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In this paper, we presented a novel multi-strain TB model of variable-order fractional deriva-

tives, which incorporates three strains: drug-sensitive, emerging multi-drug resistant (MDR)

and extensively drug-resistant (XDR), as an extension for multi-strain TB model of nonlinear

ordinary differential equations which developed in 2014 by Arino and Soliman [1]. Numerical

simulations for this variable-order fractional model are the main aim of this work, where the

variable-order fractional derivative is defined in the sense of Grünwald–Letnikov definition.

Two numerical methods are presented for this model, the standard finite difference method

(SFDM) and nonstandard finite difference method (NSFDM). Numerical comparison between

SFDM and NSFDM is presented. It is concluded that, NSFDM preserves the positivity of the

solutions and numerically stable in large regions than SFDM.

ª 2015 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Variable-order fractional calculus (i.e., the fractional differen-
tiation and integration of variable order) is the generalization
of classical calculus and fractional calculus, which were
invented by Newton and Leibnitz hundreds of years ago.

Now the study on it becomes a hot pot in recent ten years
[2–7]. It has turned out that many problems in physics,
biology, engineering, and finance can be described excellently
by models using mathematical tools from variable-order

fractional calculus, such as mechanical applications [2],
diffusion process [5], multifractional Gaussian noise [8], and
FIR filters [9]. For more details, see [7,10] and references

therein. Understanding the transmission characteristics of
infectious diseases in communities, regions and countries can
lead to better approaches to decrease the transmission of these

diseases [11]. Variable-order fractional derivative is good at
depicting the memory property which changes with time or
spatial location [3,5].

TB is growing more resistant to treatment worldwide

according to study released in August 2012 in the journal
Lancet, a finding that suggests the potentially fatal disease is
becoming more difficult and costly to treat [12]. In this article

we focused our attention in Egypt.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jare.2015.06.004&domain=pdf
mailto:nsweilam@sci.cu.edu.eg
http://dx.doi.org/10.1016/j.jare.2015.06.004
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Table 1 All variables of the system (1)–(8) and their

interpretation.

Variable Definition

SðtÞ The susceptible population individuals who have never

encountered TB

LsðtÞ The individuals infected with the drug-sensitive TB

strain but who are in a latent stage, i.e., who are

neither showing symptoms nor infecting others

LmðtÞ Individuals latently infected with MDR-TB

LxðtÞ Individuals latently infected with XDR-TB

IsðtÞ Individuals infected with the drug-sensitive TB strain

who are infectious to others (and most likely, showing

symptoms as well)
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We consider in this work a model developed by Arino and
Soliman for TB [1]. The model incorporates three strains,
drug-sensitive, MDR and XDR. Several papers considered

modeling TB such as [13,14], but the model we consider here
includes several factors of spreading TB such as the fast infec-
tion, the exogenous reinfection and secondary infection along

with the resistance factor. The main aim of this paper was to
study numerically the multi-strain TB model of variable-order
fractional derivatives which incorporates three strains: drug-

sensitive, MDR andXDR.We develop a special class of numer-
ical method, known as NSFDM for solving this model. This
technique, developed by Mickens (1980) [15–23] has brought a
creation of newnumerical schemes preserving the physical prop-

erties, especially the stability properties of equilibria, of the
approximated system. Numerical comparison between
NSFDMandSFDMis presented.When the secondary infection

generated by an infected individual exceeds the unity, there are
no analytical results proved for the model, such as the existence
and stability of the endemic equilibrium ðEEÞ. In this casewe use
the developed NSFD numerical scheme to approximate the
endemic solution numerically and investigate its stability.
Furthermore, with the help of the NSFDM, we answer the fol-

lowing question: Given the data provided by the World Health
Organization (2012) on the current parameters corresponding to
the propagation of the TB in Egypt, what would be the required
rate of treatment to achieve in order to control the disease? The

proposed method showed its superiority in preserving the posi-
tivity (compared to the numerical standard method considered
in this work) of the state variables of the systems under study.

This is an essential requirement when simulating systems espe-
cially those arising in biology. This paper is organized as follows:
In Section ‘Mathematical model’, Mathematical model is pre-

sented. Preliminaries and notations on variable-order fractional
differential equations are given, in Section ‘Preliminaries and
notations’. Equilibrium points and their asymptotic stability

are presented in Section ‘Variable-order fractional derivatives
for multi-strain TB model’. Variable-order fractional deriva-
tives for the multi-strain TB model are presented; moreover,
the construction of the proposed nonstandard numerical

scheme is carried out in Section ‘Equilibrium points and their
asymptotic stability’. In Section ‘Numerical results and simula-
tions’, Numerical results and simulation are discussed. Finally,

in Section ‘Conclusions’ we presented the conclusions.

Mathematical model

The multistrain TB-model given in [1] can be formulated as
follows:

S0 ¼ b� dS� bs

SIs
N
� bm

SIm
N
� bx

SIx
N
; ð1Þ

L0s ¼ ksbs

SIs
N
þ rsksbs

RIs
N
þ csIs � assbs

LsIs
N
� asmbm

LsIm
N

� asxbx

LsIx
N
� ðdþ es þ t1sÞLs; ð2Þ
ImðtÞ Those individuals who are infectious with the

MDR-TB strain

IxðtÞ Individuals who infectious with the XDR-TB strain

RðtÞ Those individuals for whom treatment was successful

NðtÞ The total population

N ¼ Sþ Ls þ Lm þ Lx þ Is þ Im þ Ix þ R
L0m ¼ kmbm

SIm
N
þ rmkmbm

RIm
N
þ cmIm þ asmbmkm

LsIm
N

þ ð1� P1Þt1sLs þ ð1� P2Þt2sIs � ammbm

LmIm
N

� amxbx

LmIx
N
� ðdþ emÞLm; ð3Þ
L0x¼ kxbx

SIx
N
þrxkxbx

RIx
N
þ cxIxþasxbxkx

LsIx
N
þamxbxkx

LmIx
N

þð1�P3Þt2mIm�axxbx

LxIx
N
�ðdþ exÞLx; ð4Þ

I0s¼ assbs

LsIs
N
þð1�ksÞbs

SIs
N
þrs

RIs
N

� �
þ esLs�ðdþdsþ t2sþcsÞIs;

ð5Þ

I0m ¼ ammbm

LmIm
N
þ ð1� kmÞbm

SIm
N
þ rm

RIm
N
þ asm

LsIm
N

� �

þ emLm � ðdþ dm þ t2m þ cmÞIm; ð6Þ

I0x ¼ axxbx

LxIx
N
þ ð1� kxÞbx

� SIx
N
þ rx

RIx
N
þ asx

LsIx
N
þ amx

LmIx
N

� �
þ exLx

� ðdþ dx þ t2x þ cxÞIx; ð7Þ

R0 ¼ P1t1sLs þ P2t2sIs þ P3t2mIm þ t2xIx � rsbs

RIs
N

� rmbm

RIm
N
� rxbx

RIx
N
� dR: ð8Þ

All variables in above system and their definition are in
Table 1. Also, all parameters and their interpretation are in
Table 2.

The basic reproduction number R0

The basic reproduction number R0 for system (1)–(8) is given
by [1]

R0 ¼ maxðR0s;R0m;R0xÞ; ð9Þ

where

R0s ¼
bsðes þ ð1� ksÞðdþ t1sÞÞ

ðes þ dþ t1sÞðt2s þ ds þ dÞ þ csðt1s þ dÞ ;



Table 2 All parameters of the system (1)–(8) and their interpretation.

Parameter Interpretation

b Birth/recruitment rate

d Per capita natural death rate

Disease dynamics

br Transmission coefficient for strain r

kr Proportion of newly infected individuals developing LTBI with strain r

1� kr Proportion of newly infected individuals progressing to active TB with strain r due to fast infection

er Per capita rate of endogenous reactivation of Lr

ar1; ar2 Proportion of exogenous reinfection of Lr1 due to contact with Ir2
cr Per capita rate of natural recovery to the latent stage Lr

dr Per capita rate of death due to TB of strain r

Treatment related

t1s Per capita rate of treatment for Ls

t2r Per capita rate of treatment for Ir. Note that t2x is the rate of successful treatment of Ix; r 2 fx;m; sg
1� rr Efficiency of treatment in preventing infection with strain r

P1 Probability of treatment success for Ls

1� P1 Proportion of treated Ls moved to Lm due to incomplete treatment or lack of strict compliance in the use of drugs

P2 Probability of treatment success for Is
1� P2 Proportion of treated Is moved to Lm due to incomplete treatment or lack of strict compliance in the use of drugs

P3 Probability of treatment success for Im
1� P3 Proportion of treated Im moved to Lx due to incomplete treatment or lack of strict compliance in the use of drugs
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R0m ¼
bmðem þ ð1� kmÞdÞ

ðem þ dÞðt2m þ dm þ dÞ þ dcm
;

R0x ¼
bxðex þ ð1� kxÞdÞ

ðex þ dÞðt2x þ dx þ dÞ þ dcx
:

Theorem [1] assumes that

0 6 ass 6 ð1� ksÞ; ð10Þ

0 6 amm 6 ð1� kmÞ; ð11Þ

0 6 axx 6 ð1� kxÞ: ð12Þ

Then the disease free equilibrium is globally asymptotically

stable when R0 < 1 and endemic equilibria are locally asymp-
totically stable when R0 > 1.

Preliminaries and notations

In this section, some basic definitions and properties in the the-
ory of the variable-order fractional calculus are presented.

Grünwald–Letnikov approximation

We will begin with the signal variable-order fractional

differential

DaðtÞ
t yðtÞ ¼ fðt; yðtÞÞ;T P t P 0; and; yðt0Þ ¼ 0; ð13Þ

where aðtÞ > 0, and DaðtÞ
t denotes the variable fractional order

derivative, defined by

DaðtÞ
t yðtÞ ¼ Jn�aðtÞDaðtÞ

t yðtÞ; ð14Þ

where n� 1 < aðtÞ 6 n, n 2 N and Jn is the nth-order
Riemann–Liouville integral operator defined as

JnyðtÞ ¼ 1

CðtÞ

Z 0

t

ðt� sÞn�1yðsÞds; with t > 0; ð15Þ

where Cð�Þ is the gamma function.
To apply Miken’s scheme, we have chosen this Grünwald–

Letnikov approximation variable-order fractional derivative as
follows [15]:

DaðtÞ
t yðtÞ ¼ lim

h!0
h�aðtÞ

X½th�
j¼0
ð�1Þ j

aðtÞ
j

� �
yðt� jhÞ; ð16Þ

where ½t� denotes the integer part of t and h is the step size;

therefore, Eq. (16) is discretized as

X½th�
j¼0

xaðtnÞ
j yðtn�jÞ ¼ fðtn; yðtnÞÞ n ¼ 1; 2; 3; . . . : ð17Þ

where tn ¼ nh, and xaðtnÞ
j , are the Grünwald–Letnikov coeffi-

cients defined as

xaðtnÞ
j ¼ 1�1þaðtnÞ

j

� �
xaðtnÞ

j�1 andxaðtnÞ
0 ¼ h�aðtnÞ; j¼ 1;2;3; . . . :
Variable-order fractional derivatives for multi-strain TB model

In the following, we introduce the multi-strain TB model of

variable-order fractional derivatives which is the integer order
given in system (1)–(8), and the new system is described by
variable-order fractional differential equations as follows:

DaðtÞ
t S ¼ b� dS� bs

SIs
N
� bm

SIm
N
� bx

SIx
N
; ð18Þ

DaðtÞ
t Ls ¼ ksbs

SIs
N
þ rsksbs

RIs
N
þ csIs � assbs

LsIs
N
� asmbm

� LsIm
N
� asxbx

LsIx
N
� ðdþ es þ t1sÞLs; ð19Þ

DaðtÞ
t Lm ¼ kmbm

SIm
N
þ rmkmbm

RIm
N
þ cmIm þ asmbmkm

� LsIm
N
þ ð1� P1Þt1sLs þ ð1� P2Þt2sIs

� ammbm

LmIm
N
� amxbx

LmIx
N
� ðdþ emÞLm; ð20Þ
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DaðtÞ
t Lx ¼ kxbx

SIx
N
þ rxkxbx

RIx
N
þ cxIx þ asxbxkx

LsIx
N

þ amxbxkx

LmIx
N
þ ð1� P3Þt2mIm � axxbx

LxIx
N

� ðdþ exÞLx; ð21Þ

DaðtÞ
t Is ¼ assbs

LsIs
N
þ ð1� ksÞbs

SIs
N
þ rs

RIs
N

� �
þ esLs

� ðdþ ds þ t2s þ csÞIs; ð22Þ

DaðtÞ
t Im ¼ ammbm

LmIm
N
þ ð1

� kmÞbm

SIm
N
þ rm

RIm
N
þ asm

LsIm
N

� �
þ emLm

� ðdþ dm þ t2m þ cmÞIm; ð23Þ

DaðtÞ
t Ix¼ axxbx

LxIx
N
þð1�kxÞbx

SIx
N
þrx

RIx
N
þasx

LsIx
N
þamx

LmIx
N

� �

þ exLx�ðdþdxþ t2xþ cxÞIx; ð24Þ

DaðtÞ
t R ¼ P1t1sLs þ P2t2sIs þ P3t2mIm þ t2xIx � rsbs

RIs
N

� rmbm

RIm
N
� rxbx

RIx
N
� dR; ð25Þ

where DaðtÞ
t is the Caputo variable fractional order derivative.

Because model (18)–(25) monitors the dynamics of human
populations, all the parameters are assumed to be nonnegative.

Equilibrium points and their asymptotic stability

Let aðtÞ 2 ð0; 1� and consider the system (18)–(25)

DaðtÞ
t SðtÞ ¼ f1ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t LsðtÞ ¼ f2ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t LmðtÞ ¼ f3ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t LxðtÞ ¼ f4ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t IsðtÞ ¼ f5ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t ImðtÞ ¼ f6ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t IxðtÞ ¼ f7ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ;

DaðtÞ
t RðtÞ ¼ f8ðS;Ls;Lm;Lx; Is; Im; Ix;RÞ:

With the initial values ðSð0Þ;Lsð0Þ;Lmð0Þ;Lxð0Þ; Isð0Þ; Imð0Þ;
Ixð0Þ;Rð0ÞÞ.

To evaluate the equilibrium points let

DaðtÞ
t S ¼ DaðtÞ

t Ls ¼ DaðtÞ
t Lm ¼ DaðtÞ

t Lx ¼ DaðtÞ
t Is ¼ DaðtÞ

t Im

¼ DaðtÞ
t Ix ¼ DaðtÞ

t R ¼ 0

) fiðSeq;Leq
s ;L

eq
m ;L

eq
x ; I

eq
s ; I

eq
m ; I

eq
x ;R

eqÞ ¼ 0;

i ¼ 1; 2; 3; . . . ; 8:

From which we can get the equilibrium points
ðSeq;Leq

s ;L
eq
m ;L

eq
x ; I

eq
s ; I

eq
m ; I

eq
x ;R

eqÞ.
To evaluate the asymptotic stability let

SðtÞ ¼ Seq þ e1ðtÞ;
LsðtÞ ¼ Leq

s ðtÞ þ e2ðtÞ;
LmðtÞ ¼ Leq

m ðtÞ þ e3ðtÞ;
LxðtÞ ¼ Leq

x ðtÞ þ e4ðtÞ;
IsðtÞ ¼ Ieqs ðtÞ þ e5ðtÞ;
ImðtÞ ¼ Ieqm ðtÞ þ e6ðtÞ;
IxðtÞ ¼ Ieqx ðtÞ þ e7ðtÞ;
RðtÞ ¼ Req þ e8ðtÞ:

So the equilibrium point ðSeq;Leq
s ;L

eq
m ;L

eq
x ; I

eq
s ; I

eq
m ; I

eq
x ;R

eqÞ
is locally asymptotically stable if all eigenvalues of Jacobian

evaluated at the equilibrium point satisfy [16]

jarg kij >
aðtÞp
2

; aðtÞ 2 ð0; 1�; t P 0 where i ¼ 1; 2; . . . ; 8:

ð26Þ

To evaluate the equilibrium points, let

DaðtÞ
t S ¼ DaðtÞ

t Ls ¼ DaðtÞ
t Lm ¼ DaðtÞ

t Lx ¼ DaðtÞ
t Is ¼ DaðtÞ

t Im

¼ DaðtÞ
t Ix ¼ DaðtÞ

t R ¼ 0

) fiðSeq;Leq
s ;L

eq
m ;L

eq
x ; I

eq
s ; I

eq
m ; I

eq
x ;R

eqÞ ¼ 0; i

¼ 1; 2; 3; . . . ; 8:

Now, if Is ¼ Im ¼ Ix ¼ 0 ) Ls ¼ Lm ¼ Lx ¼ 0, R ¼ 0 and

S ¼ b
d
.

Then the disease free equilibrium (DFE) is

E0 ¼ b
d
; 0; 0; 0; 0; 0; 0; 0

� �� �
.

We calculate the Jacobian matrix of the system (18)–(25) at
the disease free equilibrium point as follows:

JðE0Þ ¼

a 0 0 0 b c d 0

0 e 0 0 f 0 0 0

0 g h 0 p q 0 0

0 0 0 r 0 s t 0

0 u 0 0 v 0 0 0

0 0 w 0 0 x 0 0

0 0 0 y 0 0 z 0

0 m 0 0 n j k a

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

;

where a¼�d; b¼�bs ; c¼�bm ; d¼ �bx ; e¼ �ðdþesþ t1sÞ;
f ¼ cs þ ksbs , v ¼ �ðdþ ds þ t2s þ csÞ; g ¼ ð1� P1Þt1s; h ¼
�ðd þ emÞ; p ¼ ð1 � P2Þt2s; q ¼ cm þ kmbm ; r ¼ �ðd þ exÞ,
s¼ ð1�P3Þt2m; t¼ cx þ kxbx; u¼ es; x¼�ðdþ dm þ t2m þ cmÞ;
w ¼ em.

y ¼ ex; z ¼ �ðdþ dx þ t2x þ cxÞ; m ¼ P1t1s; n ¼ P2t2s;

j ¼ P3t2m; k ¼ t2x:

The characteristic equation associated with above matrix is

jJðE0Þ � kIj ¼ 0 ) ða � kÞ2 ðk2 � ðr þ zÞk � yt þ zrÞ ð�k2þ
ðhþ xÞk� xhþ wqÞ ð�k2 þ ðeþ vÞkþ uf� veÞ ¼ 0. Then the
eigenvalues of Jacobian matrix are k1;2 ¼ �d, k3;4¼
rþz�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2þ2zrþz2þ4ytÞ
p

2
; k5;6¼ xþh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2�2xhþh2þ4wqÞ
p

2
;k7;8¼

vþe�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv2þ2veþe2þ4ufÞ
p

2
,

by using Theorem (Routh Hurwitz criteria) [17], these roots
are negative or have negative real parts and DFE is locally
asymptotically stable if all eigenvalues of the Jacobian matrix

satisfies jarg kij ¼ j � pj > aðtÞp
2
, aðtÞ 2 ð0; 1�, t P 0. For



Table 3 All parameters in the system (18)–(25) and the

reference of the parameters.

Parameter Value Reference

b 3190 Assumed

d 0.38 [26]

bs ¼ bm ¼ bx 14 [26]

ks ¼ km ¼ kx 0.5 Assumed

es ¼ em ¼ ex 0.5 Assumed

ar1;r2 0.05 Assumed

cs ¼ cm ¼ cx 0.3 Assumed

t1s 0.88 [26]

t2r : r 2 ðs;m;xÞ t2s ¼ 0:88; t2m ¼ t2x ¼ 0:034 [26]

rr 0.25 [26]

Pr 0.88 [26]

dr 0.045 [26]
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simplicity, we will determine the stability of the DFE numeri-

cally by using Table 3 and put bs ¼ bm ¼ bx ¼ 0:1. Then eigen-
values are k1 ¼ �0:3800, k2 ¼ �0:3800, k3 ¼ �0:3675,
k4 ¼ �0:3675, k5 ¼ �1:2215, k6 ¼ �1:2215, k7 ¼ �2:0882,
k8 ¼ �1:2268. So, if R0 < 1, the DFE is locally asymptotically

stable since jarg kij ¼ j � pj > aðtÞp
2
, aðtÞ 2 ð0; 1�, t P 0.

If at least one of the infected variables is non-zero, then the

solutions for model (18)–(25) are the endemic equilibrium [1].
This system is highly nonlinear in Is, Im and Ix, and hence explicit
solutions are not obtainable. So we solved the system (18)–(25)

numerically to obtain endemic fixed point using NSFDM.

SFD discretization

SFD methods are simple numerical methods for approximat-
ing the solutions of differential equations using finite differ-
ences to approximate the derivatives.

The forward Euler method is one of these methods, in this

method the derivative term dy
dt
is replaced by yðtþhÞ�yðtÞ

h
, where h

is the step size, for more details see [18].

NSFD discretization

The nonstandard finite difference schemes were introduced by
Mickens in the 1980s as a powerful numerical method that pre-
serves significant properties of exact solutions of the involved

differential equation [19]. The concept of the nonstandard
finite difference method is discussed in [20].

Definition 1. A numerical scheme is called NSFD discretiza-
tion if at least one of the following conditions is satisfied [18]:

1. Nonlocal approximation is used.
2. The discretization of derivative is not traditional and uses a

nonnegative function [19,20].

To describe the main aspects of NSFD schemes, we
consider an ODE in the form

dy

dt
¼ fðt; y; kÞ; ð27Þ

where k is a possibly vector, parameter. Given a mesh-grid
tn ¼ t0 þ hn that just for simplicity we assume to be equispaced
with step-size h > 0, NSFD schemes are constructed by the
following two main steps: 1- the derivative at the left-hand side

of (27) is replaced by a discrete representation in the form

dy

dt
¼ ynþ1 � yn

uðk; hÞ ;

where ynþ1 is an approximation of yðtnÞ, 2-the nonlinear term

in (27) is replaced by a nonlocal discrete representation

Fðt; ynþ1; yn; . . . ; kÞ depending on some of the previous

approximations.

For example, if there are nonlinear terms such as yðtÞxðtÞ
NðtÞ in

the differential equation, these are replaced by yðtþhÞxðtÞ
NðtÞ or

xðtþhÞyðtÞ
NðtÞ .

Let us denote by Sn, Ln
s , L

n
m, L

n
x, I

n
s , I

n
m, I

n
x and Rn the values

of the approximations of SðnhÞ, LsðnhÞ, LmðnhÞ, LxðnhÞ, IsðnhÞ,
ImðnhÞ, IxðnhÞ and RðnhÞ respectively, for n ¼ 0; 1; 2; . . . and h
is the timestep of the scheme. The sequences Sn, Ln

s , L
n
m, L

n
x, I

n
s ,

Inm, I
n
x and Rn should be nonnegative in order to be consistent

with the biological nature of the model [21].
NSFDM has many advantages than SFDM, for more

details see [20–24]. Generally speaking, we can say that
NSFDM is more efficient and accurate than SFDM [15,25].

NSFD for variable-order fractional derivatives system

The system (18)–(25) can be discretized as follows:

Xnþ1
j¼0

xaðtnÞ
j Snþ1�j ¼ b� dSnþ1 � bs

Snþ1Ins
Nn � bm

Snþ1Inm
Nn � bx

Snþ1Inx
Nn ;

ð28Þ
Xnþ1
j¼0

xaðtnÞ
j Lnþ1�j

s ¼ ksbs

Snþ1Ins
Nn þrsksbs

Rnþ1Ins
Nn þ csI

n
s �assbs

Lnþ1
s Ins
Nn

�asxbx

Lnþ1
s Inx
Nn �ðdþ esþ t1sÞLn

s �asmbm

Lnþ1
s Inm
Nn ;

ð29Þ

Xnþ1
j¼0

xaðtnÞ
j Lnþ1�j

m ¼kmbm

Snþ1Inm
Nn þrmkmbm

Rnþ1Inm
Nn þkmasmbm

Lnþ1
s Inm
Nn

þcmI
n
mþ t1sL

nþ1
s �P1t1sL

nþ1
s þ t2sI

n
s �P2t2sI

n
s

�ammbm

Lnþ1
m Inm
Nn �amxbx

Lnþ1
m Inx
Nn �ðdþemÞLnþ1

m ;

ð30Þ

Xnþ1
j¼0

xaðtnÞ
j Lnþ1�j

x ¼ kxbx

Snþ1Inx
Nn þ rxkxbx

Rnþ1Inx
Nn þ kxasxbx

Lnþ1
s Inx
Nn

þ cxI
n
x þ kxamxbx

Lnþ1
m Inx
Nn þ t2mI

n
m � P3t2mI

n
m

� axxbx

Lnþ1
x Inx
Nn � ðdþ exÞLnþ1

x ; ð31Þ

Xnþ1
j¼0

xaðtnÞ
j Inþ1�js ¼ assbs

Lnþ1
s Ins
Nn þ ð1� ksÞbs

Snþ1Ins
Nn þ rs

Rnþ1Ins
Nn

� �

þ esL
nþ1
s � ðdþ dsÞInþ1s � ðcs þ t2sÞIns ; ð32Þ

Xnþ1
j¼0

xaðtnÞ
j Inþ1�jm ¼ ammbm

Lnþ1
m Inm
Nn þð1�kmÞbm

� Snþ1Inm
Nn þrm

Rnþ1Inm
Nn þasm

Lnþ1
s Inm
Nn

� �

þ emL
nþ1
m �ðdþdmÞInþ1m �ðcmþ t2mÞInm; ð33Þ
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Xnþ1
j¼0

xaðtnÞ
j Inþ1�jx ¼ axxbx

Lnþ1
x Inx
Nn þ ð1� kxÞbm

� Snþ1Inx
Nn þ rx

Rnþ1Inx
Nn þ amx

Lnþ1
x Inm
Nn

� �

þ exL
nþ1
x � ðdþ dxÞInþ1x � ðcx þ t2xÞInx; ð34Þ

Xnþ1
j¼0

xaðtnÞ
j Rnþ1�j¼P1t1sL

nþ1
s þP2t2sI

n
s þP3t2mI

n
mþ t2xI

n
x�dRnþ1

�rsbs

Rnþ1Ins
Nn �rmbm

Rnþ1Inm
Nn �rxbx

Rnþ1Inx
Nn : ð35Þ

where the discretization for NðtÞ is given as

Nn ¼ Sn þ Ln
s þ Ln

m þ Ln
x þ Ins þ Inm þ Inx þ Rn:
Fig. 1 Profiles obtained by using NSFDM for solving variable-order

R0 < 1.
And xaðtnÞ
0 ¼ ðuiðhÞÞ

�aðtnÞ, i ¼ 1; 2; . . . ; 8 where the nonlocal

approximations are used for the nonlinear terms and the
following denominator functions are used:

u1ðhÞ ¼
edh � 1

d
; u2ðhÞ ¼

eðdþesþt1sÞh � 1

ðdþ es þ t1sÞ
;

u3ðhÞ ¼
eðdþemÞh � 1

ðdþ emÞ
; u4ðhÞ ¼

eðdþexÞh � 1

ðdþ exÞ
;

u5ðhÞ ¼
1� e�ðdþdsÞh

ðcs þ t2sÞ
; u6ðhÞ ¼

1� e�ðdþdmÞh

ðcm þ t2mÞ
;

u7ðhÞ ¼
1� e�ðdþdxÞh

ðcx þ t2xÞ
; u8ðhÞ ¼

edh � 1

d
:

We obtain,
fraction model with different aðtÞ; h ¼ 0:5, bs ¼ bm ¼ bx ¼ 0:1, an



Fig. 2 Profiles obtained by using NSFDM for solving variable-order fraction model with different aðtÞ; h ¼ 0:2, bs ¼ bm ¼ bx ¼ 14, and

R0 > 1.
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Snþ1 ¼
b�

Pnþ1
j¼1 xaðtnÞ

j Snþ1�j

ðu1ðhÞÞ
�aðtnÞ þ dþ bsI

n
sþbmI

n
mþbxI

n
x

Nn

; ð36Þ

Lnþ1
s ¼

bsI
n
s

Nn ksðSnþ1þrsR
nþ1ÞþcsI

n
s �
Pnþ1

j¼1 xaðtnÞ
j Lnþ1�j

s

ðu2ðhÞÞ
�aðtnÞ þðdþ t1sþesÞþ 1

Nn ðassbsI
n
s þasmbmI

n
mþasxbxIxÞ

;

ð37Þ

Lnþ1
m ¼

bmkmInm
Nn ðSnþ1þrmR

nþ1þasmL
nþ1
s Þþ cmI

n
mþ t1sL

nþ1
s ð1�P1Þ

ðu3ðhÞÞ
�aðtnÞ þðdþ emÞþ 1

Nn ðammbmI
n
mþamxbxI

n
xÞ

þ
t2sI

n
s ð1�P2Þ�

Pnþ1
j¼1 xaðtnÞ

j Lnþ1�j
m

ðu3ðhÞÞ
�aðtnÞ þðdþ emÞþ 1

Nn ðammbmI
n
mþamxbxI

n
xÞ
;

ð38Þ
Lnþ1
x ¼

bxkxInx
Nn ðSnþ1þrxR

nþ1þasxL
nþ1
s þamxL

nþ1
m Þþ t2sI

n
mð1�P3Þ

ðu4ðhÞÞ
�aðtnÞ þðdþ exÞþ 1

Nn ðaxxbxI
n
xÞ

þ
cxI

n
x�
Pnþ1

j¼1 xaðtnÞ
j Lnþ1�j

x

ðu4ðhÞÞ
�aðtnÞ þðdþ exÞþ 1

Nn ðaxxbxI
n
xÞ
;

ð39Þ

Inþ1s ¼
u5ðhÞbs

Ins
Nn ðassL

nþ1
s þ ð1� ksÞðSnþ1 þ rsR

nþ1ÞÞ
ðu5ðhÞÞ

�aðtnÞ þ ðdþ dsÞ

þ
ðcs � ðt2sÞÞIns þ esL

nþ1
s �

Pnþ1
j¼1 xaðtnÞ

j Inþ1�js

ðu5ðhÞÞ
�aðtnÞ þ ðdþ dsÞ

; ð40Þ



Fig. 3 Profiles obtained by using different methods with aðtÞ ¼ 1, h ¼ 0:02, bs ¼ bm ¼ bx ¼ 14, and R0 > 1.

Table 4 Result obtained by SFDM and NSFDM for

Bs ¼ Bm ¼ Bx ¼ 0:1, R0 < 1; aðtÞ ¼ 0:98� 0:01=100t,

t 2 ½0; 100� and initial conditions as

ð5000; 50; 50; 50; 30; 30; 30; 60Þ with different time step size.

h SFDM NSFDM

0.01 Convergent Convergent

0.1 Convergent Convergent

1 Convergent Convergent

20 Divergent Convergent

100 Divergent Convergent

Table 5 Result obtained by SFDM and NSFDM for

Bs ¼ Bm ¼ Bx ¼ 14, R0 > 1; aðtÞ ¼ 0:98� 0:01=100t,

t 2 ½0; 100� and initial conditions as

ð5000; 50; 50; 50; 30; 30; 30; 60Þ with different time step size.

h SFDM NSFDM

0.01 Convergent Convergent

0.1 Convergent Convergent

1 Divergent Convergent

20 Divergent Convergent

100 Divergent Convergent
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Fig. 4 Illustrate propagation of multi-strain TB along the time aðtÞ ¼ 0:98� 0:03=100t, h ¼ 3, bs ¼ bm ¼ bx ¼ 14, and R0 > 1, by using

NSFDM.

Fig. 5 Profiles obtained by using NSFDM and SFDM with aðtÞ ¼ 0:98� 0:01=100t, h ¼ 0:2, bs ¼ bm ¼ bx ¼ 14, and R0 > 1.
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Inþ1m ¼
bm

Inm
Nn ðammL

nþ1
m þ ð1� kmÞðSnþ1 þ rmR

nþ1 þ asmL
nþ1
s ÞÞ

ðu6ðhÞÞ
�aðtnÞ þ ðdþ dmÞ

þ
ðcm � ðt2mÞÞInm þ emL

nþ1
m �

Pnþ1
j¼1 xaðtnÞ

j Inþ1�jm

ðu6ðhÞÞ
�aðtnÞ þ ðdþ dmÞ

;

ð41Þ

Inþ1x ¼
bx

Inx
Nn ðaxxL

nþ1
x þð1�kxÞðSnþ1þrxR

nþ1þasxL
nþ1
s þamxL

nþ1
m ÞÞ

ðu7ðhÞÞ
�aðtnÞ þðdþdxÞ

þ
ðcx�ðt2xÞÞInxþ exL

nþ1
x �

Pnþ1
j¼1 xaðtnÞ

j Inþ1�jx

ðu7ðhÞÞ
�aðtnÞ þðdþdxÞ

;

ð42Þ

Rnþ1¼
t1sP1L

nþ1
s þP2t2sI

n
s þ t2mP3I

n
mþ t2xI

n
x�
Pnþ1

j¼1 xaðtnÞ
j Rnþ1�j

ðu8ðhÞÞ
�aðtnÞ þdþ 1

Nn ðrsbsI
n
s þrmbmI

n
mþrxbxI

n
xÞ

:

ð43Þ
Fig. 6 Profiles obtained by using NSFDM and SFDM with að
Numerical results and simulations

Since most of the variable-order fractional differential equa-
tions do not have exact analytic solutions, so approximation

and numerical techniques must be used. Several analytical
and numerical methods have been proposed to solve
variable-order fractional differential equations. For numerical

solutions of the system (18)–(25) one can use NSFDM, the
approximate solution SðtÞ, LsðtÞ, LmðtÞ, LxðtÞ, IsðtÞ, ImðtÞ,
IxðtÞ, RðtÞ is displayed in Fig. 1, when R0 < 1 and in Fig. 2,
when R0 > 1, in each figures, and three different values of

aðtÞ ¼ 1, aðtÞ ¼ 0:95� 0:01=100t, aðtÞ ¼ 0:85� 0:01=100t are
considered. The approximate solutions are displayed in
Fig. 2 that, the equilibrium point ðS; 0; 0;Lx; 0; 0; Ix;RÞ of

NSFDM is locally asymptotically stable when
aðtÞ ¼ 0:95� 0:01=100t, t 2 ½0; 20�, where the eigenvalues are
given as k1 ¼ �9:8100, k2 ¼ �0:4098; k3 ¼ �0:3688,
k4 ¼ �2:7660, k5 ¼ �2:4591, k6 ¼ �1:2392, k7 ¼ �1:6005,
tÞ ¼ 0:98� 0:01=100t, h ¼ 1, bs ¼ bm ¼ bx ¼ 14, and R0 > 1.
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k8 ¼ �1:4465. By applying the relationship (26) we obtained

that, jarg kij ¼ j � pj > aðtÞp
2
, aðtÞ 2 ð0; 1�. When aðtÞ ¼ 1, sys-

tem (18)–(25) is the classical integer-order system. Moreover,
we observed that, the integer order derivative can be used to
characterize the short memory of systems, and the variable-

order fractional derivative can be employed to depict the vari-
able memory of systems. In Fig. 3, we presented the result
obtained by NSFDM and SFDM and ode45 schemes with step

size h ¼ 0:02 and aðtÞ ¼ 1, and we observed that, all numerical
methods converge almost to the equilibrium point when
R0 > 1. In Table 4, we reported the convergence behavior of

numerical methods to the disease free equilibrium, and in
Table 5, we reported the convergence behavior of numerical
methods to the equilibrium point ðS; 0; 0;Lx; 0; 0; Ix;RÞ.

From Table 4, we can conclude that NSFDM uncondition-
ally converges to the correct disease free equilibria for large h,
while the SFDM converges only when h is small.

From Table 5, we can conclude that NSFD scheme uncon-

ditionally converges to the equilibrium point ðS; 0; 0;Lx; 0; 0;
Ix;RÞ for large h, while the SFD scheme converges only when
Fig. 7 Profiles obtained by using NSFDM for h ¼ 1, aðtÞ ¼ 0:85�
h is small. Moreover, the system (28)–(35) is unconditionally
locally asymptotically stable.

Previous Fig. 4(a)–(d), illustrates propagation of TB along

the time when aðtÞ ¼ 0:98� 0:03=100t as follows:
In Fig. 4(a), the relationship between RðtÞ and IsðtÞ illus-

trates that, there are individuals succeeded treatment with

them and may exposed to infection again by contagious mem-
bers IsðtÞ of the first strain. At the beginning of the period of
the time the number of IsðtÞ members increases and the num-

ber of RðtÞ members decreases, then after time steps the curves
intersect again, IsðtÞ will be responsible to treatment and their
numbers will be decreased.

In Fig. 4(b), the relationship between SðtÞ and IxðtÞ,
describes the spread of infection from the members of the third
strain to healthy people, then the number of infectious people
increases and the number of healthy people decreases with

proper time.
In Fig. 4(c), the relationship between SðtÞ and ImðtÞ,

describes the spread of contagious from the members ImðtÞ
of the second strain to healthy people, then the number of
0:02=100t, bs ¼ bm ¼ bx ¼ 14, and t2s ¼ t2m ¼ t2x ¼ 17, R0 > 1.
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infectious people increases and the number of healthy people
decreases with proper time.

In Fig. 4(d), the relationship between LsðtÞ and IsðtÞ,
describes the spread of contagious from the members IsðtÞ of
the first strain to individuals who carry the disease latent of
the first strain LsðtÞ, after time steps the curves intersect again

then IsðtÞ will be responsible to treatment and the number of
them decreases.

In Fig. 5, we presented the result obtained by NSFDM and

SFDM schemes with step size h ¼ 0:1 and aðtÞ ¼
0:98� 0:01=100t, t 2 ½0; 100�. We can clearly see, all schemes
converge to correct equilibrium point when R0 > 1.

In Fig. 6, we presented the results obtained by NSFD and

SFD schemes with step size h ¼ 1 and aðtÞ ¼
0:98� 0:01=100t. As we can clearly see, the SFD scheme is
unstable and the solutions are divergent, so we cannot use this

scheme to solve the system when step size is large.
From these numerical results obtained in this work we can

control the disease and turn the endemic point to the disease

free point as follows:
Let us consider:

R0s < 1 ) �t22s þ 5:3950t2s þ 8:6060

t22s þ 1:6050t2s þ 1:050
< 0; where t1s ¼ t2s:

ð44Þ

R0m < 1 ) 9:1720� 0:8800t2m
0:8800t2m þ 0:4880

< 0; ð45Þ

R0x < 1 ) 9:1720� 0:8800t2x
0:8800t2x þ 0:4880

< 0: ð46Þ

Then,

t1s ¼ t2s P 6:6828; t2m P 10:4227; t2x P 10:4227: ð47Þ

T ¼ maxf t2s; t2m; t2x g ) T ¼ t2m ¼ t2x P 10:4227:

ð48Þ

So, we derive the rate of treatment required for achieving con-
trol of the disease.

For example, if we choose the following elements which
belong to such as t2s ¼ t2m ¼ t2x ¼ 17, Bs ¼ Bm ¼ Bx ¼ 14,
h ¼ 1 and aðtÞ ¼ 0:85� 0:02=100t, we obtained the disease free

point (see Fig. 7).
Conclusions

In this article, a novel multi-strain TB model of variable-order
fractional derivatives which incorporates three strains: drug-
sensitive, MDR and XDR, is studied. It can be concluded from
the numerical results presented in this paper, that the variable-

order fractional TB model given here is a general model than
the integer and fractional order models. Furthermore, the inte-
ger order model can be used to characterize the short memory

of systems, and the variable-order fractional model can be
employed to depict the variable memory of systems.
Moreover, we can conclude that NSFDM is more efficient

for solving variable-order fractional mathematical model for
multi-strain TB, than the SFDM, because it preserves the
positivity of the solution and the stability regions using it are
bigger than the SFDM stability regions. All results in this
paper are obtained using MATLAB (R2013a), on a computer
machine with intel (R) core i3-3110M @ 2.40 GHz and 4 GB
RAM.
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