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In this paper, we presented a novel multi-strain TB model of variable-order fractional deriva-
tives, which incorporates three strains: drug-sensitive, emerging multi-drug resistant (MDR)
and extensively drug-resistant (XDR), as an extension for multi-strain TB model of nonlinear
ordinary differential equations which developed in 2014 by Arino and Soliman [1]. Numerical
simulations for this variable-order fractional model are the main aim of this work, where the
variable-order fractional derivative is defined in the sense of Griinwald—Letnikov definition.
Two numerical methods are presented for this model, the standard finite difference method
(SFDM) and nonstandard finite difference method (NSFDM). Numerical comparison between
SFDM and NSFDM is presented. It is concluded that, NSFDM preserves the positivity of the
solutions and numerically stable in large regions than SFDM.

© 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University.

Introduction

biology, engineering, and finance can be described excellently
by models using mathematical tools from variable-order
fractional calculus, such as mechanical applications [2],

Variable-order fractional calculus (i.e., the fractional differen-
tiation and integration of variable order) is the generalization
of classical calculus and fractional calculus, which were
invented by Newton and Leibnitz hundreds of years ago.
Now the study on it becomes a hot pot in recent ten years
[2-7]. Tt has turned out that many problems in physics,
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diffusion process [5], multifractional Gaussian noise [8], and
FIR filters [9]. For more details, see [7,10] and references
therein. Understanding the transmission characteristics of
infectious diseases in communities, regions and countries can
lead to better approaches to decrease the transmission of these
diseases [11]. Variable-order fractional derivative is good at
depicting the memory property which changes with time or
spatial location [3.5].

TB is growing more resistant to treatment worldwide
according to study released in August 2012 in the journal
Lancet, a finding that suggests the potentially fatal disease is
becoming more difficult and costly to treat [12]. In this article
we focused our attention in Egypt.

2090-1232 © 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University.
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We consider in this work a model developed by Arino and
Soliman for TB [1]. The model incorporates three strains,
drug-sensitive, MDR and XDR. Several papers considered
modeling TB such as [13,14], but the model we consider here
includes several factors of spreading TB such as the fast infec-
tion, the exogenous reinfection and secondary infection along
with the resistance factor. The main aim of this paper was to
study numerically the multi-strain TB model of variable-order
fractional derivatives which incorporates three strains: drug-
sensitive, MDR and XDR. We develop a special class of numer-
ical method, known as NSFDM for solving this model. This
technique, developed by Mickens (1980) [15-23] has brought a
creation of new numerical schemes preserving the physical prop-
erties, especially the stability properties of equilibria, of the
approximated system. Numerical comparison between
NSFDM and SFDM is presented. When the secondary infection
generated by an infected individual exceeds the unity, there are
no analytical results proved for the model, such as the existence
and stability of the endemic equilibrium ( EE). In this case we use
the developed NSFD numerical scheme to approximate the
endemic solution numerically and investigate its stability.
Furthermore, with the help of the NSFDM, we answer the fol-
lowing question: Given the data provided by the World Health
Organization (2012) on the current parameters corresponding to
the propagation of the TB in Egypt, what would be the required
rate of treatment to achieve in order to control the disease? The
proposed method showed its superiority in preserving the posi-
tivity (compared to the numerical standard method considered
in this work) of the state variables of the systems under study.
This is an essential requirement when simulating systems espe-
cially those arising in biology. This paper is organized as follows:
In Section ‘Mathematical model’, Mathematical model is pre-
sented. Preliminaries and notations on variable-order fractional
differential equations are given, in Section ‘Preliminaries and
notations’. Equilibrium points and their asymptotic stability
are presented in Section ‘Variable-order fractional derivatives
for multi-strain TB model’. Variable-order fractional deriva-
tives for the multi-strain TB model are presented; moreover,
the construction of the proposed nonstandard numerical
scheme is carried out in Section ‘Equilibrium points and their
asymptotic stability’. In Section ‘Numerical results and simula-
tions’, Numerical results and simulation are discussed. Finally,
in Section ‘Conclusions’ we presented the conclusions.

Mathematical model

The multistrain TB-model given in [1] can be formulated as
follows:

S, S1, SI,
S'=b—dS =Py = Bu— — By (1)
L =P, ‘S;\[/ + o /13[3 + v Iy — “ﬁ ocj.m[)’m%
- oc”[)’\ — (d+ &+ ty) Ly, 2)
i > Ol S G+ i
+ (1 = P ty,Ly + (1 — Pa)tagdy — ooy LNI
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SI, RI LI Lmlx
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, RI,
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RI,
Umﬁm N - \ﬂx N —dR. (8)

All variables in above system and their definition are in
Table 1. Also, all parameters and their interpretation are in
Table 2.

The basic reproduction number R,

The basic reproduction number R, for system (1)—(8) is given
by [1]

Ry = max(Rys, Rom, Rox), )
where

ﬁ.v(gs + (1 - /ls)(d‘l’ ll.s))
(& +d+ t15) (12 + 0 + d) + p,(t1s + d)’

ROS =

Table 1 All variables of the system (1)-(8) and their
interpretation.

Variable  Definition

S(1) The susceptible population individuals who have never
encountered TB

Ly(1) The individuals infected with the drug-sensitive TB
strain but who are in a latent stage, i.e., who are
neither showing symptoms nor infecting others

Ly(1) Individuals latently infected with MDR-TB

L) Individuals latently infected with XDR-TB

L(1) Individuals infected with the drug-sensitive TB strain
who are infectious to others (and most likely, showing
symptoms as well)

Ly (1) Those individuals who are infectious with the
MDR-TB strain

L(1) Individuals who infectious with the XDR-TB strain

R(1) Those individuals for whom treatment was successful

N(z) The total population

N=S+Li+Ln+Li+IL+1I,+1+R
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Table 2 All parameters of the system (1

)—(8) and their interpretation.

Parameter Interpretation
b Birth/recruitment rate
d Per capita natural death rate
Disease dynamics
B, Transmission coefficient for strain r
Ar Proportion of newly infected individuals developing L7 BI with strain r
1-2 Proportion of newly infected individuals progressing to active TB with strain r due to fast infection
& Per capita rate of endogenous reactivation of L,
01y 02 Proportion of exogenous reinfection of L,; due to contact with 7.,
Yy Per capita rate of natural recovery to the latent stage L,
O Per capita rate of death due to 7B of strain r
Treatment related
s Per capita rate of treatment for L
t Per capita rate of treatment for 7. Note that ,, is the rate of successful treatment of Iy, r € {x,m, s}
1 —o, Efficiency of treatment in preventing infection with strain r
P, Probability of treatment success for Lg
1-P Proportion of treated L; moved to L,, due to incomplete treatment or lack of strict compliance in the use of drugs
23 Probability of treatment success for I
11— P, Proportion of treated I; moved to L, due to incomplete treatment or lack of strict compliance in the use of drugs
Ps Probability of treatment success for 7,
1—P; Proportion of treated I,, moved to L, due to incomplete treatment or lack of strict compliance in the use of drugs
R, Bu(em + (1 = A)d) To apply Miken’s scheme, we have chosen this Griinwald—
m

- (gm + d)(t2m + 5m + d) + dym ’

ﬁx(gx + (1 — ;“X)d)
(8.\’ + d)(tl\’ + 5x + d) + dy\f '

ROX =

Theorem [1] assumes that

0 g s < (l - j"\')7 (10)
Og‘“mmg (1_)~1)1)7 (11)

Then the disease free equilibrium is globally asymptotically
stable when Ry < 1 and endemic equilibria are locally asymp-
totically stable when Ry > 1.

Preliminaries and notations

In this section, some basic definitions and properties in the the-
ory of the variable-order fractional calculus are presented.

Grinwald—Letnikov approximation

We will begin with the signal variable-order fractional
differential

DIy(0) = fl, (1), T > t >

where a(¢) > 0, and D" denotes the variable fractional order
derivative, defined by

Dy (1) = I DO y(1), (14)

07 and7 y(lo) = 07 (13)

where n—1<a(t)<n, n€ N and J' is the nth-order
Riemann-Liouville integral operator defined as

Jy(t) == /0 (t—1)""y(t)dr, with 1> 0, (15)

where I'(+) is the gamma function.

Letnikov approximation variable-order fractional derivative as

follows [15]:
<—1>’(°‘§.’))y<z ), (16)

where [7] denotes the integer part of 7 and £ is the step size;
therefore, Eq. (16) is discretized as

(tn)
g(/’)” n/

j=0

!

D0y (1) = timi
j=0

=St y(tn)) n=1,2,3,.... (17)

o(tn)

where ¢, = nh, and w;"", are the Griinwald-Letnikov coeffi-

cients defined as

u 1 +oa(t, o o — .
(L),--(t”) — (1 7;()) (t”) and , (tn) =h (t”)7 j= 1,273, e
’ J

Variable-order fractional derivatives for multi-strain TB model

In the following, we introduce the multi-strain TB model of
variable-order fractional derivatives which is the integer order
given in system (1)-(8), and the new system is described by
variable-order fractional differential equations as follows:

o(1) —
D S b dS ﬁ; N Bm N 'B‘C N (18)
. o ST . p RL
Df(f)Lx _ /LS[)’XWS + 044 ﬁ_\ N “/A — “,B ‘fx.\'mﬁm
Lrlm Ls[x
X —N _O(S.\’:B,\’—N - (d+ 85+t1s)Lx7 (19)
i ST, \ RI,
Dt(t) Lm = ;~mﬁm T + O-m/Lmﬁm T + }',,11;;1 + a‘m'ﬁmlm
L\'Im
x = (L= POnsL+ (1= Pl
LmIm LWI
- OCmmﬁm - m‘cﬁ (d+ 8"')L’”7 (20)

N
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) _ R,
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RI,
omﬂm N - TN - de (25)

where D*”) is the Caputo variable fractional order derivative.
Because model (18)—(25) monitors the dynamics of human
populations, all the parameters are assumed to be nonnegative.

Equilibrium points and their asymptotic stability

Let o(¢) € (0, 1] and consider the system (18)-(25)
D;YS(t) = £,(S, Ly, Ly L, I I, L, R),
DYOL(t) = o(S, Loy Ly L, Ly Ly I, R,
DXL, (1) = f(S, Ly, Ly, Ly, I, Iy, I, R),
DXL (1) = fo(S, Ly, Ly, Ly, L, Ly, I, R),
DIOL(1) = f5(S, Ly Ly, Lo, I I, 1, R),

D0, (1) = f5(Ss Ly Liny Loy Iy Ly I, R),

DIOL() = f7(S, Ly, L, Ly, I I, L, R),

’)R(t) fS(S7L,&'7Lm7L.wls71m7[x7R)‘

With the initial values (S(0), L(0), L,,(0), L.(0), I(0), 1,,(0),
1(0), R(0)).
To evaluate the equilibrium points let
DS = DIVL,
=D, =D*"R=0
= (S LY LY LY I L T RY) = 0,

i=1,2,3,...,8.

— Df(”Lm — Dt%(t)Lx — D;‘“)I_Y — D;‘(’)I,,,

From which we can get the
(S, L9, L9, L9, I, I 9, R).

m? s mo

equilibrium  points

To evaluate the asymptotic stability let

S(t) = S+ ¢ (1),
Ly(1) = L(1) + (1),

Ly(1) = L“"( ) + (1),
L(t) = LI(1) + (1),
L(1) = "( ) +es(2),
m(t) 1( ) + 86(t)>

L(1) = I{ (1) + & (1),
R(1) = R“’ + &5(1).
So the equilibrium point (8%, LY, L/ LY I, I I, RY)

is locally asymptotically stable if all eigenvalues of Jacobian
evaluated at the equilibrium point satisfy [16]

a(t)m
> ,o(t) € (0,1],¢

larg A;| > > 0 where i=1,2,...,8.
To evaluate the equilibrium points, let

D;‘<’)S — D,”(’)LS — D;(([)Lm — Df(”Lx — Df<')1x — Df(’)lm

— Dt;(/)[x — D‘;‘“)R =0
=[S LY Ly LY I L I RY) =0,
=1,2,3,...,8.

Now, if ,=1,=1,=0 = L,=L,=L,=0, R=0 and
S = b

Then the disease free
Ey= {(Z,O 0,0,0,0,0, 0)}

We calculate the Jacobian matrix of the system (18)—(25) at
the disease free equilibrium point as follows:

equilibrium (DFE) is

a 0 0 0 b c d O

0 e 00 f 0 0O

0O g h 0Opq0UDO0

0 0 0r 0 s t O
J(Ey) = :

0O u 0 0 v 0 0O

0 0w OO X 00

0 0 0Oy 00 z 0

0O0m 0 0 n j k a
where a=—d,b=— ~B, d=—P,, —(d+es+1y),
f=9+Ap,, v= (d+5 +th+7,), 8 ( — P))ty, h=
—(d+&n), p=(1—-P)n, q=7,+ ?»mﬁ’m T = —(d+ &),
s=(1=P3)tyy, t=7p, + 4B, u=2&;, X=—(d+ 6+ to+ V),
W = &,.
Y=gy z=—(d+ 0+ tay +7,), m = Pity;, n = Py,

J= Pstyy, k= oy

The characteristic equation associated with above matrix is
|J(Eo) =0 = (a— A (P = (r+2)2i—yt+zr) (—12+
(h+X)A— xh+wq) (=2 + (e + v)A+ uf — ve) = 0. Then the
eigenvalues of Jacobian matrix are A, =—d, Asa=

rz/ (242222 +4y1) Jeo— xthtn/ (2 =2xhtiP+dwg) 5 vieEy/ (P +2ve+e? +uf)
3 y 456 = 2 yA18 = 3 >

by using Theorem (Routh Hurwitz criteria) [17], these roots
are negative or have negative real parts and DFE is locally
asymptotically stable if all eigenvalues of the Jacobian matrix

=|—n>2" ()€ (0,1, =0 For

satisfies |arg 4;
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Table 3 All parameters in the system (18)(25) and the
reference of the parameters.

Parameter Value Reference
b 3190 Assumed
d 0.38 [26]
By =B =B, 14 [26]
As = Am = Ay 0.5 Assumed
B =6p =6 0.5 Assumed
Ol 2 0.05 Assumed
Vs = Vm = Vx 0.3 Assumed
ts 0.88 [26]
by :re (S,m,x) try = 0.88; tr, = 1o, = 0.034 [26]
o, 0.25 [26]
P, 0.88 [26]
o 0.045 [26]

simplicity, we will determine the stability of the DFE numeri-
cally by using Table 3 and put f, = f,, = f, = 0.1. Then eigen-

values are A, = —0.3800, /1, =—0.3800, A; =—0.3675,
4 = —0.3675, s = —1.2215, J¢=—1.2215, 71; =—2.0882,
A = —1.2268. So, if Ry < 1, the DFE is locally asymptotically
stable since |arg A;| = | — 7| > @, o(t) € (0,1], £ = 0.

If at least one of the infected variables is non-zero, then the
solutions for model (18)—(25) are the endemic equilibrium [1].
This system is highly nonlinear in I, I,, and 7, and hence explicit
solutions are not obtainable. So we solved the system (18)—(25)
numerically to obtain endemic fixed point using NSFDM.

SFD discretization

SFD methods are simple numerical methods for approximat-
ing the solutions of differential equations using finite differ-
ences to approximate the derivatives.

The forward Euler melhod is one of these methods, in this
method the derivative telm " is replaced by M

is the step size, for more detculs see [18].

, where h

NSFD discretization

The nonstandard finite difference schemes were introduced by
Mickens in the 1980s as a powerful numerical method that pre-
serves significant properties of exact solutions of the involved
differential equation [19]. The concept of the nonstandard
finite difference method is discussed in [20].

Definition 1. A numerical scheme is called NSFD discretiza-
tion if at least one of the following conditions is satisfied [18]:

1. Nonlocal approximation is used.
2. The discretization of derivative is not traditional and uses a
nonnegative function [19,20].

To describe the main aspects of NSFD schemes, we
consider an ODE in the form

) e7)

where 1 is a possibly vector, parameter. Given a mesh-grid
t, = to + hn that just for simplicity we assume to be equispaced
with step-size # > 0, NSFD schemes are constructed by the

following two main steps: 1- the derivative at the left-hand side
of (27) is replaced by a discrete representation in the form

Q — yn+| —Vn

d o(Ah) "’

where y,, is an approximation of y(#,), 2-the nonlinear term
in (27) is replaced by a nonlocal discrete representation

F(t,y,.1,Yn,---,A) depending on some of the previous
approximations.
For example, if there are nonlinear terms such as 2 (Vgt in
the differential equation, these are replaced by L))‘” or
X(t4h)y(1)
N -
Let us denote by S", L], L7, L’;, I, I, I' and R" the values
of the approximations of S(nh) s(nh), ,,,(nh) «(nh), I;(nh),
1,,(nh), I.(nh) and R(nh) respectively, for n =0, 17 2,...and h
is the timestep of the scheme. The sequences S", L, L;;,, L, I,

I, I' and R" should be nonnegative in order to be consistent
with the biological nature of the model [21].

NSFDM has many advantages than SFDM, for more
details see [20-24]. Generally speaking, we can say that

NSFDM is more efficient and accurate than SFDM [15,25].

NSFD for variable-order fractional derivatives system

The system (18)—(25) can be discretized as follows:

n+1 ) m+1 I Sn+l]n Sn+l I
Z(l‘n)SnJrlﬁ/ —h— dSn+] _ S s m X
/:ZOU) J ﬁ N Nn ﬁ m Nn ﬁ X Nn ’
(28)
n+1 +1 n+1 m n+lln
Z o(tn) Ln+1 Jj }ﬁ +O‘) ﬁ awﬁ
j=0
n+1m n+1[n
— Ksx Py d >§ lis L s m—m’
s P —(d+e+01;) LY — 0B N
(29)
n+1 n+1 m n+1 n+l
n S I:n R 171 L I,
Zw S Lm+1 77 mﬁm Nn +0—"1/“Wlﬁm Nn +’1marmﬁm Nn =
+ 9l -i'lle"+ Pllle?+l + oI — Prto 1}
n+l n+1lm
OCmmﬂm ]vn o — O(m,\’ﬂx "]1\7" ~— (d+Em)LZ1+I 9
(30)
n+1 n+1 m n+1 n+lm
% P L I
ij(zn)LTIﬂ = B, — Lt 0 Ay —— A MOl
Ln+l
+ ')),CIZ + /{ a(,,,\ﬂ m + [21111;;1 - P? 121111:;[
n+l m
- O‘x,\'ﬁx - (d + Sx)LZ+17 (31)
n+1 n+1[n Sn+]1rl Rn+1[n
o(tn) pt1—j _ s S
N
e L™ = (d+ o)L = (3, + ), (32)
n+l n+lln
Zw tn) In+1—j ammﬁm n;v" m (] _)vm)ﬁm
Sn+1111 Rl1+1111 Ln+lln
X(]V”+GMN’ + Om ]\W)
+8mLZ1+1 - (d+6m)1:;q+l - (ym + tzm)I:lrﬂ (33)
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n+l ) ) n+11n (i) o)

Zw;( P = g B EE (1= A, And oy = (¢,(h)) , i=1,2,...,8 where the nonlocal
=R N approximations are used for the nonlinear terms and the
S r R r Lz+1 r following denominator functions are used:

X G + oy N + Ol N - ol 1 - pldbetnh _ ]
tellt —@dro)rt — (ot nor, (4 T T T P T e )
(d+em)h __ 1 (d+ex)h _ 1
n+l e e
. h=— h=—
Zw;(//’)R}1+17] = PIZISLZIJrl + P2t2sI:<1 + P3 t2mI’,; + t2x[?¢ - anJrI @3( ) (d+ Em) (p4( ) (d + gx)
j=0 (h) 1 — o~ (d+os)h (h) 1 — e (d+om)h
Rn+11n Rn+11n Rn+11n. [0 =, (08 = - T
- Usﬁsinx_ omﬂm n o — O-.x'ﬂ»c n . (35) (VS + tzj) (/m + t2m)
N N TN 1 — —(d+3)h el — 1
. . . N=—— h) = .
where the discretization for N(7) is given as 7(h) (e + 1) s(h) d
N'=S"+L'+L, + L+ +1I,+ I +R" We obtain,
5000 : 50 .
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Profiles obtained by using NSFDM for solving variable-order fraction model with different a(¢), # = 0.5, §, = ,, = f, = 0.1, an
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6000 . -
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Fig. 3 Profiles obtained by using different methods with «(7) = 1, h = 0.02, f, = f,, = f, = 14, and R, > 1.

Table 4 Result obtained by SFDM and NSFDM for

BA\' = Bm = Bx = 01’

Ry < 1, a(f) = 0.98 — 0.01/100z,

¢ € [0,100] and initial conditions as
(5000, 50, 50, 50, 30, 30, 30, 60) with different time step size.

h SFDM NSFDM
0.01 Convergent Convergent
0.1 Convergent Convergent
1 Convergent Convergent
20 Divergent Convergent
100 Divergent Convergent

Table 5 Result obtained by SFDM and NSFDM for

BA\':Bm =B, = 143

Ry > 1, a(f) = 0.98 — 0.01/100z,

t € [0,100] and initial conditions as
(5000, 50, 50, 50, 30, 30, 30, 60) with different time step size.

h SFDM NSFDM
0.01 Convergent Convergent
0.1 Convergent Convergent
1 Divergent Convergent
20 Divergent Convergent
100 Divergent Convergent
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Numerical results and simulations

Since most of the variable-order fractional differential equa-
tions do not have exact analytic solutions, so approximation
and numerical techniques must be used. Several analytical
and numerical methods have been proposed to solve
variable-order fractional differential equations. For numerical
solutions of the system (18)—(25) one can use NSFDM, the
approximate solution S(7), Ly(t), L, (1), L.(¢), L(t), L,(1),
I.(t), R(z) is displayed in Fig. 1, when Ry, < 1 and in Fig. 2,
when R, > 1, in each figures, and three different values of
a(t) =1, a(t) = 0.95—-0.01/100¢, o(r) = 0.85 —0.01/100¢ are
considered. The approximate solutions are displayed in
Fig. 2 that, the equilibrium point (S,0,0,L,,0,0,7,, R) of
NSFDM is  locally  asymptotically  stable  when
a(r) =0.95—0.01/100z, ¢ € [0,20], where the eigenvalues are
given as ;= —9.8100, 1, = —0.4098, 1; = —0.3688,

Ay = —=2.7660, s = —2.4591, l¢=—1.2392, A, =—1.6005,
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Fig. 6 Profiles obtained by using NSFDM and SFDM with «(7) = 0.98 — 0.01/100¢, h =1, f, = B, = f,. = 14, and Ry > 1.
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Ay = —1.4465. By applying the relationship (26) we obtained
that, |arg 4,| = | — 7| > 2%, «(1) € (0,1]. When a(r) = 1, sys-
tem (18)—(25) is the classical integer-order system. Moreover,
we observed that, the integer order derivative can be used to
characterize the short memory of systems, and the variable-
order fractional derivative can be employed to depict the vari-
able memory of systems. In Fig. 3, we presented the result
obtained by NSFDM and SFDM and ode45 schemes with step
size h = 0.02 and o(7) = 1, and we observed that, all numerical
methods converge almost to the equilibrium point when
Ry > 1. In Table 4, we reported the convergence behavior of
numerical methods to the disease free equilibrium, and in
Table 5, we reported the convergence behavior of numerical
methods to the equilibrium point (S,0,0, L,,0,0, I, R).

From Table 4, we can conclude that NSFDM uncondition-
ally converges to the correct disease free equilibria for large 4,
while the SFDM converges only when / is small.

From Table 5, we can conclude that NSFD scheme uncon-
ditionally converges to the equilibrium point (S,0,0, L,,0,0,
I, R) for large h, while the SFD scheme converges only when
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h is small. Moreover, the system (28)—(35) is unconditionally
locally asymptotically stable.

Previous Fig. 4(a)—(d), illustrates propagation of TB along
the time when o(7) = 0.98 — 0.03/100¢ as follows:

In Fig. 4(a), the relationship between R(z) and I(z) illus-
trates that, there are individuals succeeded treatment with
them and may exposed to infection again by contagious mem-
bers I(7) of the first strain. At the beginning of the period of
the time the number of /(7) members increases and the num-
ber of R(r) members decreases, then after time steps the curves
intersect again, /;(¢) will be responsible to treatment and their
numbers will be decreased.

In Fig. 4(b), the relationship between S(r) and I.(7),
describes the spread of infection from the members of the third
strain to healthy people, then the number of infectious people
increases and the number of healthy people decreases with
proper time.

In Fig. 4(c), the relationship between S(¢#) and I,(7),
describes the spread of contagious from the members 1,,(¢)
of the second strain to healthy people, then the number of
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infectious people increases and the number of healthy people
decreases with proper time.

In Fig. 4(d), the relationship between L(¢) and I(¢),
describes the spread of contagious from the members 7,(¢) of
the first strain to individuals who carry the disease latent of
the first strain L(¢), after time steps the curves intersect again
then 7;(z) will be responsible to treatment and the number of
them decreases.

In Fig. 5, we presented the result obtained by NSFDM and
SFDM schemes with step size 42 =0.1 and o(r)=
0.98 —0.01/100¢, ¢ € [0,100]. We can clearly see, all schemes
converge to correct equilibrium point when Ry > 1.

In Fig. 6, we presented the results obtained by NSFD and
SFD schemes with step size h=1 and off)=
0.98 —0.01/100z. As we can clearly see, the SFD scheme is
unstable and the solutions are divergent, so we cannot use this
scheme to solve the system when step size is large.

From these numerical results obtained in this work we can
control the disease and turn the endemic point to the disease
free point as follows:

Let us consider:

— 8, + 5.395015, + 8.6060

Ry <1 = < 0, where 11, = ty,.
0 2, + 1.605015, + 1.050 Where s = by
(44)
9.1720 — 088004,
Ry, < 1 = =) = 0-00m 4
o < 0880000, + 04880 = (43)
9.1720 — 0.88004,
Ry <1 = =0 = 0080 46
v <L 588000, + 0.4880 (46)
Then,
fy = by > 6.6828, 12y = 10.4227, 1oy > 10.4227. (47)
T= max{ by, ltom, lzX} = T=t),=t, = 10.4227.
(48)

So, we derive the rate of treatment required for achieving con-
trol of the disease.

For example, if we choose the following elements which
belong to such as t, =t, =1, =17, B,=B, =B, =14,
h = 1and a(f) = 0.85 — 0.02/100¢, we obtained the disease free
point (see Fig. 7).

Conclusions

In this article, a novel multi-strain TB model of variable-order
fractional derivatives which incorporates three strains: drug-
sensitive, MDR and XDR, is studied. It can be concluded from
the numerical results presented in this paper, that the variable-
order fractional TB model given here is a general model than
the integer and fractional order models. Furthermore, the inte-
ger order model can be used to characterize the short memory
of systems, and the variable-order fractional model can be
employed to depict the variable memory of systems.
Moreover, we can conclude that NSFDM is more efficient
for solving variable-order fractional mathematical model for
multi-strain TB, than the SFDM, because it preserves the
positivity of the solution and the stability regions using it are
bigger than the SFDM stability regions. All results in this

paper are obtained using MATLAB (R2013a), on a computer
machine with intel (R) core i3-3110M @ 2.40 GHz and 4 GB
RAM.
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