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We introduce MV-observables, an analogue of observables for MV-algebras, as
�-homomorphisms from the Borel tribe generated by the Borel sets of � and

� �constant functions from 0, 1 into an MV-algebra M. We show that it is possible to
define such observables only for weakly divisible MV-algebras. We present a
representation as well as a so-called calculus of MV-observables, which enables us
to construct, e.g., the sum or product of MV-observables. � 2001 Academic Press
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1. INTRODUCTION

� �In the classical Kolmogorov probability model 10 , a random variable on
Ž .a probability space �, SS , P , where SS is a �-algebra of subsets of �, is

any mapping � : � � � which is measurable with respect to the �-algebra
�1Ž . Ž .SS , i.e., � E � SS for any Borel set E � BB � . The measurability means

Ž . Ž . �1Ž . Ž .that the mapping x : BB � � SS defined by x E � � E , E � BB � ,
Ž .defines a �-homomorphism from BB � into SS . Conversely, it is well

� � Ž .known 9 that any �-homomorphism x from BB � into SS is determined
by a unique random variable � via x � ��1.

This approach is adopted in frames of quantum logic, a generalized
probability structure which appears with foundations of quantum mechan-

� �ics and where the classical Kolmogorov scheme can fail 15 , where
observables are analogues of random variables. In general, in Hilbert
space quantum mechanics, observables due to spectral theorem corre-
spond to Hermitian or, more general, to self-adjoint operators.

In both classical and non-classical probability models, the sum of two
Ž .�1observables x and y can be defined as x � y � � � � , where � and �
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are random variables corresponding to x and y, respectively. This is a
usual way which enables us to construct a so-called calculus of observables.

� �In the last years, MV-algebras, introduced by Chang 2 , also entered the
� �theory of quantum structures, see, e.g., 7 , due to their algebraic and fuzzy

set ideas. Therefore, it seems to be reasonable to develop a theory of
observables for MV-algebras, and in the present paper we introduce their
analogue, MV-observables. We show that such observables can be defined
only for weakly divisible MV-algebras. Using the Loomis�Sikorski theorem

� �for �-complete MV-algebras 5, 13 , we present the representation for
MV-algebras and develop a so-called calculus for MV-algebras which will
enable us to construct the sum or product of MV-observables.

2. TRIBES AND MV-OBSERVABLES

MV-algebras are many-valued analogues of a two-valued logic, and they
� � � �were introduced by Chang 2 . We recall that according to Mundici 12 , or

� �4 , they can be characterized as follows. An MV-algebra is a non-empty set
Ž .M with two special elements 0 and 1 0 � 1 , with a binary operation

	 : M � M � M and with a unary operation * : M � M such that, for all
a, b, c � M, we have

Ž . Ž .MVi a 	 b � b 	 a commutativity ;
Ž . Ž . Ž . Ž .MVii a 	 b 	 c � a 	 b 	 c associativity ;
Ž .MViii a 	 0 � a;
Ž .MViv a 	 1 � 1;
Ž . Ž .MVv a* * � a;
Ž .MVvi a 	 a* � 1;
Ž .MVvii 0* � 1;
Ž . Ž . Ž .MVviii a* 	 b * 	 b � a 	 b* * 	 a.

We define binary operations �, 
, � as

a�b � a* 	 b* *, a, b � M ,Ž .
a 
 b � a* 	 b * 	 b , a � b � a* 
 b* *, a, b � M .Ž . Ž .

If, for a, b � M, we define

a � b � a � a � b ,
Ž .then � is a partial order on M, and M; 
 , � , 0, 1 is a distributive

� �lattice with the least and greatest elements 0 and 1, respectively 2 . We
recall that a � b iff b 	 a* � 1. An MV-algebra M is said to be �-com-
plete if M is in addition a �-complete lattice.
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A non-void subset I of M is said to be an ideal of M if

Ž .i x, y � I imply x 	 y � I,
Ž .ii x � I, y � x imply y � I.

A proper ideal A of M is said to be maximal if there is no proper ideal
Ž .of M containing A as a proper subset. Let MM M denote the set of all

Ž .maximal ideals of M. Then MM M � �. Denote by

Rad M � � A : A � MM M ,� 4Ž . Ž .

Ž .and we call Rad M the radical of M. An MV-algebra M is said to be
Ž . � 4semisimple if Rad M � 0 . We recall that any �-complete MV-algebra is

semisimple.
� �A state on an MV-algebra M is a mapping m : M � 0, 1 such that

Ž . Ž . Ž . Ž .m 1 � 1, and m a 	 b � m a � m b whenever a � b*. Denote by
Ž . Ž .SS M the set of all states on M. Then SS M is a convex non-empty set.

Ž Ž .. Ž .We denote by Ext SS M the set of extremal points of SS M . In addition,
Ž .SS M is a Hausdorff compact topological space in the weak topology of

� 4 Ž . Ž .states, i.e., a net m converges weakly to m iff m a � m a for each� �

a � M.
� � � ��According to Belluce 1 , we say that a subset FF 
 0, 1 , where � � �,

is a Bold algebra if

Ž .i 0 � FF;�

Ž .ii f � FF entails 1 � f � FF;�

Ž .iii f , g � FF imply f 	 g � FF, where

f 	 g � � min f � � g � , 1 , � � � . 2.1� 4Ž . Ž . Ž . Ž . Ž .

Ž .Then FF with 	 defined by 2.1 , with f * � 1 � f and with 0 and 1 is� � �

an MV-algebra which is semisimple. Conversely, any semisimple MV-alge-
bra is MV-isomorphic to some Bold algebra.

The following notion is a direct generalization of a �-algebra of crisp
subsets.

� ��A tribe is a non-void system TT 
 0, 1 of fuzzy sets on a set � � �
such that

Ž .i 1 � TT;�

Ž .ii if a � TT, then 1 � a � TT;
Ž . � 4�iii if a is a sequence of elements of TT, thenn n�1

�

min a , 1 � TT.Ý n½ 5
n�1
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ŽWe note that all above operations with fuzzy sets are defined pointwisely
.on �.
� � Ž .By 14, Proposition 3.13 , if TT is a tribe and if a, b � TT, then i

� 4 � 4 Ž .a 
 b � max a, b � TT, a � b � min a, b � TT, ii b � a � TT if a � b,
Ž . Ž . Ž . Ž .i.e., if a � � b � for all � � �, iii if a � TT, and a � a pointwisely ,n n

then a � lim a � TT. It is simple to verify that TT is a Bold algebra and an n
�-complete MV-algebra of fuzzy sets, where the partial order is deter-
mined by the set-theoretical ordering, with the least and greatest elements
0 and 1 , respectively.� �

Denote by

� 4SS TT � A 
 � : 	 � TT .Ž .0 A

� �The following result can be found, e.g., in 14, Theorem 8.1.4 :

PROPOSITION 2.1. Let TT be a tribe. Then

Ž . Ž .1 SS TT is a �-algebra of crisp subsets of �.0

Ž . Ž .2 If f � TT, then f is SS TT -measurable.0

Ž . Ž .3 TT contains all SS TT -measurable fuzzy functions on � if and only0
� �if TT contains all constant functions with �alues in 0, 1 .

It is evident that given a family T of fuzzy subsets of � there exists a
Ž .tribe generated by T. Let BB � be the algebra of Borel subsets of the real

Ž . � Ž .4line �. We denote by TT � the tribe generated by 	 : E � BB � andBB E
� �by all constant fuzzy sets taking values in the interval 0, 1 . We called it

Ž .the Borel tribe, and the elements of TT � Borel fuzzy subsets of �. In theBB

Ž n. nsame manner we define TT � and Borel fuzzy subsets of � .BB

Ž n. nPROPOSITION 2.2. The tribe TT � of Borel fuzzy subsets of � consistsBB

of all Borel measurable fuzzy sets on � n.

Ž n. Ž Ž n.. Ž .Proof. It is evident that BB � 
 SS TT � , and according to 3 of0 BB

Ž n. Ž Ž n..Proposition 2.1, TT � consists of all SS TT � -measurable fuzzy setsBB 0 BB

Ž n.on �. Denote by TT the set of all elements from TT � which are BorelBB

measurable. It is clear that the characteristic functions of all Borel sets
� �and all constant functions from 0, 1 belong to TT, and in addition, TT is a

nŽ .tribe, consequently TT � TT � .BB

An MV-obser�able on a �-complete MV-algebra M is any MV-�-homo-
Ž . Ž .morphism x from TT � into M. It is clear that the range, R x , of anBB

MV-observable x is an MV-subalgebra of M. In addition, if a is a crisp
Ž . Ž . Ž . Ž .element in TT � , then x a is a Boolean element in M, i.e., x a 	 x aBB

Ž .� x a .
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THEOREM 2.3. Let TT be a tribe of fuzzy sets on a crisp set � � �
Ž .containing all constant fuzzy sets on �, and let f : � � � be an SS TT -mea-0

surable function. Then the mapping x defined byf

x a � a� f , a � TT � , 2.2Ž . Ž . Ž .f BB

is an MV-obser�able on the tribe TT. Con�ersely, let x be an MV-obser�able on
the tribe TT. Then there exists a unique real-�alued function f on � which is

Ž .SS TT -measurable such that x � x .0 f

Ž . �1Ž . Ž .Proof. Let E � BB � ; by assumptions we have f E � SS TT , which0
Ž . �1entails x 	 � 	 � f � 	 � TT. Similarly, c� f � TT for any constantf E E f ŽE .

� �c � 0, 1 . Since the set of all Borel fuzzy sets a on � such that a� f � TT is
Ž .a tribe containing the generators of TT � , x is a well-defined MV-ob-BB f

servable on TT.
Conversely, let x be an MV-observable on TT. Then x maps all crisp sets

Ž .from TT � onto crisp sets from TT. Let � be the set of all rationalBB

numbers in �, and let r , r , . . . be any enumeration of �. We set1 2
Ž .	 � x 	 for any i � 1. We define a mapping f : � � � asA Ž��, r .i i

f � � inf r : � � A .� 4Ž . j j

Ž . �1Then f is a well-defined function such that x 	 � 	 , and f isŽ��, r . f Ž A .j j
Ž . Ž . Ž .�1SS TT -measurable. In addition, x 	 � 	 for any E � BB � .0 E f ŽE .

1 1 1Ž . Ž . Ž .For any integer n � 1, we have 1 � x 1 � x n � x 	 


 	 �� � n n n
1 1 1 m mŽ . Ž . Ž .nx which proves that x � . Consequently, x � for any 0 � mn n n n n

Ž .� n. Using the density of rational numbers, we have that x c � c for any
� � Ž . Ž . Ž .constant c � 0, 1 . Hence, the set of all a � TT � such that x a � x aBB f

Ž . Ž . Ž .is a tribe containing the generator of TT � ; consequently, x a � x aBB f
Ž .for any a � TT � .BB

The uniqueness of f can be proved as follows. Let g be a real-valued
� Ž . Ž .4function on � such that x � x . Then � : f � � g � �f g

Ž� Ž . Ž .4 � Ž . Ž .4.� � : f � � r � g � � � : g � � r � f � � �.r � �

THEOREM 2.4. Let x be an MV-obser�able on a �-complete MV-algebra
Ž .M. Then the range R x of x is a weakly di�isible �-complete MV-subalgebra

of M with a countable generator. Con�ersely, if M is a weakly di�isible1
�-complete MV-subalgebra of M with a countable generator, then there exists

Ž .an MV-obser�able x on M such that M � R x .1

Ž .Proof. It is clear that R x is a �-complete MV-subalgebra of M with
� Ž . � � 4the countable generator x s	 : r � �, s � 0, 1 � � .Ž��, r .

Suppose conversely that M is a weakly divisible �-complete MV-subal-1
gebra of M. By the Loomis�Sikorski theorem for �-complete MV-algebras
� �5, 13 , there exists a tribe TT of fuzzy sets on a non-void subset � and
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� 4there exists an MV-�-homomorphism h from TT onto M . Let a : n � 11 n
� 4be a generator of M , and let b : n � 1 be the set of such elements from1 n

Ž .TT that h b � a for any n � 1. We denote by TT the smallest triben n 0
� ��containing all b ; it contains all constants. The function f : � � 0, 1n

defined by

f � � b � , b � , . . .Ž . Ž . Ž .Ž .1 2

Ž .is an SS TT -measurable mapping from � into the compact metric space0 0
� �� Ž .Y � 0, 1 . We remark that SS TT is equal to the �-algebra generated by0 0

� �1Ž . Ž� �. 4 Ž� �.b E : E � BB 0, 1 , i � 1 . In addition, for any E � BB 0, 1 we havei
�1Ž �1Ž .. �1Ž . � �f � E � b E , where � is the ith projection from Y onto 0, 1 .i i i

Ž . � �1Ž . Ž .4Consequently, SS TT � f E : E � BB Y . Now, by a classical theorem0 0
� �of Kuratowski 11 , there exists a Borel isomorphism d of Y onto �, so

Ž . Ž Ž .. Ž . Ž .that the function f � � d f � is SS TT -measurable, and SS TT �1 0 0 0 0
� �1Ž . Ž .4f E : E � BB � . If we now define a mapping x by1

x a � h a� f , a � TT � ,Ž . Ž . Ž .1 BB

then x is an MV-observable on M whose range is M .1

An element a � M is said to be Boolean or idempotent if a 
 a* � 1. It
is possible to show that a is Boolean iff a 	 a � a iff a�a � a iff

Ž .a�a* � 0. Denote by B M the set of all Boolean elements of M. It is
Ž . Ž . Ž . Ž . Ž .easy to verify that i 0, 1 � B M ; ii � a � B M whenever a � B Mi i i

Ž . Ž .for any i; iii B M is a Boolean �-algebra whenever M is �-complete.
We now present a finer version of the Loomis�Sikorski theorem for

�-complete MV-algebras.

THEOREM 2.5. Let M be a �-complete MV-algebra. Then there exists a
tribe TT of fuzzy sets on a compact Hausdorff space � � � and an MV-�-ho-

Ž . Ž .momorphism h from TT onto M such that h maps SS TT onto B M .0

ˆ �Ž Ž .. � � � 4Proof. We define � � Ext SS M and let M � a � 0, 1 : a � M ,ˆ
Ž . Ž . Ž Ž ..where a m � m a , m � Ext SS M . According to the proof of theˆ

Loomis�Sikorski theorem, if we define TT as the tribe of fuzzy subsets of �
ˆ Ž .generated by M, a mapping h : TT � M can be defined by h f � a for

� Ž . Ž .4f � TT, a � M, whenever m � � : f m � m a is a meager set, h is a
Ž �well-defined MV-�-homomorphism from TT onto M see the proof of 5,

�.Theorem 4.10 . It is evident that an element a of a semisimple MV-alge-
bra M is Boolean iff a is a two-valued function on �, so that a � 	 forˆ ˆ A

Ž .some A � SS TT , and in addition, A is a clopen subset of �. We define0
Ž .by SS the set of A � SS TT all such that 	 � a for some a � M.ˆ0 0 A

� � Ž Ž ..According to 8, Theorem 8.14 , the space Ext SS M is homeomorphic
Ž Ž Ž ...with the set Ext SS B M of all extremal states on the Boolean �-alge-

Ž . Ž Ž .. Ž .bra B M . In addition, any restriction of m � Ext SS M to B M gives
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Ž Ž Ž ...an element of Ext SS B M , and conversely, any element of
Ž Ž Ž ...Ext SS B M can be uniquely extended to an extremal state on M, and

this correspondence defines the mentioned homeomorphism.
Consequently, by the proof of the classical Loomis�Sikorski theorem,

SS is a �-algebra of crisp subsets of �, and due to the definition of h, its0
Ž .restriction onto SS defines a �-homomorphism from SS onto B M .0 0

Ž . Ž .It is evident that SS 
 SS TT . On the other hand, A � SS TT iff0 0 0
Ž .	 � TT, i.e., h 	 � a for some a � M. Since 	 is an Boolean elementA A A

of TT, so is a in M. Consequently, a � 	 and A � SS .ˆ A 0

Ž .Let M be a �-complete MV-algebra. The triplet �, TT, h , where
Ž Ž ..� � Ext SS M , TT is the tribe, and h is the MV-�-homomorphism from

TT onto M described in the proof of Theorem 2.5, is said to be a canonical
representation of M.

Given an integer n � 1 and a � M, we define

n�a � a 	 


 	 a ,1 n

where a � a, i � 1, . . . , n.i
Another version of the Loomis�Sikorski theorem is the following state-

ment.

THEOREM 2.6. Let TT be a tribe of fuzzy sets on � � � containing all
constant fuzzy sets on �. Let h be an MV-�-homomorphism from TT onto a

Ž . Ž .�-complete MV-algebra M. Then h maps SS TT onto B M .0

Ž . Ž .Proof. Let a � B M . Then there exists an element g � TT with h g
Ž .� a. According to 3 of Proposition 2.1, there are two cases.

k � � Ž .Case 1. Let g � Ý � 	 , where � � 0, 1 , A � SS TT , and A �i�1 i A i i 0 ii

A � � for i � j, i, j � 1, . . . , k. There exists an integer s such thatj
s� � 1 for j � 1, . . . , k. Then s�g � 	 , where A � �k A . Hence,j A j�1 j
Ž . Ž .h 	 � h s�g � s�a � a.A

Case 2. There exists a non-decreasing sequence of simple functions
� 4 k n n

ng of elements of TT such that lim g � g. Let g � Ý � 	 , wheren n n n n i�1 i A in � � n n k n n� � 0, 1 and A � A � � for i � j. We define A � � A andi i j n i�1 i
A � �� A . As in Case 1, there exists an integer s � 1 such thatn�1 n
s� 1 � 1 for i � 1, . . . , k . Hence, s� n � 1 for any i � 1, . . . , k and anyi 1 i n
n � 1. Therefore, s�g � s�g � s�g, i.e., 	 � 	 � s�g, whichn n�1 A An n�1

Ž . Ž . Ž . Ž .entails 	 � s�g and h 	 � h lim 	 � h lim s�g � h s�g �A A n A n nn n

s�a � a.

� �Let c � 0, 1 . An element a in a semisimple MV-algebra M is said to
Ž .be a c-constant if m a � c for any state m � M. If M is a tribe, then the

c-constant is equal to c1 .�
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� �According to 6 , we say that a semisimple MV-algebra M is weakly
di�isible if, for any integer n � 1, there is an element � � M such that n�
is defined in M and n� � 1. It is easy to see that � is uniquely determined.

Ž . Ž .Indeed, m n� � 1 for any state m on M. Then m � � 1�n. We denote
1� � .n

Ž n.For example, TT � is weakly divisible. In addition, if M is a �-com-BB

� �plete, weakly divisible MV-algebra, then any c-constant, where c � 0, 1 ,
belongs to M.

� �In the proof of 6, Theorem 3.10 , it was shown that a weakly divisible
�-complete MV-algebra M is isomorphic as MV-algebras with the space
Ž Ž Ž ...C Ext SS M of all continuous functions on the basically disconnected

1 Ž Ž .. � �space Ext SS M with values in the interval 0, 1 . In this case, the tribe
Ž Ž Ž ...generated by C Ext SS M is equal to the set of all Baire measurable
Ž Ž .. � �fuzzy sets on Ext SS M 5, Proposition 3.4 .

PROPOSITION 2.7. Let h be an MV-�-homomorphism from a tribe TT of
fuzzy sets on � � � containing all constant fuzzy sets into a �-complete

Ž .MV-algebra M. Then M is weakly di�isible, and h c1 is a c-constant for any�

� �c � 0, 1 .
1Ž . Ž .Proof. Let n � 1 be given. Then 1 � h 1 � h n 1 , which proves� �n

m mŽ .that M is weakly divisible. Hence, h 1 is an -constant in M. Conse-�n n
Ž . � �quently, h c1 is a c-constant for any c � 0, 1 .�

The following statement is an easy consequence of the above proposi-
tion.

COROLLARY 2.8. Let x be an MV-obser�able of a �-complete MV-algebra
Ž . � �M. Then M is weakly di�isible, and x c is a c-constant for any c � 0, 1 .

� 4For example, let L � 0, 1�n, 2�n, . . . , n�n be the so-called basicn
MV-algebra. If n � 2, then on L there exists no MV-observable. Simi-n
larly, since any finite MV-algebra M is a direct product of finitely many

� �basic MV-algebras 3 , if M is a finite non-Boolean MV-algebra, then it
does not admit any MV-observable.

THEOREM 2.9. Let TT be a tribe of fuzzy sets on a non-�oid set �
containing all constant fuzzy sets and let h be an MV-�-homomorphism from
TT onto a �-complete MV-algebra M. Then, for any MV-obser�able x on M,

Ž .there exists an SS TT -measurable real-�alued function f defined on � such0
that

x a � h a� f , a � TT � . 2.3Ž . Ž . Ž . Ž .BB

1 A topological space X is said to be basically disconnected provided the closure of every
open F subset of X is open.�
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Ž .If g is any SS TT -measurable real-�alued function defined on � such that0
Ž . Ž . Ž . Ž . � Ž . Ž .4x a � h a� g , a � TT � , then h 	 � 0, where E � � : f � � g � .BB E

Ž .Con�ersely, if f is a real-�alued SS TT -measurable mapping on �, then the0
mapping x defined byf

x a � h a� f , a � TT � , 2.4Ž . Ž . Ž . Ž .f BB

defines an MV-obser�able on M.

Ž . Ž .Proof. Step 1. Suppose that A, B � SS TT , A 
 B, and c � B M0
Ž . Ž . Ž .are such that h 	 � c � h 	 . Then there exists an element C � SS TTA B 0

Ž . Ž .such that A 
 C 
 B, and h 	 � c. In fact, since h maps SS TT ontoC 0
Ž . Ž . Ž .B M , there exists C � TT such that h C � c. If we define C � C � B1 1 1

Ž .� A, then A 
 C 
 B and h C � c.
Step 2. Similarly as in the proof of Theorem 2.3, let r , r , . . . be any1 2

Ž .enumeration of the rational numbers of �. It is clear that x 	 �Ž��, r .i
Ž . Ž .x 	 whenever r � r and any x 	 is a Boolean element ofŽ��, r . i j Ž��, r .j i

Ž . Ž .M. We shall now construct crisp sets A , A , . . . from SS TT such that a1 2 0
Ž . Ž . Ž .h 	 � x 	 for any i; b A 
 A whenever r � r . According toA Ž��, r . i j i ji i

Ž . Ž . Ž .Theorem 2.6, we can find a set A in SS TT such that h A � x 	 .1 0 1 Ž��, r .1
Ž . Ž .Suppose that A , . . . , A in SS TT have been constructed such that i1 n 0

Ž . Ž . Ž .h 	 � x 	 for i � 1, . . . , n; ii A 
 A whenever r � r , 1 �A Ž��, r . i j i ji i
Ž .i, j, � n. We shall construct A as follows. Let i , . . . , i be then�1 1 n

Ž .permutation of 1, . . . , n such that r � r � 


 � r . Then there exists ai i i1 2 n
Ž .unique k such that r � r � r we define r � �� and r � � ,i n�1 i i ik k�1 0 n�1

Ž .and by Step 1, we can select A � SS TT such that A 
 A 
 An�1 0 i n�1 ik k�1
Ž .we define A � � and A � � . By induction, we have proved thati i0 n�1

Ž . Ž .there exists a sequence A , A , . . . in SS TT with the properties a1 2 0
Ž .and b .

As

h 	 � h 	 � x 	 � 0,Ž . Ž . Ž .� ��A A Ž�� , r .j j j j
j j

we may, by replacing A by A � � A , if necessary, assume that � A �k k j j j j
Ž . Ž .�. In addition, we have h 	 � � x 	 � 1.�A j Ž��, r .j j i

We now define a function f on � as

inf r : � � A if � � � A ,� 4j j j jf � �Ž . ½ 0 otherwise.

Then f is a finite real-valued function on �, and, for any k

f�1 ��, r � A � A ,Ž .Ž . � �k j j
j j: r �rj k
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Ž .so that f is SS TT -measurable. Further,0

f 	 �1 � h 	 � x 	 � x 	 .Ž . Ž .Ž .Ž . �f ŽŽ�� , r .. � A Ž�� , r . Ž�� , r .k j : r � r j j kj k
j: r �rj k

Ž . Ž . Ž .Therefore, h 	 � f � x 	 whenever E � ��, r for some k. Simi-E E k
Ž . Ž . Ž . � �larly, by Proposition 2.7, h c� f � h c1 � x c for any c � 0, 1 . Hence,�

Ž . Ž . Ž .the system of all a � TT � such that x a � h a� f is a tribe containingBB

Ž . Ž .the generator of TT � , consequently, it coincides with TT � .BB BB

The uniqueness of a function f in the given sense can be proved in a
similar way as in the proof of Theorem 2.3.

The second statement is now evident.

It is worth recalling that according to Theorem 2.9, a �-complete
MV-algebra M admits an MV-observable iff M is weakly divisible:

THEOREM 2.10. A �-complete MV-algebra M admits an MV-obser�able if
and only if M is weakly di�isible.

Proof. Let x be an MV-observable of M. Due to Corollary 2.8, M is
weakly divisible.

�Suppose now M is a weakly divisible �-complete MV-algebra. By 6,
� Ž .Theorem 3.10 , M is isomorphic to the system C � of all continuous

Ž Ž .. Ž . Ž .fuzzy sets on � � Ext SS M . The tribe TT M generated by C � is
�equal to the system of all Baire measurable functions on � 6, Proposition

� Ž .3.4 . In addition, TT M contains all constant functions taking values in the
� �interval 0, 1 . Take now a Baire function f : � � �, and define x viaf

Ž .2.4 . According to Theorem 2.9, x is an MV-observable on M, where h isf
defined in the same way as in the proof of Theorem 2.5.

3. CALCULUS OF OBSERVABLES

Let f be a Borel measurable function from � into �. Then f � x, where
x is an MV-observable of M,

f � x a � x a� f , a � TT � ,Ž . Ž . Ž . Ž .BB

Ž . Ž Ž ..and a� f � � a f � , � � �, is an MV-observable of M. In this man-
ner we can define x 2, x 3, or e x, etc.

THEOREM 3.1. Let x and y be two MV-obser�ables of a �-complete
Ž . Ž .MV-algebra M. Then R x 
 R y if and only if there exists a Borel measur-

able function f : � � � such that x � f � y.

Ž . Ž .Proof. One direction is evident. Suppose now that R x 
 R y . We
Ž . Ž .define TT � TT � , h � y, M � R y , and apply Theorem 2.9.BB
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� 4THEOREM 3.2. Let x be a sequence of MV-obser�ables on a �-completen
MV-algebra M. Then there exists an MV-obser�able x and a sequence of Borel

� 4measurable functions f from � into � such that x � f � x for any n.n n n

Ž .Proof. Let M be the MV-subalgebra of M generated by � R x .0 n n
According to Theorem 2.4, there exists an MV-observable x such that
Ž .R x � M . Then we apply Theorem 3.1 and we obtain the statement in0

question.

The following result can be of a particular interest for many valued
analysis and for a so-called calculus of MV-observables.

THEOREM 3.3. Let x , . . . , x be MV-obser�ables of a �-complete MV-al-1 n
Ž n.gebra M. Then there exists a unique MV-�-homomorphism x from TT �BB

Ž . Ž . Ž .into M such that, for any Borel fuzzy set a � TT � , x a � x a�� , whereBB i i
� is the ith projection of � n onto �, i � 1, . . . , n.i

Proof. Let M be the MV-subalgebra of M generated by all ranges0
Ž . Ž .R x , . . . , R x . Since M has a countable generator, according to Theo-1 n 0

Ž .rem 2.4, there exists an MV-observable y of M such that R y � M .0
Consequently, by Theorem 2.9, there exist Borel measurable functions

Ž . Ž .Ž . Ž .f , . . . , f from � into � such that x a � f � y a , a � TT � . Define1 n i i BB
n Ž . Ž Ž . Ž ..the Borel measurable mapping f : � � � by f t � f t , . . . , f t ,1 n

Ž n.t � �, and set x : TT � � M viaBB

x b � y b� f , b � TT � n . 3.1Ž . Ž . Ž . Ž .BB

Ž n.Then x is an MV-�-homomorphism from TT � into M. Moreover, letBB

Ž .a � TT � . ThenBB

x a�� � y a�� � f � y a� f � x a .Ž . Ž . Ž . Ž .i i i i

Ž .For the uniqueness, let z be any MV-�-homomorphism from TT � intoBB

Ž . Ž . Ž . Ž .M such that z a�� � x a , a � TT � , i � 1, . . . , n. Then, for E � BB �i i BB i
Ž .i � 1, . . . , n , we have

n n

z 	 � z min 	 �� � z 	 �� � x 	 ��Ž . Ž . Ž . Ž .� �ž /E � 


 �E E i E i E i1 n i i i1�i�n i�1 i�1

� x min 	 �� � x 	 .Ž . Ž .ž /E i E � 


 �Ei 1 n1�i�n

� � Ž . Ž . Ž .nOn the other hand, let c � 0, 1 . Then x c	 � x c	 �� � x c	� � i i �

Ž . Ž .n� z c	 �� � z c	 .� i �

Ž n. Ž .Hence the set of all Borel fuzzy sets b from TT � such that x b �BB
nŽ . Ž .z b is a tribe containing the generator of TT � , so that x � z.BB
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The unique MV-�-homomorphism x from Theorem 3.3 is said to be a
joint MV-obser�able of x , . . . , x .1 n

THEOREM 3.4. Let x be a joint MV-obser�able of the MV-obser�ables
x , . . . , x of a �-complete MV-algebra M. Let y be an MV-obser�able of M1 n
and f , . . . , f let be Borel measurable functions from � into � such that1 n
x � f � y for i � 1, . . . , n. Let � : � n � � be a Borel function. Definei i

Ž . Ž . Ž .� � x : TT � � M and � f , . . . , f � y : TT � � M , whereBB 1 n BB

Ž .Ž . Ž Ž . Ž ..� f , . . . , f t � � f t , . . . , f t , t � �, by1 n 1 n

� � x a � x a�� , a � TT � , 3.2Ž . Ž . Ž . Ž . Ž .BB

� f , . . . , f � y a � y a�� f , . . . , f , a � TT � . 3.3Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 n 1 n BB

Ž .Then � � x and � f , . . . , f � y are identical MV-obser�ables of M.1 n

Proof. According to the proof of Theorem 2.9 and Theorems 3.1�3.2, it
is evident that the construction of the joint MV-observable x of x , . . . , x1 n
does not depend on the used MV-observable y and Borel functions

Ž .f , . . . , f . It is clear that � � x and � f , . . . , f � y are MV-observables of1 n 1 n
Ž . Ž .M. Consequently, by 3.1 , for any a � TT � , we haveBB

� � x a � x a�� � y a�� � fŽ . Ž . Ž . Ž .
� y a�� f , . . . , fŽ .Ž .1 n

� � f , . . . , f � y a ,Ž . Ž .Ž .1 n

Ž . Ž Ž . Ž ..where f t � f t , . . . , f t , t � �.1 n

The MV-observable � � x from Theorem 3.4 will be denoted by
Ž .� � x , . . . , x , i.e., as a function of x , . . . , x . We have seen that it can1 n 1 n

Ž . Ž .be defined by equivalent ways by 3.2 or by 3.3 .
Ž .For example, if � t , t � t � t , we can define addition of two MV-1 2 1 2

observables x and x by1 2

x � x � � � x , x . 3.4Ž . Ž .1 2 1 2

In a similar way we can define product, difference, etc., of MV-observa-
bles.

THEOREM 3.5. Let x , . . . , x be MV-obser�ables of a �-complete MV-al-1 n
gebra M, g , . . . , g be real-�alued Borel functions on � n, and h be a1 k

k Ž .real-�alued functions on � . Then y � g � x , . . . , x , i � 1, . . . , k, arei i 1 n
MV-obser�ables of M, and

h� y , . . . , y � h g , . . . , g � x , . . . , x , 3.5Ž . Ž . Ž . Ž .Ž .1 k 1 k 1 n
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Ž . n Ž .where h g , . . . , g is the function from � into � defined by t , . . . , t �1 k 1 n
Ž Ž . Ž ..h g t , . . . , t , . . . , g t , . . . , t .1 1 n k 1 n

Ž . nProof. Suppose y � g � x , . . . , x and let g be the mapping from �i i 1 n
k Ž . Ž Ž . Ž ..into � defined by g t , . . . , t � g t , . . . , t , . . . , g t , . . . , t . Then1 n 1 1 n k 1 n

Ž k .the mapping y : TT � � M given byBB

y b � x b� g , b � TT � k ,Ž . Ž . Ž .BB

Ž .is an MV-�-homomorphism such that, for a � TT � ,BB

y a�� k � x a�� k � g � x a� g � y a ,Ž . Ž .Ž . Ž .i i i i

where � k is the ith projection from � k on �. Therefore, y is the uniquei
Ž .joint MV-observable of y , . . . , y . Consequently, for h� y , . . . , y , we1 k 1 k

have

h� y , . . . , y a � y a� h � x a� h� g ,Ž . Ž . Ž . Ž .Ž .1 k

which proves the theorem.

If we apply Theorems 3.3�3.4, we see that, for example, the sum
x � 


 �x of MV-observables x , . . . , x is well-defined, and, in addi-1 n 1 n

Ž .tion, x � 


 �x � x � 


 �x , where i , . . . , i is any permutation of1 n i i 1 n1 n
Ž .1, . . . , n .

We now present a representation theorem for MV-observables. Accord-
ing to Theorem 2.10, we can limit ourselves to weakly divisible �-complete
MV-algebras.

THEOREM 3.6. Let M be a weakly di�isible �-complete MV-algebra with
Ž .the canonical representation �, TT, h . If f is a Baire measurable real-�alued

function on �, then

x a � h a� f , a � TT � ,Ž . Ž . Ž .f BB

defines an MV-obser�able of M. Con�ersely, gi�en an MV-obser�able x on M,
there exists a real-�alued Baire-function f on � such that x � x . If g isf
another real-�alued Baire measurable function on � with x � x , thenf g
� Ž . Ž .4� : f � � g � is a meager set.

Proof. The statement follows directly from Theorems 2.9�2.10.

THEOREM 3.7. Let the conditions of Theorem 3.6 be satisfied. Let
x , . . . , x be MV-obser�ables with the joint MV-obser�able x. Then there exist1 n
real-�alued Baire measurable functions f , . . . , f on � such that x � x ,1 n i f i

Ž . Ž Ž . Ž ..i � 1, . . . , n, and x � x , where f � � f � , . . . , f � , andf 1 n

x b � h b� f , b � TT � n . 3.6Ž . Ž . Ž . Ž .f BB
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n � Ž .If g : � � � is Baire measurable such that x � x , then � : f � �f g
Ž .4g � is a meager set.

Proof. According to Theorem 3.6, there exist Baire measurable func-
Ž .tions f : � � �, i � 1, . . . , n, such that x � x i � 1, . . . , n . Due toi i f i

Ž n.Theorem 3.3, the joint MV-observable x : TT � � M is uniquely deter-BB

Ž . Ž . Ž . Ž .mined by x a�� � x a , a � TT � . Define x by 3.6 . Then x is ani i BB f f
Ž n. Ž . Ž .MV-�-homomorphism from TT � into M with x a�� � h a�� � fBB f i i

Ž . Ž . Ž . Ž .� h a� f � x a � x a for a � TT � . The uniqueness of a joint MV-i f i BBi

observable entails x � x .f
If x � x for some Baire measurable function g : � � � n, theng

� Ž . Ž .4 n � Ž . Ž .4 Ž .� : f � � g � � � � : f � � g � , where g � g , . . . , g withi�1 i i 1 n
g : � � �, so that the set under question is meager.i

Let x be an MV-observable of M. The spectrum of x is the set
Ž . � Ž . 4� x � � C : C is a closed crisp set of � with x 	 � 1 . Since theC

natural topology of � satisfies the second countability axiom, there exists a
Ž .sequence of closed sets C , C , . . . such that x 	 � 1 for all n, and1 2 Cn

Ž . Ž . Ž .� x � � C . x is said to be i bounded if � x is a bounded set of �;n n
Ž . Ž . � 4 Ž . Ž . � 4 Ž .ii discrete if � x � c , c , . . . ; iii simple if � x � c , . . . , c ; iv1 2 1 n

Ž . � 4 Ž . Ž . � 4question if � x 
 0, 1 , and v constant if � x � c .

PROPOSITION 3.8. Let the conditions of Theorem 3.6 be satisfied. Let
f : � � � be a Baire measurable function. The MV-obser�able x isf

Ž .i bounded if and only if f is a bounded function up to a meager set;
Ž .ii discrete if and only if f � Ý c 	 , A � A � � for i � j, A �i i A i j ii

Ž .SS TT ;0

Ž . niii simple if and only if f � Ý c 	 , A � A � � for i � j,i�1 i A i ji
Ž .A � SS TT ;i 0

Ž . Ž .iv question if and only if f � 	 for some A � SS TT ;A 0

Ž .v constant if and only if f � c	 .�

Ž Ž . Ž . .All statements ii � v are �alid up to a meager set.

Ž .Proof. i Let x be bounded. Then there exists a constant c such that
Ž . � �� x 
 �c, c . Hence

1 � x 	 � h 	 � f � h 	 �1 ,Ž . Ž .Ž .f ��c , c � ��c , c � f Ž��c , c �.

� Ž . � �4which proves that � : f � � �c, c is a meager set. The converse is
clear.

Ž . �1Ž� 4.From the rest we prove only ii . Put A � f c and calculatei i
Ž . Ž . Ž . Ž .�1x 	 � h 	 � f � h 	 � h 	 . Therefore, f � Ý c 	 .f �c 4 �c 4 f Ž�c 4. A i i Ai i i i i
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Let m be a �-additive state on a �-complete MV-algebra M. If x is an
MV-observable on M, then the composition m of m with x, m � m� x,x x�

Ž .is a �-additive state on TT � . In addition, the restriction m of m ontoBB x x�
Ž . Ž . Ž . Ž .BB � , defined via m E � m 	 , E � BB � , is a usual probabilityx x E

Ž .measure on the Borel �-algebra BB � .
In a similar way, if h is an MV-�-homomorphism of a tribe TT onto M,�

Ž . � �then m � m� h is a �-additive state, and m : SS TT � 0, 1 defined byh h 0�
Ž . Ž . Ž . Ž .m A � m 	 , A � SS TT , is a usual probability measure on SS TT .h h A 0 0

Let x be an MV-observable; for the mean �alue of x in a �-additive
state m we understand the expression

�
m x � t dm t 3.7Ž . Ž . Ž .H x

�

Ž .whenever the expression on the right-hand side of 3.7 exists and is finite.
The following result gives a way how to prove many of the known results

Žfrom classical probability theory convergence of MV-observables, limit
.theorems for probability theory on MV-algebras.

PROPOSITION 3.9. Let h be an MV-�-homomorphism of a tribe containing
Ž .all constants onto a �-complete MV-algebra M. Let x be defined by 2.2 forf

Ž .some SS TT -measurable function f : � � �, and let m be a �-additi�e state0 �
Ž . Ž . Ž .on M. Then m x exists and is finite if and only if the integral H f � dm �f � h

exists and is finite. In such a case

�
m x � f � dm � .Ž . Ž . Ž .Hf h

�

Ž .Proof. It follows from the equality 3.7 and from transforms of inte-
grals.

ACKNOWLEDGMENTS

The author is indebted to Professor R. Fric, Kosice, for the fruitful discussion on theˇ ˇ
subject of the paper, and to the referee for his careful reading. This research was supported
by VEGA Grants 2�7192�20 and 2�6087�99 of the Slovak Academy of Sciences, Slovakia.

REFERENCES

Ž .1. L. P. Belluce, Semisimple algebras of infinite valued logic, Canad. J. Math. 38 1986 ,
1356�1379.

Ž .2. C. C. Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 1958 ,
467�490.



ANATOLIJ DVURECENSKIJˇ428

3. R. Cignoli, Complete and atomic algebras of the infinite valued Łukasiewicz logic, Studia
Ž .Logica 50 1991 , 375�384.

4. R. Cignoli, I. M. L. D’Ottaviano, and D. Mundici, ‘‘Algebraic Foundations of Many-Val-
ued Reasoning,’’ Kluwer Academic, Dordrecht, 2000.

5. A. Dvurecenskij, Loomis�Sikorski theorem for �-complete MV-algebras and l-groups, J.ˇ
Ž .Austral. Math. Soc. Ser. A 68 2000 , 261�277.

6. A. Dvurecenskij and B. Riecan, Weakly divisible MV-algebras and product, J. Math.ˇ ˇ
Ž .Anal. Appl. 234 1999 , 208�222.

7. A. Dvurecenskij and S. Pulmannova, ‘‘New Trends in Quantum Structures,’’ Kluwerˇ ´
Academic, Ister Science, Dordrecht�Bratislava, 2000.

8. K. R. Goodearl, ‘‘Partially Ordered Abelian Groups with Interpolation,’’ Math. Surveys
and Monographs, Vol. 20, Amer. Math. Soc., Providence, 1986.

9. P. R. Halmos, ‘‘Measure Theory,’’ Springer-Verlag, New York�Heidelberg�Berlin, 1988.
10. A. N. Kolmogorov, ‘‘Grundbegriffe der Wahrscheinlichkeitsrechnung,’’ Berlin, 1933.
11. K. Kuratowski, ‘‘Topology, I,’’ Mir, Moscow, 1966.
12. D. Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J.

Ž .Funct. Anal. 65 1986 , 15�63.
13. D. Mundici, Tensor products and the Loomis�Sikorski theorem for MV-algebras, Ad� .

Ž .Appl. Math. 22 1999 , 227�248.
14. B. Riecan and T. Neubrunn, ‘‘Integral, Measures, and Ordering,’’ Kluwer Academic,ˇ

Dordrecht, 1997.
15. V. S. Varadarajan, ‘‘Geometry of Quantum Theory,’’ Vol. 1, Van Nostrand, Princeton,

NJ, 1968.


	1. INTRODUCTION
	2. TRIBES AND MV-OBSERVABLES
	3. CALCULUS OF OBSERVABLES
	ACKNOWLEDGMENTS
	REFERENCES

