
calyx cells. Replication produces large numbers of virions that are
released by lysis of calyx cells in the case of braconids or budding in
the case of ichneumonids. Virions are then stored at high density in
the lumen of the reproductive tract (Stoltz and Vinson, 1979).
Nucleic acid analysis showed that virions from braconid and
ichneumonid wasps contain multiple circular, double-stranded
DNAs that are non-equimolar in abundance. The number and size
of DNA segments was noted to vary betweenwasp species (Krell and
Stoltz, 1979; Stoltz and Vinson, 1979; Krell et al., 1982) with
subsequent studies estimating aggregate sizes for these DNAs to
range from �150 kb to more than 600 kb (see below).

Braconid and ichneumonid wasps use their ovipositors to inject
eggs containing the proviral genome, PDV particles, and other
secretions into the body cavity of the hosts they parasitize, which
are primarily larval stage Lepidoptera (moths and butterflies).
Experiments in the late 1970s and 1980s showed that PDVs rapidly
infect host cells and discharge their DNAs into nuclei, which is
followed by expression of viral genes (Stoltz and Vinson, 1979;
Fleming et al., 1983; Blissard et al. 1986). Experiments further
demonstrated that survival of wasp offspring depends on infection
of the host by PDVs and associated viral gene expression because
wasp offspring die in the absence of infection by its associated PDV.
This is because most PDVs disable immune defenses, which prevent
hosts from killing wasp offspring (Edson et al. 1981; Guzo and Stoltz,

1987; Davies et al., 1987). PDVs were noted to also alter the growth
of hosts (Stoltz and Vinson, 1979; Beckage and Riddiford, 1982). Yet,
parallel studies showed that PDVs do not replicate in the hosts of
wasps (Theilmann and Summers, 1986). The molecular basis for
altering host physiology in the absence of replication was not
understood in these early studies. The biological significance of
these traits, however, was interpreted to mean that PDVs are only
transmitted vertically through the germline of wasps, and wasp
survival depends on the genes replication-defective PDV virions
deliver to hosts. The reliance of PDVs and wasps on one another for
survival further suggested they form a mutualistic association (Stoltz
and Vinson, 1979; Edson et al., 1981; Fleming, 1992).
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Fig. 1. Key characteristics of PDVs in 1991 when the family Polydnaviridae was
formally recognized by ICTV. The upper part of the figure shows an adult female
wasp whose hypothetical genome consists of 10 chromosomes. Data at this time
indicated that each PDV associated with a given wasp species was genetically
distinct and persisted as a provirus. Based on other known dsDNA viruses with a
proviral phase, PDV proviral genomes were implicitly assumed to persist as a large,
linear dsDNA that was integrated in the wasp genome (*). The middle part of the
figure shows the nucleus of a calyx cell. Data showed that particles packaging
multiple circular dsDNAs were produced in calyx cells by unknown means followed
by storage of particles in a domain referred to as the calyx. The lower part of the
figure shows a larval stage lepidopteran host. Data generated prior to 1991 showed
that wasps inject PDV particles into hosts, which infect different types of cells and
express genes that cause physiological alterations wasp offspring depend upon for
survival. Data generated prior to 1991 also showed that no replication of PDVs
occurs in the hosts of wasps.
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In summary, the first studies of PDVs referred to them as nuclear
secretions or particles, which implicitly suggested they could be either
non-viral or viruses. Thereafter, the literature up to the early 1990s
strongly concluded that PDVs were viruses because they: 1) replicate
in the calyx cells of wasps, 2) morphologically look like viruses,
3) package nucleic acid, 4) are infectious, and 5) contain genes that
are transcribed after infection of hosts (Stoltz and Vinson, 1979;
Fleming, 1992) (Fig. 1). That no other known viruses packaged
segmented, circular dsDNA genomes or exhibited a mutualistic
association with another organism (wasps) further suggested PDVs
were a new family (Fig. 1). Thus, based on their “poly-DNA” genomes,
the family Polydnaviridae was proposed in 1984 along with a
description of its key characters (Stoltz et al., 1984). ICTV ultimately
adopted this proposal while recognizing two genera: the Bracovirus
(BV) associated with wasps in the family Braconidae and the
Ichnovirus (IV) associated with wasps in the family Ichneumonidae
(Francki, 1991).

1990s-early 2000s: experimental struggles and phylogenetic
insights from wasps

Studies in the 1990s and early 2000s identified several PDV genes
transcribed in hosts and provided new information on the physiolo-
gical roles of PDVs in parasitism (Strand and Noda, 1991; Strand et al.,
1992, 1997; Harwood et al., 1994; Li and Webb, 1994; Strand, 1994;
Shelby and Webb, 1994; Doucet and Cusson, 1996; Asgari et al., 1996;
Johner and Lanzrein, 2002; Chen et al., 2003; Glatz et al., 2003: Beck
and Strand, 2003). Additional information was generated about the
DNAs packaged into BV virions including their integration in the
genome of wasps, their amplification, and packaging into virions
(Albrecht et al., 1994; Gruber et al., 1996; Pasquier-Barre et al., 2002;
Belle et al., 2002; Beck et al., 2007). Studies of IVs also showed that
some DNA segments packaged into virions undergo a recombination
process that produces nested segments (Xu and Stoltz, 1993; Cui and
Webb, 1997). Overall though, the experimental study of BVs and IVs
struggled to make headway for several reasons. The most serious of
these was that replication only occurs in the ovaries of very small
wasps (most 5 mm or less in size) with also no permissive cell lines
available for propagating PDVs. These factors greatly constrained the
availability of material for study and the types of experiments that
could be conducted. They also rendered many standard genetic and
molecular virology methods available at the time useless for char-
acterizing PDV genes.

In contrast, important insights were generated during this
period by studying the phylogenetics of wasps that carry PDVs.
In the case of braconids, all BV-carrying species were shown to
reside in a small number of subfamilies that form a monophyletic
assemblage called the microgastroid complex (Whitfield, 2002).
This complex was also estimated to have diverged �75 million
years ago (MYA) from other subfamilies of braconids, which lack
BVs (Whitfield, 2002). More recent data estimate the microgas-
troid complex diverged �100 MYA and contains �50,000 species,
which makes it among the largest natural taxa of animals on Earth
(Murphy et al. 2008; Thézé et al., 2011; Rodriguez et al. 2013).
Studies of ichneumonids estimated that 14,000 species in two
subfamilies carry IVs (Quicke et al., 2009). It remains unclear
whether these subfamilies form a monophyletic assemblage, but
higher order data clearly indicated that IV-carrying ichneumonids
and BV-carrying braconids are distantly related (Quicke et al.,
2009; Heraty et al., 2011). These results were meaningful to the
PDV literature for two reasons. First, they established that all BV-
carrying species evolved from a common ancestor 100 MYA, which
also suggested the BV-wasp association is ancient. Second, they
suggested BVs and IVs evolved independently (i.e. the Polydnavir-
idae is not a natural taxon). This conclusion was consistent with

the different morphologies of BV and IV particles, but if correct
also meant the shared life cycle of BVs and IVs reflected con-
vergent evolution driven by their similar roles in parasitism of
hosts by wasps (Webb and Strand, 2005; Strand, 2010).

Mid-2000s: sequencing the DNAs in particles further muddy
the PDV waters

Molecular data from PDVs that could corroborate findings from
the phylogenetic study of wasps were not available until the mid-
2000s when technical advances finally made it possible to sequence,
assemble, and analyze the complex population of DNAs present in BV
and IV particles from different wasp species (Espagne et al., 2004;
Webb et al., 2006; Lapointe et al., 2007; Tanaka et al., 2007;
Desjardins et al., 2008; Chen et al., 2011). These sequencing results
showed that the DNAs in BV and IV particles mirrored wasp
phylogeny with gene content from closely related species being more
similar to one another than to more distantly related species.
Comparisons between BVs and IVs further showed they largely
package different genes, which fully supported an independent origin.
Yet consistent with their similar life cycle, sequencing also identified
several architectural features besides segmentation that DNAs in BV
and IV particles shared. These included low coding densities, a strong
A:T bias, and the presence of many genes that have diversified
through duplication events into multimember families.

The most important finding, however, was that almost no genes
with homology to known viral genes were present on the DNAs in
BV or IV particles including none with predicted functions in DNA
replication, transcription, or virion formation (Espagne et al., 2004;
Webb et al., 2006; Lapointe et al., 2007; Tanaka et al., 2007;
Desjardins et al., 2008; Chen et al., 2011). Instead, most genes were
either orphans or shared homology with genes from insects or other
eukaryotes. Several of these genes were also related to factors in
eukaryotic signaling pathways, which suggested they were virulence
factors that caused some of the physiological alterations that occur
in parasitized hosts. Subsequent studies supported this by demon-
strating experimentally how certain BV and IV gene products
interact with host immune molecules or cells (Beck and Strand,
2005, 2007; Thoetkiattikul et al., 2005; Ibrahim and Kim, 2008;
Labropoulou et al., 2008; Kwon and Kim, 2008; Cooper et al., 2011;
Magkrioti et al., 2011; Bitra et al., 2012; Gueguen et al., 2013), while
implicating other genes in altering host growth, metabolism or
endocrine physiology (Provost et al., 2004; Falabella et al., 2006; Kim
et al., 2013; Presad et al., 2013).

That many of the genes present in BV and IV particles shared
homology with genes present in insects was initially interpreted to
mean they derived fromwasps (see Stoltz and Krell, 2012). Compara-
tive and phylogenetic data analyses, however, revealed a much more
complex picture by showing that the genes in BV and IV particles
have been acquired at different times in evolutionary history and
from different sources (Huguet et al., 2012). Some are recent acquisi-
tions from wasps (Desjardins et al., 2008; Burke and Strand, 2014),
whereas others have been acquired by horizontal gene transfer from
organisms outside of the Arthropoda or are ancient and of uncertain
ancestry (Huguet et al., 2012; Burke and Strand, 2012a; Serbielle et
al., 2013; Herniou et al., 2013). In keeping with this variable origin
and history of gene acquisition, many genes have introns and other
features associated with eukaryotic ancestry while several others are
small and intronless as seen for genes of viral origin.

Overall then, the DNAs in BV and IV particles largely differ from
one another in gene content although both contain primarily if not
exclusively genes with demonstrated or hypothesized roles in
altering the physiology of parasitized hosts (Fig. 2). This supported
the independent origins of BV and IVs, explained why neither
entity replicates outside of wasps, and further supported that BV
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and IV particles function as replication-defective gene delivery
vectors that wasps use to parasitize hosts. The larger message,
however, was that BV and IV particles showed no evidence of viral
ancestry (Fig. 2). This supported the perspective that BVs and IVs
are not viruses and should not be recognized by ICTV (Federici and
Bigot, 2003; Whitfield and Asgari, 2003).

Late 2000s: transcriptome and functional data establish a viral
origin for BVs

Entering the late 2000s, the aphorism “absence of evidence is not
evidence of absence” very much applied to the PDV literature. That

is, the absence of “viral” genes in particles did not alter that
replication-like events occur in wasp calyx cells or that BVs and
IVs look and, in several respects, function like viruses (Fig. 2). So the
issue shifted to identifying the genes involved in particle formation
in calyx cells. The first major breakthrough came from producing
ovary cDNA libraries for two BV-carrying wasps, Cotesia congregata
and Chelonus inanitus, Sanger sequencing a subset of clones, and
then coupling these data to proteomic analyses of the particles
(designated as CcBV and CiBV) produced by each species (Bézier
et al., 2009; Wetterwald et al., 2010). A third, more comprehensive
data set generated by Illumina sequencing and Orbitrap LC-MS
technology was thereafter produced for the braconid Microplitis
demolitor and its associated BV named MdBV (Burke and Strand,
2012b; Burke et al., 2013).

Data from these species identified 42 transcripts specifically
expressed in ovaries (¼calyx cells) during replication with weak
(19–41%) but recognizable identity to genes from another family of
large, enveloped DNA viruses that infect insects called nudiviruses
(Wang and Jehle, 2009). Although poorly studied, the Nudiviridae is
also the sister group to the Baculoviridae, which is among the best-
studied families of insect viruses (Theźé et al., 2011; Rohrmann, 2013).
All baculoviruses examined to date share 37 core genes of which about
half are required for replication (Herniou et al., 2003; Rohrmann,
2013). These include a DNA polymerase (DNApol) that replicates the
viral genome, four subunits of a novel DNA dependent RNA polymer-
ase (lef-4, lef-8, lef-9, p47), and several structural genes with promoter
sequences that are specifically recognized by the viral RNA polymer-
ase. These include vp39, vlf-1, p74 and pif genes that are capsid or
envelope components. No functional data are available from nudi-
viruses but data from six sequenced nudivirus genomes indicate
they share 20 baculovirus core genes including DNApol, the RNA
polymerase subunits, and the aforementioned structural genes (Wang
and Jehle, 2009; Rohrmann, 2013).

Nudivirus-like genes upregulated in calyx cells at the onset of
replication include the four RNA polymerase subunits, which is
then followed by expression of the nudivirus-like structural genes
(Burke and Strand, 2012a). Three lines of evidence further indi-
cated these nudivirus-like genes retain ancestral functions. First,
proteins corresponding to all of the baculovirus-like capsid and
envelope genes were detected in CcBV, CiBV, and MdBV particles
(Be ́zier et al., 2009; Wetterwald et al., 2010; Burke et al., 2013).
Second, loss of function studies in M. demolitor using RNA inter-
ference indicated the RNA polymerase subunit genes produced a
functional enzyme that transcribes predicted structural genes but
not wasp genes, while vp39, p74, and pif-1 were required to
produce functionally normal virions (Burke et al., 2013). Third,
BV and nudivirus virions have very similar morphology, which was
first noted in early EM studies at a time when nudiviruses were
not yet recognized but instead were considered as a type of ‘non-
occluded’ baculovirus (Stoltz and Vinson, 1979).

Other results identified unique features of BV replication relative
to baculoviruses and nudiviruses. These include the absence from
transcriptome data sets of any homologs of baculovirus/nudivirus
genes involved in viral DNA replication except for a helicase in M.
demolitor. This suggested replication of the DNAs packaged into BV
particles relies primarily on wasp DNA replication machinery (Burke
and Strand, 2012b). While early studies suggested that amplification
of the DNAs packaged into virus particles also involved excision of
proviral segments from the genome of calyx cells (Gruber et al.,
1996; Savary et al., 1997), more recent data indicate this is not the
case (Louis et al., 2013). Other data showed that multiple variants of
a tyrosine recombinase named integrase (int) known from nudi-
viruses but not baculoviruses is part of the BV core gene set. These
int genes are structurally related to vlf-1, and both exhibit recombi-
nase functions required for proper processing of the circularized
DNAs that are packaged into virions (Burke et al., 2013). Finally,
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into particles
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Fig. 2. Key characteristics of PDVs as understood in the mid-2000s. Data generated
during the 1990s and 2000s showed that the DNAs in BV and IV particles contained
numerous virulence genes but almost no genes of recognizable viral origin. Little
information was generated during this period regarding PDV proviral genomes but
data did suggest the DNAs in BV particles were excised from the wasp genome and
amplified in calyx cells before packaging into particles. The genes regulating these
events or that were involved in particle formation remained unknown. In contrast,
several studies provided insights about the identity and function of the virulence
genes that are expressed in the hosts of wasps.
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while all of the above nudivirus-like genes are transcribed in wasp
calyx cells during replication, most of the virulence genes on the
DNAs packaged into virions are not (Bitra et al., 2011; Burke and
Strand, 2012b). Yet many or most of these genes are transcribed in
the permissive hosts of wasps following infection (Provost et al.,
2011; Bitra et al., 2011; Chevignon et al., 2014).

Similar approaches with three IV-carrying wasps identified no
nudivirus or baculovirus-like genes but did identify genes corre-
sponding to structural proteins in IV virions (Volkoff et al., 2010).
These genes share no recognizable homology with any known
viral structural gene but they do exhibit features suggestive of
being of viral origin (Volkoff et al., 2010). Whether the ancestor
of IVs is now extinct or undiscovered is unclear. Comprehensive
expression studies also indicate that many virulence genes on
DNAs in IV particles are transcribed in permissive hosts but with
small exception such as rep genes (Theilmann and Summers,
1988; Rasoolizadeh et al., 2009) are not transcribed in wasps
(Volkoff et al., 2010; Doremus et al., 2014).

Relationships between BVs, nudiviruses and baculoviruses

By 2012, indisputable connections had been established between
BVs and nudiviruses. The monophyly of macrogastroid braconids
combined with other data further supported that all BV-carrying
wasps descend from a common nudivirus-wasp ancestor, and that
nudiviruses diverged from baculoviruses �300 MYA (Thézé et al.,
2011). Interest thus turned to asking more questions about how BVs
evolved and what features underlie their unique biology relative to
their ancestors. All baculoviruses and nudiviruses replicate and
package a single large circular dsDNA (4100 kb) genome into
virions (Wang and Jehle, 2009; Rohrmann, 2013). Like other large
DNA viruses, baculoviruses and nudiviruses also exhibit high
diversity in gene content outside of core genes due to repeated
acquisition and loss of genes from exogenous sources that are
selectively advantageous for specialization onto different hosts. In
turn, different lineages of baculoviruses and nudiviruses have
evolved in response to host speciation. BVs obviously differ from
baculoviruses and nudiviruses in regard to the multiple, circular
dsDNAs they replicate and package as well as the genes on these
DNAs. Yet they are similar in the sense that all BVs share a set of
core genes required for replication, while exhibiting overall high
diversity in gene content due to virulence genes that have been
acquired from diverse sources and at different times that have
functions in parasitism of hosts.

Most baculoviruses and nudiviruses are virulent pathogens that
establish systemic, fatal infections by introducing their circular
genomes into the nuclei of infected cells (Rohrmann, 2013). In the
case of baculoviruses, the viral genome persists as an episome in
infected cells with early genes like DNApol and the RNA polymerase
subunits being transcribed followed by expression of structural
genes that result in replication of the genome and virion formation.
Virions are then released by either lysis or budding to infect other
cells. On the other hand, a few nudiviruses such as HzNV-1 and -2
are known that preferentially infect the reproductive systems of
insects and in vitro establish persistent infections by integrating into
the genome of infected cells (Wang and Jehle, 2009; Burand et al.,
2012). HzNV-1 can also be reactivated to produce lytic infections
(Wu et al., 2010; 2011). This finding suggested to labs studying BVs
that a nudivirus ancestor may have initially established a persistent
infection in a braconid wasp by integrating its circularized dsDNA
genome into the germline as a linear proviral DNA (Drezen et al.,
2012; Strand and Burke, 2012; 2013). Thereafter, rearrangements
must have occurred that separated the nudivirus-like replication
genes from virulence genes located on multiple DNAs. Changes
further limited the expression and function of replication genes (and

thus virus replication) to wasp calyx cells, while allowing delivery of
a species-specific set of genes to the hosts of wasps via replication-
defective virions. Understanding the nature of these alterations
required finding and characterizing the different components of
BV proviral genomes.

BAC clone sequencing identifies some features of BV proviral
genomes

Most textbooks state that a provirus is a virus genome that is
integrated into the DNA of a host cell. The biology of BVs obviously
differs frommost viruses but in keeping with the above definition BV
proviral genomes consist of the core genes which have functions in
formation of virions plus the DNAs and associated genes that are
amplified, circularized, and packaged into virions (Strand and Burke,
2012). The DNAs in virions are also usually referred to in the PDV
literature as proviral segments when integrated in the genome of
wasps and as the encapsidated form of the genome when packaged
in virions. The first insights into BV proviral genome architecture
actually preceded the transcriptome studies that identified the
nudivirus-like genes. It came from screening bacterial artificial
chromosome (BAC) libraries made against two wasp species in the
genus Glyptapanteles (Glyptapanteles indiensis, Glyptapanteles. flavi-
coxis) that produce BVs named GiBV and GfBV (Dejardens et al.,
2007; Desjardins et al., 2008). These data showed that the circular-
ized DNA segments in particles reside as linear DNAs in the genomes
of wasps, which are organized into 6 loci (Dejardens et al., 2007;
Desjardins et al., 2008). Two of these loci contained multiple
segments arranged tandemly while the other loci contained one or
two segments. Subsequent BAC clone sequencing from two species in
the genus Cotesia (Cotesia congregata, Cotesia sesamiae) plus addi-
tional data from M. demolitor show the same general organizational
features although the total number of proviral loci and the number of
proviral segments per locus differ between species (Bézier et al.,
2013; Burke et al., 2014). Despite differences in gene content, the
overall similarity in architecture of proviral segment loci between
GfBV, GiBV CcBV, and MdBV also suggested shared ancestry.

Within species comparisons indicate adjoining proviral segments
in a given locus are more similar to one another than to more
distantly related segments. This suggested proviral DNAs have
primarily evolved through tandem duplication events over evolu-
tionary time followed by sequence divergence (Desjardins et al.,
2008; Bézier et al., 2013; Burke et al., 2014). A second conserved
feature gleaned from these studies is that direct repeats containing
the tetramer AGCT flank each segment, which earlier studies
identified as the site where each segment circularizes for packaging
into nucleocapsids (Savary et al., 1997; Annaheim and Lanzrein,
2007). A study published in 2011 also showed that MdBV DNAs
rapidly integrate into the genome of host cells following infection
via an inverted repeat present in circularized segments (Beck et al.,
2011). Thus, to distinguish between these two features, we named
the conserved repeats flanking each proviral segment in the genome
of M. demolitor wasp integration motifs (WIMs), and the inverted
repeat that identifies the site of integration of circularized segments
into the genome of a host cell as host integration motifs (HIM) (Beck
et al., 2011). Analysis of MdBV proviral segments showed that most
contain a HIM (Burke et al., 2014), while database analyses show
that HIMs are also present in proviral segments of CcBV, GiBV,
and GfBV.

Largely absent, however, from these proviral segment domains
were the nudivirus-like genes identified in transcriptome studies with
only one structural gene (odv-e66-like) found between locus 1 and 2 in
C. congregata (Bézier et al., 2009). In contrast, BAC clone sequencing
did identify an 18 kb domain in the genome of C. congregata that
contained 10 nudivirus-like genes, including several that are structural
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components of CcBV virions, plus 5 other nudivirus-like genes outside
of this cluster that were flanked by wasp DNA (Bézier et al., 2009). All
of these nudivirus-like genes were also intronless.

The collective picture from these data is that BV proviral genomes
consist of two functional components: proviral segments organized
into multiple loci that are packaged into virions and nudivirus-like
core genes that are required for virion formation (Fig. 3). The close
proximity of several nudivirus-like genes to one another suggested
this domain may be part of the original site of integration of a
nudivirus into the genome of the ancestor of microgastroid braconids
(Bézier et al., 2009). Finding a nudivirus-like gene in proximity to one
of the proviral segments in C. congregata also suggested that proviral
segment loci and nudivirus-like core genes are physically linked in
the genomes of wasps (Belle et al., 2002; Bézier et al., 2009; Herniou
et al., 2013) (Fig. 3).

Whole genome sequencing of wasps indicates BV proviral
genomes are dispersed

The strength of the preceding BAC data is they identified how
proviral segments are organized while also showing that some
nudivirus-like genes are clustered. Their weakness is they pro-
vided too little genomic context to ascertain how physically close
or distant different proviral loci and nudivirus-like genes are to
one another in the genomes of wasps. BAC clone sequencing also

Persistence of BVs as proviruses comprised of 
multiple proviral segments and replication 
genes that reside in close proximity to one 
another in the wasp genome

Viral replication genes
Proviral segments with virulence

genes organized into multiple loci

and circularization of 
proviral segments

Circularized proviral segments
packaged into virions

Production of 
virus structural 

components

TO CALYX
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CALYX CELL NUCLEUS

WASP CALYX CELL

Circularized DNAs in virions 
integrate into the genome of 
infected host cells and express 
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Fig. 3. Key characteristics of BVs as understood in 2013. Sequence data established
that BV proviral segment loci are organized into multiple loci, which are amplified
without excision in calyx cells. Multiple nudivirus-like core genes had also been
identified and shown to be required for virion formation. Proviral segment loci and
nudivirus-like genes were hypothesized to reside in close physical proximity to
one another in the genomes of wasps although precise locations remained
unknown (hash marks). Experiments also established that circularized DNAs in
BV virions integrate into the genome of infected host cells.

Persistence of BVs as proviruses 
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Fig. 4. Key characteristics of BVs as understood in 2014. Whole genome sequen-
cing of M. demolitor established that proviral segment loci and nudivirus like genes
are overall widely dispersed in the wasp genome on either one or multiple
chromosomes.
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failed to identify many of the nudivirus-like genes identified in
transcriptome studies, including several particularly important
factors for replication like most of the RNA polymerase subunit
genes. Thus, the only way to generate an overall picture of proviral
genome architecture was whole genome sequencing of wasps.

This was recently done for M. demolitor with assembly of its
�258 Mb genome revealing three key findings (Burke et al., 2014).
First, these data showed that the eight loci containing MdBV
proviral segments are flanked by large distances of wasp genomic
DNA, which indicates each locus is physically distant from the
other. Second, they identified all of the nudivirus-like genes
previously described in transcriptome studies (Burke and Strand,
2012a). All of these genes are intronless. Twenty of these genes
reside in a 75 kb cluster flanked by wasp genes with introns,
which indicates the M. demolitor genome contains a nudivirus-like
gene cluster. A subset of these genes are also present in the same
order and orientation as the nudivirus cluster identified in the C.
congregata genome. However, most of the remaining nudivirus-
like genes including helicase, all of the RNA polymerase subunits,
and several structural genes required for virion formation are
located singly on different scaffolds in the M. demolitor genome.
Third, almost none of these nudivirus-like genes reside in proxi-
mity to any proviral segment locus, which indicates the MdBV
proviral genome is overall highly dispersed (Fig. 4).

The conserved synteny of predominantly structural genes in the
nudivirus-like cluster of M. demolitor and C. congregata lends further
support this domain represents the initial integration site for the
nudivirus ancestor while suggesting that maintenance of these
genes in a cluster is functionally important for virion formation.
These data also indicate that the MdBV and CcBV nudivirus-like
clusters have remained stable since divergence 53 MYA, which
suggests dispersal of the other nudivirus-like genes occurred rela-
tively early in BV evolution. In contrast, whether the dispersed
nudivirus-like genes identified in M. demolitor reside in similar
locations in other species will remain unknown until additional
comparative data are available. Also unknown from the current
assembly of the M. demolitor genome is whether the different
components of the MdBV genome reside on one or multiple wasp
chromosomes (Fig. 4). Nonetheless, they indicate BV proviral gen-
ome components are organized in a manner dissimilar from their
ancestors or other entities referred to as viruses that have a
proviral phase.

What does genome dispersal mean for function?

At present, the literature indicates most nudivirus-like core genes
retain their ancestral functions despite their dispersal in the genomes
of wasps. Genome dispersal is also, obviously, not a barrier to high-
level replication in calyx cells, which in the case of M. demolitor
considerably exceeds replication levels of baculoviruses in permissive
host cells (Burke and Strand, 2012b; Burke et al., 2013). Two features,
likely inherited from the nudivirus ancestor, make this possible. First,
the RNA polymerase subunits, once expressed and assembled to form
a holoenzyme, specifically transcribe the nudivirus-like structural
genes through promoter recognition regardless of their location in
the wasp genome (Burke et al., 2014). Second, currently unknown
DNA replication machinery plus the two nudivirus-like integrases
(int-1, vlf-1) likely use the direct repeat boundaries (WIMs) to
recognize all proviral segments for proper amplification, processing
and packaging into virions. In contrast, the absence of these motifs
from any of the DNA domains where nudivirus-like genes reside
results in none being processed and packaged into particles.

The evolutionary events that produced this dispersed architec-
ture are unclear. The absence of nudivirus-like genes in BV proviral
segments suggests this feature must have arisen early in BV

evolution (Drezen et al., 2012). Yet recognition of WIM domains
by the nudivirus-like integrases suggests these flanking motifs
derive from the ancestor. One possibility for dispersal is the
ancestral nudivirus genome duplicated after integration. Another
is several copies of the genome initially integrated, followed by
elimination of conserved replication genes from some and elim-
ination of WIMs from others (Strand and Burke, 2012, 2014;
Gundersen-Rindal et al., 2013, Herniou et al., 2013). Subsequent
duplications of proviral segments within loci together with acqui-
sition of genes from diverse sources were thereafter selected for in
different lineages, as wasps adapted to parasitism of particular
hosts or complexes of hosts, and hosts reciprocally evolved to
resist parasitism. Promoter mutation in association with selection
may also underlie expression of virulence genes in the hosts of
wasps and corresponding absence of expression in wasps them-
selves (Drezen et al., 2012).

Selection has clearly maintained the conserved roles of the
nudivirus-like genes in particle formation although their dispersal
and current locations in the M. demolitor genome may reflect
random processes of genome dynamics (Burke et al., 2014). On the
other hand, the separation of nudivirus-like genes required for
virion formation from the proviral segments containing virulence
genes has also potentially been favored because it is advantageous
to wasps in their interactions with hosts. In effect, dispersal
assures vertical transmission of all the genes and proviral seg-
ments required to produce virions, but prevents any replication
machinery from being packaged into particles. Thus, no productive
virus infection, which would likely be fatal to wasp offspring, can
occur in the hosts wasps parasitize.

A number of important functional questions remain unanswered
(Strand and Burke, 2014). Based on the baculovirus literature, we
hypothesize wasp RNA polymerase II transcribes the BV integrase
and RNA polymerase genes required for virion formation, but what
restricts expression to only calyx cells is unknown. The absence of
any baculovirus/nudivirus-like DNA polymerase in the M. demolitor
genome further strengthens conclusions that a wasp DNA polymer-
ase(s) amplifies proviral DNAs prior to their processing by integrases
and packaging into particles. However, the wasp polymerase
(s) responsible also remains unknown. A third functional issue not
understood is what are the promoter features on proviral segments
that prevent them from being transcribed in wasps yet allows them
to be transcribed in the hosts wasps parasitize.

Concluding remarks

We began this summary by citing Summers (2014) who con-
cludes that the answer to the question “What is a virus?” depends
on the scientific discourse at a given time. Modern virologists still
struggle with simple one sentence definitions for what viruses are,
yet fully recognize that viruses exhibit a broad continuum of
interactions with hosts. On one end of this continuum are entities
with nucleic acid genomes (RNA or DNA) that replicate inside a
living cell to produce particles that can horizontally transfer the
genome to other cells. These characteristics are also the essential
qualities most virologists today associate with being a virus (Cann,
1997; Summers, 2014). At the other end of this continuum are
ancient endogenous virus elements (EVEs), which are DNA
sequences derived from viruses that have integrated and become
fixed in the host germline resulting in only vertical inheritance
(Katzourkakis and Gifford, 2010). Most EVEs in animal genomes are
fragments rendered non-functional by accumulation of neutral
mutations, although a few individual viral genes or regulatory
elements are known that have been coopted by hosts for new
beneficial functions (Feschotte and Gilbert, 2012). No virologist
though would say such fragments are viruses because they lack all

M.R. Strand, G.R. Burke / Virology 479-480 (2015) 393–402 399



of the essential qualities listed above. Entities like BVs, prokaryotic
gene transfer agents (GTAs), and certain retroviruses and phages
that persist for long periods as vertically transmitted proviruses fall
somewhere between these extremes (Roossinck, 2011; Lang et al.,
2012; Feschotte and Gilbert, 2012; Strand and Burke, 2013).

BVs are clearly ancient EVEs that benefit wasps, yet do so by
continuing to function in many respects like a virus, which is what
led ICTV to recognize the Polydnaviridae to begin with. Current
knowledge regarding BVs and IVs supports the need to revise the
Polydnaviridae, but the essential qualities of BVs (and IVs) remain
unchanged from 1991. What has changed is that the components,
which make up BVs are now known. These include definitive
evidence that most genes required for replication are of viral
origin, while genes on proviral segments have a mixture of origins
including acquisition by horizontal transfer from wasps or other
eukaryotes plus some genes and motifs like WIMs that suggest
they too originated from the nudivirus ancestor. Nudiviruses and
baculoviruses also consist of genes that are ‘viral’ in the sense that
the proteins they encode are required for replication, while the
majority of genes in their genomes are either of ancient origin and
uncertain ancestry or are acquisitions from arthropods or other
organisms (Rohrmann, 2013). Thus, what differs between BVs and
their ancestors is not so much gene content as genome organiza-
tion (Strand and Burke, 2014; Burke et al., 2014). Nudivirus and
baculovirus genes, like those of most viruses, reside on a single
stretch of DNA that can be replicated, packaged into particles and
transmitted to another cell. BVs encode the same types of genes,
which in many cases have the same functions, yet dispersal
prevents BVs from existing independently of wasps. We previously
noted that non-viral microbes like bacteria, which have evolved
into vertically transmitted mutualists do not persist by integrating
into the genome of their host, but they do exhibit alterations in
genome organization and function that prevent them from existing
independently (Burke et al., 2014). Long-standing discussions also
exist in the literature whether such entities are organelles or
bacteria with current sentiment supporting the latter (Andersson,
2000; McCutcheon and Moran, 2012). Can an entity exhibiting most
essential qualities associated with viruses be such if derived from
genes dispersed in the genome of another organism? It undoubt-
edly depends on the virologist answering the question.
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