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Pharmacological chaperone therapies: Can aldehyde
dehydrogenase activator make us healthier?
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Alcoholic liver disease (ALD) is characterized by the development
of steatosis, inflammation, hepatocyte necrosis, and apoptosis,
with eventual development of fibrosis and cirrhosis [1–3].
Despite being one of the major causes of morbidity and mortality
in the world, there are actually no current effective drug treat-
ments for severe ALD [1–3]. Accumulating evidence suggests that
ethanol metabolite acetaldehyde and its by-products (such as: 4-
hydroxy-2-nonenal (4-HNE), and malondialdehyde (MDA)) are
highly toxic and even carcinogenic, contributing to the patho-
genesis of various alcohol-associated disorders including ALD
[1–3]. Over the last twenty years, researchers have been exten-
sively exploring drugs that can activate aldehyde dehydrogenase
(ALDH) enzyme and subsequently accelerate acetaldehyde clear-
ance [4], and have demonstrated that these ALDH activators (e.g.
ALDH activator-1: Alda-1) can protect against ethanol-induced
cardiac injury, ischemic brain injury, radiation dermatitis etc. in
animal models [4]. In this issue of the Journal of Hepatology,
Zhong et al. [5] nicely demonstrated that treatment with Alda-1
reversed alcoholic steatosis and apoptosis by accelerating alde-
hyde clearance in an animal model of ALD.

During lifespan, every organism receives toxic challenge from
numerous harmful agents. Some are produced endogenously,
while others accumulate after ingestion of food or exposure to
environmental pollutants. Organisms have evolved effective pro-
tective mechanisms to prevent their propagation, such as: detox-
ification through enzymatic reactions. Among phase-I oxidizing
enzymes, ALDH is a gene superfamily responsible for the detox-
ification of biogenic and xenogenic aldehydes [6], with the most
abundant members, being ALDH2, which is involved in the meta-
bolism of ethanol-derived acetaldehyde and other aldehydes [6],
and ALDH1, which has been found to be highly expressed in
many adult tissue stem cells or progenitor cells, including hema-
topoietic, neuron, muscle, hepatic, adipose stem cells, and
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progenitor cells [7–9]. Aldehydes are widespread organic com-
pounds found in the environment or formed from metabolism
of various compounds. Importantly, aldehydes are strong elec-
trophilic compounds that can form adducts with cellular compo-
nents (i.e. proteins and nucleic acids) thereby initiating adverse
biological effects (i.e. loss of protein activity and mutation of
nucleic acids) [10]. Hence, disposal of aldehyde is a priority for
cell protection and survival, even more so for long-living cells
such as progenitors. Evidence from human phenotypes directly
linked to mutations and polymorphisms in ALDH genes, leading
to the absence, deficiency or inactivation of ALDH proteins, stress
the clinical importance of the ALDH superfamily. Such disorders
include type II hyperprolinaemia, Sjögren-Larsson syndrome,
alcohol-induced flushing syndrome and others [6]. Diseases
caused by mutations in ALDH genes involve the building-up of
substances in the body that are harmful in large amounts or that
impair the function or production of necessary molecules.
Therefore, the use of pharmacological activators or inhibitors of
ALDH isoenzymes represents a coherent approach for the treat-
ment of these pathological disorders [6].

Among the 19 human ALDH isoenzymes [6,11], ALDH2 (or
ALDH2⁄1) is described to be the most efficient for the metabolism
of ethanol-derived acetaldehyde, but also to carry the most well-
known polymorphism (ALDH2⁄2) with ALDH2 activity deficiency.
Eight percent of the world population have this common poly-
morphism, which renders the enzyme inactive in vivo [4].
Accumulation of acetaldehyde after ethanol consumption leads
to the development of unpleasant physiological effects compris-
ing facial flushing, nausea, and tachycardia. This condition, ter-
med the alcohol flushing syndrome experienced by persons
with the ALDH2⁄2 polymorphism, renders a large population of
East Asians intolerant of what might be considered ‘‘normal’’
levels of alcohol consumption (see Refs. [4,6,12]). However, many
people with the dominant inactive form of ALDH2⁄2 still drink
heavily and they have high levels of blood acetaldehyde even
after drinking only a moderate amount of alcohol [13]. Several
studies have examined the role of ALDH2⁄2 polymorphism in
the pathogenesis of ALD and suggest that ALD patients with inac-
tive ALDH2 had a high risk for the progression of liver disease
[14–16]. To increase the activity of this ALDH2⁄2 mutant allele,
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researchers have developed Alda-1 (or [N-(1,3-benzodioxol-5-yl-
methyl)-2,6-dichlorobenzamide]) that acts as a structural cha-
perone to activate wild-type ALDH2 and restore the mutant
ALDH2⁄2 to near wild-type activity by aiding in the proper fold-
ing of a section of the polypeptide chain that lacks stable struc-
ture in its absence, allowing it to break down toxic aldehydes
quicker and leaving less time for them to cause damage [17].
Interestingly, Alda-1 also increases productive substrate-enzyme
interaction, allowing an increase of ALDH2 activity, and protects
the wild-type ALDH2 (i.e. ALDH2⁄1) from inactivation due to
adduct formation between the substrate and the enzyme
[17,18]. The manner in which Alda-1 binds to the structure of
ALDH2 provides powerful insight into the relationships between
chaperones of this detoxifying enzyme leading to the plausible
modification of Alda-1 to improve its potency, but also opens
up the possibility of designing new analogs that can selectively
affect the metabolism of other molecules that are detoxified by
ALDHs [17].

The study from Zhong et al. [5] demonstrates that enhancing
the ALDH2 activity by the use of Alda-1 can ameliorate several
deleterious effects related to aldehydes (Fig. 1) and may provide
a better protection against both acute and chronic injury pre-
established by chronic alcohol exposure [5]. Indeed, in alcohol
intoxicated animals, Alda-1 accelerates plasma and hepatic alde-
hyde clearances, reduces the level of 4-HNE, reverses steatosis,
and diminishes alcohol-induced endoplasmic reticulum stress
and apoptosis (Fig. 1). These findings are encouraging, and war-
rant further investigations in other models of ALD. For example,
a recent study reported that ALDH2 deficiency exacerbates alco-
hol and/or hepatotoxin-induced liver inflammation and fibrosis
[19]. Thus it is important to test whether Alda-1 treatment also
ameliorates alcoholic liver inflammation and fibrosis. Also, alco-
hol consumption can disrupt the intestinal epithelial barrier
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Fig. 1. The pharmacological chaperone Alda-1 exerts multiple beneficial effects agai
main pathways exist: alcohol dehydrogenase (ADH), cytochrome P-450 (CYP) 2E1, and c
forming free radicals that can damage cells. Toxic effects of alcohol on organs and tiss
associated formation of ROS, RNS and RES, depletion of co-factors, and impairments
ameliorate several deleterious effects related to aldehydes represented by red balloons
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resulting in increased gut permeability, recently documented as
a major factor in ALD (see reviews [20,21]). Since acetaldehyde-
induced intestinal permeability has been demonstrated [22],
and also that microbes and intestinal cells can detoxify alcohol
into acetaldehyde, it is legitimate to speculate that these
microbes and intestinal cells might also uptake Alda-1 once
delivered by intraperitoneal injection (see Table 1 in ref [5]).
Consequently, Alda-1 may favorably co-influence the course of
aldehyde clearance, liver injury (decrease of ALT, AST) and out-
come of ALD acting on gut microbiota. In addition, ALDH1 is
highly expressed in liver progenitor cells and is believed to play
an important role in promoting liver progenitor cell survival
[9], thus, activation of ALDH by Alda-1 may have beneficial
effects for liver repair via the stimulation of liver progenitor cells.
However, cancer stem cells also express high levels of ALDH1 [8],
so it is important to examine whether ALDH activator also affects
cancer stem cells and has a risk for promoting liver cancer devel-
opment and progression.

What is the therapeutic potential of ALDH activators such as
Alda-1 for the treatment of ALD? Because abstinence is the
cornerstone for treatment of ALD, most ALD patients during
treatment periods are not active drinkers or are commonly trea-
ted with approaches to eliminate alcohol ingestion. Indeed, disul-
firam (or Antabuse™), an irreversible inhibitor of ALDH, is
commonly prescribed to treat alcoholism to prevent acetalde-
hyde metabolism, which results in elevation of acetaldehyde
and subsequently causes unpleasant effects and aversion to alco-
hol. Disulfiram is not recommended for patients with advanced
ALD due to its potential severe hepatotoxicity. Because ALD
patients, who are not active drinkers, most likely have low levels
of acetaldehyde, treatment of these patients with Alda-1 may not
generate significant beneficial effects. For ALD patients who are
active drinkers, treatment with Alda-1 may reduce acetaldehyde
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levels and consequently ameliorate liver toxicity, but may also
have a risk to promote alcohol drinking in these patients.
Therefore, the therapeutic potential of ALDH activators for
ALD remains to be carefully determined. Alda-1 treatment may
have some therapeutic potential to reduce alcohol toxicity in
patients with excessive acute alcohol consumption especially
in those with inactive ALDH2. Finally, whether treatment with
ALDH activators has beneficial effects for other aldehyde
accumulation-related diseases deserves further studies.
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