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1. Introduction

Ever since completion of Fourier’s ground-breaking work on the propagation of heat in solid bodies
in 1807, followed by the monograph “Théorie Analytique de la Chaleur” in 1822, Fourier analysis
has become an indispensable tool in analysis. It is not only essential in the analysis of differential
equations, but is also a very important tool in most areas of pure and applied mathematics, science
and technology. It was discovered recently that when dealing with operator equations in abstract
spaces, the theory of Fourier multipliers can be used effectively. New challenges arise in this setting—
the operator case—that are not present in the scalar or even the vector-valued case. Although the
fundamental problem of characterizing bounded multiplier transformations in L p remains open (that
is, for p /∈ {1,2,∞}) even in the scalar case, in the case of resolvent operators, many advances have
come to the fore in the last few years. The abstract results developed have concrete applications
involving partial differential operators and integral equations arising in mathematical physics.

The aim of this paper is to study the integro-differential equation

μ ∗ u′ + ν ∗ u − η ∗ Au = f , (1.1)

where A is a closed operator in a Banach space X ; μ,ν, and η are finite scalar-valued measures
on R, u′ stands for the time derivative of u and f is a 2π -periodic function with values in X .
Here μ ∗ u′ represents the convolution product i.e. (μ ∗ u′)(t) = ∫

R
u′(t − s)μ(ds), and ν ∗ u and

η ∗ Au are defined analogously. The function u is extended to R by periodicity without change
of notation. We are concerned with strong and mild solutions of (1.1) in various spaces of vector-
valued functions. Specifically, we consider the Lebesgue–Bochner spaces L p((0,2π); X), 1 � p < ∞,

the Besov spaces Bs
p,q((0,2π); X), 1 � p,q � ∞, and in particular the Hölder–Zygmund spaces C s ,

s > 0 (these are identified with the Besov spaces Bs∞,∞((0,2π); X) and correspond to the familiar
Hölder spaces C s , if 0 < s < 1). Also considered later in the paper are the Triebel–Lizorkin spaces
F s

p,q((0,2π); X), 1 � p,q < ∞. In the scalar case, the famous Littlewood–Paley inequalities show that

F 0
p,2 = L p , 1 < p < ∞, with equivalent norms. This is no longer true in the vector-valued case. In fact,

the equality F 0
p,2((0,2π); X) = L p((0,2π); X) holds if and only if X is isomorphic to a Hilbert space.

See [33] and [12].
Eq. (1.1) was studied by Staffans [36]. He considered the case where X is a Hilbert space and

gave conditions for strong and mild well-posedness for L2 solutions. The main tool he used was
Plancherel’s theorem. As is well known, this theorem is valid in L p((0,2π); X) if and only if p = 2
and X is (isomorphic to) a Hilbert space (see e.g. [6]). The more general situation we consider here
therefore calls for other methods. In our study of Eq. (1.1), we employ the method of operator-valued
Fourier multipliers which enables us to provide explicit conditions on the measures and on the oper-
ator A ensuring well-posedness. In recent years, the theory of operator-valued Fourier multipliers has
been extensively developed and applied to well-posedness of abstract differential equations. We note
for example the papers [2,4–6,11,12,15,20,25,27,29,31,39] and the references cited therein.

Strong well-posedness for special cases of (1.1) has been studied earlier (see [12,28,29]) using
Fourier multipliers. There are earlier papers dealing with the special equations treated in [29] and
[28] which make the assumption that the operator A generates an analytic semigroup (not necessarily
strongly continuous) and use resolvent families to construct the solution (see e.g. [16,19] and the
references given there). Among the equations not previously considered with the new methods, we
mention the renewal equation and the delay equation

u′(t) = Au(t) − γ u(t − τ ) + f (t), t ∈ R, (1.2)

where τ and γ are given real numbers. Of course, the differential equation

Pper( f )

{
u′(t) = Au(t) + f (t), t ∈ [0,2π ],
u(0) = u(2π)

(1.3)
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is also a special case of (1.1). This is obtained when μ = η is the Dirac measure concentrated at the
origin and ν = 0. This equation is treated in [5,6] and [12] (see also the survey paper [4]).

In the present paper, we make a complete study of well-posedness of (1.1) in the above mentioned
function spaces. We consider mild and strong well-posedness. In the case of mild well-posedness,
it turns out that one can consider a one-parameter family of such notions depending on the in-
dex α � 0 of the intermediate spaces Hα

p ((0,2π); X) for 1 < p < ∞. Both strong and mild well-
posedness are important in the study of nonlinear problems. There are three important notions
that are needed in the study, namely n-regularity of scalar sequences, M-boundedness and M R-
boundedness of order n for operator sequences. The concept of n-regular sequences was introduced
in [29] as a discrete version of k-regularity used in [32] and was subsequently used in [28] and
[12]. On the other hand, M stands for Marcinkiewicz. Define the differences �k Mn by �0Mn = Mn,

�1Mn = �Mn = Mn+1 − Mn, and �k+1Mn = �(�k Mn), for k � 1. If {Mn} is the operator family un-
der consideration, M-boundedness (resp. M R-boundedness) of order m (m ∈ N ∪ {0}) means that the
sequences {n j� j Mn} are bounded (resp. R-bounded) for 0 � j � m.

Under appropriate assumptions on the Fourier coefficients of the measures involved, we give nec-
essary and sufficient conditions for strong well-posedness of (1.1). These conditions are in terms of
the resolvent. In the L p case, as is shown in [6] (see also [20] and [39]), R-boundedness is a necessary
condition for an operator family to be a multiplier. In the Bs

p,q((0,2π); X) case, R-boundedness is not
necessary but in general, one has to require a Marcinkiewicz condition of order two. A Marcinkiewicz
condition of order one is enough if the Banach space X has nontrivial Fourier type (see [6] and [22]).
Likewise, for the Triebel–Lizorkin spaces F s

pq((0,2π); X) the R-boundedness condition is not neces-
sary. Sufficient conditions for multipliers involve M-boundedness of order 3 in general, and order 2 if
1 < p < ∞, 1 < q � ∞, s ∈ R.

Compared to the previous papers [29] and [28] (see also [12]), we simplify our assumptions. They
are now more symmetric and depend solely on the differences �k Mn. Compared to the paper of
Staffans even in the L2 context for Hilbert spaces, we give more specific conditions ensuring well-
posedness. For example, we give conditions under which assumption (i) in [36, Theorem 3.2] already
implies assumption (iii) of the same theorem. Moreover, for nonlinear problems, L2 results are some-
time not enough and one needs L p estimates (see [1]). One surprising feature of our results is that
in some cases, it is possible to characterize mild well-posedness directly in terms of boundedness or
R-boundedness conditions on the resolvent.

The study of nonlinear equations is one of the main areas of application for maximal regularity. For
example, quasilinear equations of convolution type on the real line have been studied in Amann [3] in
the parabolic case. Maximal regularity is used by Chill and Srivastava [15] for the treatment of second
order equations, both semi-linear and quasilinear. Other references include [4,16,28] and [36]. We take
up nonlinear equations in Section 9. There, we illustrate through various examples the applicability
of the results obtained for linear problems to nonlinear integral and integro-differential equations in
Banach and Hilbert spaces. We now describe the content of the various sections. In Section 2, we give
some preliminary definitions on Fourier multipliers and R-boundedness. In Section 3, we consider the
Marcinkiewicz conditions and their behavior with respect to sums and products. Section 4 is devoted
to n-regularity of scalar sequences and the behavior under sums, products and quotients. Strong L p

solutions are studied in Section 5. In Section 6, we deal with mild L p solutions. Solutions in Besov
spaces are the subject matter of Section 7 while the corresponding results in the Triebel–Lizorkin
spaces are established in Section 8. We apply the results to semi-linear problems in Section 9.

2. Preliminaries

Let X, Y be complex Banach spaces. We denote by B(X, Y ) the Banach space of all bounded linear
operators from X to Y . When X = Y we write simply B(X) and denote by I the identity operator in
B(X). For a closed linear operator A with domain and range in X we write ρ(A) for the resolvent set
of A. When λ ∈ ρ(A) we denote by R(λ, A) = (λI − A)−1 the resolvent operator. When we consider
D(A) as a Banach space we always understand that it is equipped with the graph norm.
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For a function f ∈ L1((0,2π); X), we denote by

f̂ (k) = 1

2π

2π∫
0

e−ikt f (t)dt

the kth Fourier coefficient of f , where k ∈ Z. The Fourier coefficients determine the function f ; i.e.,
f̂ (k) = 0 for all k ∈ Z if and only if f (t) = 0 a.e. For μ ∈ M(R,C) (the space of bounded measures)
we denote by μ̃ the Fourier transform of μ, that is,

μ̃(ω) =
∞∫

−∞
e−iωt μ(dt), ω ∈ R.

If μ has a density a ∈ L1(R), then μ̃ is the Fourier transform of the function a and we will continue
to denote it by ã.

Let μ ∈ M(R,C). Let v ∈ L1((0,2π); X) extended by periodicity to R. Using Fubini’s theorem we
obtain, for k ∈ Z,

μ̂ ∗ v(k) = 1

2π

2π∫
0

e−ik(t−s)v(t − s)dt

∞∫
−∞

e−iks μ(ds)

and hence

μ̂ ∗ v(k) = μ̃(k)v̂(k), k ∈ Z. (2.1)

This is a very important identity in our investigations.
As usual, we identify the spaces of (vector- or operator-valued) functions defined on [0,2π ] to

their periodic extensions to R. Thus, in this section, we consider the space L p((0,2π); X) (denoted
also L p

2π (R; X)), 1 � p � ∞, of all 2π -periodic Bochner measurable X-valued functions f such that
the restriction of f to [0,2π ] is p-integrable (usual modification in case p = ∞).

We recall the notion of operator-valued Fourier multiplier in L p spaces (see [6]). Corresponding
definitions for Besov and Triebel–Lizorkin spaces will appear in Sections 7 and 8, respectively.

Definition 2.1. Let X, Y be Banach spaces and 1 � p � ∞. A sequence {Mk}k∈Z ⊂ B(X, Y ) is an L p-
multiplier if for each f ∈ L p((0,2π); X) there exists a function g ∈ L p((0,2π); Y ) such that

Mk f̂ (k) = ĝ(k), k ∈ Z.

A sequence {Mk}k∈Z ⊂ B(X, Y ) is an L p-multiplier if and only if there exists a bounded operator
M : L p((0,2π); X) → L p((0,2π); Y ) such that

(̂M f )(k) = Mk f̂ (k)

for all k ∈ Z and all f ∈ L p((0,2π); X).

Remark 2.2. (i) The set of L p-multipliers is a vector space. Moreover, it is clear from the definition
that if X , Y , Z are Banach spaces and {Mk}k∈Z ⊂ B(X, Y ) and {Nk}k∈Z ⊂ B(Y , Z) are L p-multipliers
then {Nk Mk}k∈Z ⊂ B(X, Z) is an L p-multiplier as well. When X = Y , the space of L p-multipliers is an
operator algebra.



V. Keyantuo et al. / J. Differential Equations 246 (2009) 1007–1037 1011
(ii) We note that if for some fixed N ∈ N, Mk = 0 for |k| > N then {Mk}k∈Z is a Fourier multiplier.
This way, when we check conditions ensuring that a sequence {Mk}k∈Z is a Fourier multiplier, what
really matters is when |k| is large. This observation applies to operator- and scalar-valued Fourier
multipliers in various contexts considered throughout the paper.

Example 2.3. If μ ∈ M(R,C) then the sequence {Mk = μ̃(k)I} is an L p-multiplier for every 1 � p � ∞.

This follows directly from the definition, Eq. (2.1) and Young’s inequality.

Definition 2.4. For k ∈ Z, let

Mk =
{

I if k � 0,

0 if k < 0.

We say that X is a UMD space if the sequence {Mk}k∈Z is an L p-multiplier for all (equivalently one)
p ∈ (1,∞).

Equivalently, X is a UMD space if and only if the sequence {Nk} defined by

Nk =
{

I if k � 0,

−I if k < 0

is an L p-multiplier. Note that {Mk} corresponds to the Riesz projection while {Nk} is the representa-
tion of the Hilbert transform in the periodic case. For more on UMD spaces we refer to [1, Chapter IV],
[8,13,18,20] and [32] where examples, properties and several equivalent definitions, notably the one
involving martingales in Banach spaces can be found.

We introduce the means

∥∥(x1, . . . , xn)
∥∥

R := 1

2n

∑
ε j∈{−1,1}n

∥∥∥∥∥
n∑

j=1

ε j x j

∥∥∥∥∥
for x1, . . . , xn ∈ X .

Definition 2.5. Let X , Y be Banach spaces. A subset T of B(X, Y ) is called R-bounded if there exists
a constant c � 0 such that ∥∥(T1x1, . . . , Tnxn)

∥∥
R � c

∥∥(x1, . . . , xn)
∥∥

R (2.2)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X , n ∈ N. The least c such that (2.2) is satisfied is called the R-
bound of T and is denoted R(T ).

An equivalent definition using the Rademacher functions can be found in the references cited
below.

The notion of R-boundedness was implicitly introduced and used by Bourgain [9] and later on
also by Zimmermann [40]. Explicitly it is due to Berkson and Gillespie [8] and to Clément, de Pagter,
Sukochev and Witvliet [18]. Its importance for operator-valued Fourier multipliers was realized by
Weis [39], Clément and Prüss [17], Arendt and Bu [6], Kunstmann and Weis [30], among others. For
abstract multipliers, it is also of great importance (see [18]).

R-boundedness clearly implies boundedness. If X = Y , the notion of R-boundedness is strictly
stronger than boundedness unless the underlying space is isomorphic to a Hilbert space [6, Proposi-
tion 1.17]. Some useful criteria for R-boundedness are provided in [6,20] and [22].

Remark 2.6. (a) Let S, T ⊂ B(X, Y ) be R-bounded sets, then S + T := {S + T : S ∈ S, T ∈ T } is
R-bounded.
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(b) Let T ⊂ B(X, Y ) and S ⊂ B(Y , Z) be R-bounded sets, then S · T := {S · T : S ∈ S, T ∈ T } ⊂
B(X, Z) is R-bounded and

R(S · T ) � R(S) · R(T ).

(c) Also, each subset M ⊂ B(X) of the form M = {λI: λ ∈ Ω} is R-bounded whenever Ω ⊂ C is
bounded. This follows from Kahane’s contraction principle (see [6,18] or [20]).

3. Marcinkiewicz conditions

Sufficient conditions for operator-valued Fourier multipliers in the L p context have been derived
recently and used by many authors in the study of maximal regularity for differential equations. We
mention Weis [39], Arendt [4], Arendt and Bu [6], Denk, Hieber and Prüss [20] and the paper by
Hytönen [25]. In order to present the conditions that we will need later we introduce some notation.
Let {Mk}k∈Z ⊂ B(X, Y ) be a sequence of operators. We set

�0Mk = Mk, �Mk = �1Mk = Mk+1 − Mk

and for n = 2,3, . . .

�n Mk = �
(
�n−1Mk

)
.

Definition 3.1. We say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is M-bounded of order n (n ∈ N ∪ {0}), if

sup
0�l�n

sup
k∈Z

∥∥kl�l Mk
∥∥ < ∞. (3.1)

Observe that for j ∈ Z fixed, we have sup0�l�n supk∈Z ‖kl�l Mk‖ < ∞ if and only if
sup0�l�n supk∈Z ‖kl�l Mk+ j‖ < ∞. This follows directly from the binomial formula.

To be more explicit when n = 0, M-boundedness of order n for {Mk} means simply that {Mk} is
bounded. For n = 1 this is equivalent to

sup
k∈Z

‖Mk‖ < ∞ and sup
k∈Z

∥∥k(Mk+1 − Mk)
∥∥ < ∞. (3.2)

When n = 2 we require in addition to (3.2) that

sup
k∈Z

∥∥k2(Mk+2 − 2Mk+1 + Mk)
∥∥ < ∞ (3.3)

and when n = 3, we require in addition to (3.3) and (3.2)

sup
k∈Z

∥∥k3(Mk+3 − 3Mk+2 + 3Mk+1 − Mk)
∥∥ < ∞. (3.4)

Remark 3.2. (i) The definition of M-boundedness, where M stands for Marcinkiewicz, was introduced
in [29] but was already implicit in [5]. Here we reformulate the definition to make precise the order n.

(ii) Analogously, we define M-boundedness of order n in case of sequences {ak}k∈Z of real or
complex numbers (this amounts to taking Mk = ak I in B(X)).

(iii) Note that if {Mk}k∈Z and {Nk}k∈Z are M-bounded of order n then {Mk ± Nk}k∈Z is M-bounded
of order n. In fact, the set of n-bounded sequences is a vector space. This is obvious from the defini-
tion.
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The following result establishes a useful property of sequences satisfying the M-boundedness con-
dition of order n. In this paper we shall only need these conditions for n � 3. This is enough for the
various characterizations of well-posedness in the sequel.

Theorem 3.3. If {Mk}k∈Z and {Nk}k∈Z are sequences in B(Y , Z) and B(X, Y ) that are M-bounded of order n
(n � 3) then {Mk Nk}k∈Z ⊂ B(X, Z) is also M-bounded of the same order.

Proof. From the hypotheses, it is clear that supk∈Z ‖Mk Nk‖ < ∞. To verify M-boundedness of order
n (n = 1,2,3), we have the following identities:

(i) Order 1:

�(Mk Nk) = �(Mk)Nk+1 + �(Nk)Mk.

(ii) Order 2:

�2(Mk Nk) = �2(Mk)Nk+2 + Mk+1�
2(Nk) + �(Mk)�(Nk+1) + �(Mk)�(Nk).

(iii) Order 3:

�3(Mk Nk) = �3(Mk)Nk+3 + �2(Mk)
(
�(Nk+2) + �(Nk+1) + �(Nk)

)
+ �3(Nk)Mk+2 + 2�(Mk+1)�

2(Nk) + �(Mk+1)�
2(Nk+1).

Since {Mk} and {Nk} are M-bounded of order n (n = 1,2,3) we obtain from the above identities that
{Mk Nk} verifies (3.2)–(3.4). �
Remark 3.4. The result is also true in the case of sequences {ak}k∈Z of real or complex numbers
satisfying M-boundedness of order n (n = 1,2,3). In this case we identify ak with ak I as already
indicated.

Definition 3.5. We say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is M R-bounded of order n, if for each
0 � l � n the set {

kl�l Mk: k ∈ Z
}

(3.5)

is R-bounded.

Remark 3.6. A sequence {Mk}k∈Z ⊂ B(X, Y ) is M R-bounded of order 1 if the sets

{Mk: k ∈ Z} and
{
k(Mk+1 − Mk): k ∈ Z

}
(3.6)

are R-bounded.
If in addition we have that the set{

k2(Mk+1 − 2Mk + Mk−1): k ∈ Z
}

(3.7)

is R-bounded then {Mk}k∈Z is M R-bounded of order 2.
If (3.6) and (3.7) are satisfied and{

k3(Mk+1 − 3Mk + 3Mk−1 − Mk−2): k ∈ Z
}

(3.8)

is R-bounded, then {Mk}k∈Z is M R-bounded of order 3.
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Remark 3.7. According to the second section, in Hilbert spaces M R-bounded and M-bounded are
identical concepts. In general, M R-bounded implies R-bounded which in turn implies boundedness.
Moreover, note that M R-boundedness implies M-boundedness.

Using the same identities as in the proof of Theorem 3.3 one proves the following result.

Theorem 3.8. If {Mk}k∈Z and {Nk}k∈Z are M R-bounded sequences of order n (n � 3) then {Mk Nk}k∈Z is
M R-bounded of order n.

The following theorem is the discrete analogue of the operator-valued version of Mikhlin’s theorem
due to Arendt and Bu in [6]. The continuous version was proved earlier by Weis [39] using different
methods. They used the multiplier theorems to study maximal regularity for the first order Cauchy
problem. In [6] maximal regularity for (1.3) is treated as well as boundary value problems for second
order differential equations.

Theorem 3.9. Let X, Y be UMD spaces. If the sequence {Mk}k∈Z ⊂ B(X, Y ) is M R-bounded of order 1 then
{Mk}k∈Z is an L p-multiplier for 1 < p < ∞.

We observe that the condition of M R-boundedness of order 0 (that is, R-boundedness) for {Mk}k∈Z

is necessary.
The following corollary due to Zimmermann [40] is the vector-valued version of the Marcinkiewicz

multiplier theorem. It shows the importance of the concept of UMD spaces. It is an extension of earlier
multiplier results known for L p(lq).

Corollary 3.10. Let X be a UMD space. If {mk}k∈Z ⊂ C is M-bounded of order 1 then {mk I}k∈Z is an L p-
multiplier for 1 < p < ∞.

We note that if {Mk} is the sequence considered in Definition 2.4, then {Mk} is R-bounded (Ka-
hane’s inequality) of order n for any n but is not a Fourier multiplier unless X is a UMD space.

4. n-regular sequences

The notion of 1-regular and 2-regular scalar sequences was introduced in [29] to study maximal
regularity of integro-differential equations on periodic Lebesgue and Besov spaces. This concept is
the discrete analogue for the notion of n-regularity related to Volterra integral equations (see [32,
Chapter I, Section 3.2]). Recently, Bu and Fang in [10] introduced the notion of 3-regular sequences to
study maximal regularity of integro-differential equations on the scale F s

p,q of Triebel–Lizorkin spaces.

Definition 4.1. A sequence {ak}k∈Z ⊆ C \ {0} is called n-regular (n ∈ N) if

sup
1�l�n

sup
k∈Z

∥∥kl(�lak
)
/ak

∥∥ < ∞. (4.1)

Note that if {ak}k∈Z is 1-regular then lim|k|→∞ ak+1/ak = 1. Observe that an n-regular sequence
need not be bounded.

As an immediate consequence of the definition, we have the following result showing the interplay
between n-regularity and M-bounded sequences.

Proposition 4.2. If {ak}k∈Z is a bounded and n-regular sequence, then it is M-bounded of order n.

Remark 4.3. The converse is false in general. For example, the sequence ak = e−k2
is M-bounded of

order n for every n but is not even 1-regular.
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However, we have the following useful observation which follows at once from the definition of
n-regular sequence.

Proposition 4.4. Let n ∈ N. If {ak}k∈Z is M-bounded of order n and { 1
ak

} is bounded, then {ak}k∈Z is an
n-regular sequence.

Remark 4.5. The boundedness of { 1
ak

} is not a necessary condition in order to have the conclusion of

the above proposition. For example the sequence ak = 1
ik+1 is M-bounded of order n and n-regular

for all n ∈ N.

In the next theorem, we give some useful properties of n-regular sequences for n � 3.

Theorem 4.6. Let (ak)k∈Z, (bk)k∈Z be given sequences and let n � 3.

(i) If {ak}k∈Z and {bk}k∈Z are n-regular sequences such that supk | ak
ak+bk

| < ∞, then the sequence
{ak + bk}k∈Z is n-regular.

(ii) If the sequences {ak}k∈Z and {bk}k∈Z are n-regular, then the sequence {akbk}k∈Z is n-regular.
(iii) The sequence {ak}k∈Z is n-regular if and only if the sequence { 1

ak
}k∈Z is n-regular.

(iv) If the sequences {ak}k∈Z and {bk}k∈Z are n-regular, then the sequence {ak/bk}k∈Z is n-regular.

Proof. First we prove (i). For 1-regularity observe that

k(�[ak + bk])
ak + bk

= k(�ak)

ak

ak

ak + bk
+ k(�bk)

bk
− k(�bk)

bk

ak

ak + bk
.

In view of the hypothesis, 1-regularity of {ak + bk} follows. To verify 2-regularity, we observe that

k2(�2[ak−1 + bk−1])
ak + bk

= k2(�2ak−1)

ak

ak

ak + bk
+ k2(�2bk−1)

bk
− k2(�2bk−1)

bk

ak

ak + bk
.

Finally, to verify 3-regularity, this time we note that

k3(�3[ak−2 + bk−2])
ak + bk

= k3(�3ak−2)

ak

ak

ak + bk
+ k3(�3bk−2)

bk
− k3(�3bk−2)

bk

ak

ak + bk
.

This completes the proof of (i). As for the proof of (ii), is suffices to note that

k(�[akbk])
akbk

= k(�ak)

ak

bk+1

bk
+ k(�bk)

bk
.

Since {ak} and {bk} are 1-regular sequences, it follows that {akbk} is 1-regular. In order to show
that {akbk} is 2-regular, we take advantage of the following identity

k2(�2[ak−1bk−1])
akbk

= k2(�2ak−1)

ak

bk+1

bk
+ k2(�2bk−1)

bk
+ k(�ak−1)

ak

k[(�bk) + (�bk−1)]
bk

.

Since {ak} and {bk} are 2-regular sequences, it follows that {akbk} is 2-regular. Finally, using the rela-
tion
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k3(�3[ak−2bk−2])
akbk

= k3(�3ak−2)

ak

bk+1

bk
+ k2(�2ak−2)

ak−1

k[(�bk) + (�bk−1) + (�bk−2)]
bk

ak−1

ak

+ k3(�3bk−2)

bk
+ 2

k2(�2bk−2)

bk−1

k(�ak−1)

ak

bk−1

bk
+ k(�ak−1)

ak

k2(�2bk−1)

bk
,

we see that {akbk} is 3-regular.
Now we note that (iv) is a consequence of (ii) and (iii). Therefore to complete the proof of the

theorem it remains to verify (iii). To this end, observe that k(�1/ak)
1/ak

= − k(�ak)
ak

ak
ak+1

. Since {ak} is a 1-

regular sequence, it follows that | ak+1
ak

− 1| � M/|k|, k �= 0, for some M > 0, and hence ak/ak+1 → 1
as |k| → ∞. It follows that {1/ak} is 1-regular.

To show 2-regularity, we write

k2(�21/ak−1)

1/ak
= k[(�ak) + (�ak−1)]

ak−1

k(�ak)

ak+1
− k2(�2ak−1)

ak−1
.

Finally, to verify 3-regularity, we write

k3(�31/ak−2)

1/ak
= −ak−1

ak−2

ak

ak−1

ak

ak+1

k3(�3ak−2)

ak
+ 3

ak−1

ak−2

ak

ak+1

k(�ak−1)

ak−1

k2(�2ak−1)

ak

− 3
ak

ak+1

k(�ak−1)

ak−1

k(�ak−2)

ak−2

k(�ak)

ak
− 3

ak−2

ak+1

k(�ak−1)

ak−1

k(�ak−2)

ak−2

k(�ak−2)

ak−2

+ 3
ak−1

ak+1

k(�ak−1)

ak−1

k2(�2ak−2)

ak−1
.

The result follows immediately. This completes the proof of the theorem. �
Remark 4.7. (i) In general, it is not enough to assume that the sequences {ak} and {bk} are n-regular
in order for the sum {ak + bk} to enjoy the same property. For example, a direct computation shows
that ak = ik + e−ik and bk = −ik are 1-regular sequences, whereas the sequence ak + bk = e−ik is not
1-regular.

(ii) The condition supk | ak
ak+bk

| < ∞ in Theorem 4.6 is equivalent to supk | bk
ak+bk

| < ∞.

(iii) We also note that the condition supk | ak
ak+bk

| < ∞ in Theorem 4.6 is not necessary. This is
evidenced by the following example. Take ak = k, bk = 1 − k, k ∈ Z. Both sequences are n-regular for
all n ∈ N. Also, ak + bk = 1, k ∈ Z, is n-regular for all n ∈ N. Yet, { ak

ak+bk
} is unbounded.

We now present a series of examples which correspond to various classes of equations that are
subsumed under our main results.

Example 4.8. Let ck �= −1 for all k ∈ Z and define bk = ik
1+ck

. Suppose ck is M-bounded of order n

(n � 3) and 1
1+ck

is bounded. Since 1 + ck is also M-bounded, it follows from Proposition 4.4 that
1 + ck is n-regular and then, using Theorem 4.6(iv) we conclude that bk is an n-regular sequence
(compare [29, p. 741]).

Example 4.9. Let c0, γ0, γ∞ ∈ R be given and suppose {ak}, {bk} are M-bounded sequences of order n

(n � 3) with { 1
c0−ak

}, { 1
ik(γ0+bk)+γ∞ } well defined and bounded. Define dk = ik(γ0+bk)+γ∞

c0−ak
. It follows by

Theorem 3.3 and Remark 3.2(iii) that {c0 − ak} and {ik(γ0 + bk) + γ∞} are M-bounded. Hence from
Proposition 4.4 we obtain that the same sequences are also n-regular. Finally, using Theorem 4.6(iv)
we deduce that {dk} is an n-regular sequence (compare [28, p. 30]).
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Example 4.10. Suppose {ak} is an M-bounded sequence of order n and such that { 1
ak

} is bounded.

Then we obtain from Proposition 4.4 and Theorem 4.6(iv) that dk = −ik
ak

is an n-regular sequence. This
example is important in the scalar case, i.e. with A = I and X = Cn, as we will see later (cf. [24,
Theorem 3.11, p. 87]).

5. Well-posedness in L p spaces

Having presented in the previous sections preliminary material on M-boundedness and Fourier
multipliers we will now show how these tools can be used to handle the integro-differential equa-
tion (1.1).

In this section we proceed to study L p well-posedness of the general integro-differential equa-
tion (1.1). Here we do not assume that A is densely defined but merely that A is a closed operator.
The results give concrete conditions on the measures ν,μ,η as well as the operator A under which
Eq. (1.1) is strongly well-posed. Special cases that have been studied before are incorporated into the
new framework. In the next section we will study mild well-posedness in L p spaces. Strong and mild
well-posedness in other scales of function spaces will be taken up in the subsequent sections.

The definition of strong well-posedness which we investigate in this section is as follows.

Definition 5.1. We say that the problem (1.1) is strongly L p well-posed (1 � p < ∞) if for
each f ∈ L p((0,2π); X) there exists a unique function u ∈ H1

p((0,2π); X) ∩ L p((0,2π); D(A)) such
that (1.1) is satisfied (for almost every t).

The function u in Definition 5.1 will be called the strong L p solution of Eq. (1.1). For a closed
operator A in X with domain D(A) and 1 � p < ∞, we define the operator A on L p((0,2π); X) by
D(A) = H1

p((0,2π); X) ∩ L p((0,2π); D(A)) and

Au = μ ∗ u′ + ν ∗ u − η ∗ Au.

Here H1
p((0,2π); X) is the vector-valued Sobolev space, which is denoted H1 in case p = 2.

Remark 5.2. In terms of the operator A defined above, Definition 5.1 is equivalent to saying that it is
one-to-one and surjective. By the closed graph theorem, it follows that A has a continuous inverse B
that maps L p((0,2π); X) into H1

p((0,2π); X) ∩ L p((0,2π); D(A)).

We have the following preliminary result.

Proposition 5.3. Let X be a UMD space and A a closed linear operator defined on X. Let {ak}k∈Z, {bk}k∈Z be 1-
regular sequences such that { bk

ak
} is bounded and {bk}k∈Z ⊂ ρ(A). Then the following assertions are equivalent:

(i) {ak(bk I − A)−1}k∈Z is an L p-multiplier, 1 < p < ∞.

(ii) {ak(bk I − A)−1}k∈Z is R-bounded.

Proof. Let Mk = ak(bk I − A)−1. By [6, Proposition 1.11], it follows that (i) implies (ii). Note that { 1
ak

}
is 1-regular by Theorem 4.6(iii). Then the result is a consequence of the following identity

k(Mk+1 − Mk) = Mk+1
bk

ak+1
k
(bk − bk+1)

bk
Mk − k

1
ak+1

− 1
ak

1
ak

Mk+1. �

When ak = bk we obtain the following special case of Proposition 5.3 which will be used later (see
also [29, Proposition 2.8]). Note that condition (ii) is independent of p ∈ (1,∞).
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Corollary 5.4. Let X be a UMD space and A a closed linear operator defined on X. Let {bk}k∈Z be a 1-regular
sequence such that {bk}k∈Z ⊂ ρ(A). Then the following assertions are equivalent:

(i) {bk(bk I − A)−1}k∈Z is an L p-multiplier, 1 < p < ∞.

(ii) {bk(bk I − A)−1}k∈Z is R-bounded.

In the remaining part of this section we will assume that η̃(k) �= 0 for all k ∈ Z and the sequence

{
1

η̃(k)

}
is bounded. (5.1)

For example, we can take η = aδ0 + ζ where a �= 0 and ζ ∈ M(R,C) has a density L1(R) and a +
ζ̃ (k) �= 0 for all k ∈ Z. We now address strong well-posedness of the integro-differential equation (1.1).

Theorem 5.5. Assume that X is a UMD space and 1 < p < ∞. Suppose that the sequences {ikμ̃(k) + ν̃(k)}
and {η̃(k)} are 1-regular. Then the following assertions are equivalent:

(i) Problem (1.1) is strongly L p well-posed;

(ii) ikμ̃(k)+ν̃(k)

η̃(k)
⊆ ρ(A) and { ik

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is an L p-multiplier;

(iii) ikμ̃(k)+ν̃(k)

η̃(k)
⊆ ρ(A) and { ik

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is R-bounded.

Proof. Set Mk = ik
η̃(k)

(
ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1.

(ii) ⇔ (iii) Let ak = ik
η̃(k)

and bk = ikμ̃(k)+ν̃(k)

η̃(k)
. From the hypotheses and Theorem 4.6 we have that

{ak} and {bk} are 1-regular sequences. Since { bk
ak

} = {μ̃(k)+ ν̃(k)
ik }k∈Z\{0} it follows that { bk

ak
} is bounded

and the assertion now follows from Proposition 5.3.
(i) ⇔ (ii) Let Nk = 1

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1,k ∈ Z. Thus, Mk = ikNk , k ∈ Z. The solution u is con-

structed through

û(k) = Nk f̂ (k), k ∈ Z. (5.2)

Indeed, as is well known [6, Lemma 2.2], the assumption that {Mk} is an L p-multiplier implies that
{Nk} is an L p-multiplier as well.

Except for the verification that the solution u constructed using multipliers belongs to
L p((0,2π); D(A)), the proof follows the same lines as that of [28, Theorem 2.9] (see also [29]).
In fact, by Theorem 4.6(iii) we have that {η̃(k)} is 1-regular. It follows that { 1

η̃(k)
} is 1-regular. Note

that due to (5.1) the sequence { 1
η̃(k)

} is also bounded, and so we obtain by Proposition 4.2 that the

latter sequence is M-bounded of order 1. Hence it is an L p-multiplier.
Let bk

ik = 1
η̃(k)

[μ̃(k) + ν̃(k)
ik ]. From hypothesis and Remark 4.7 we have that {bk/ik} is 1-regular and

bounded, hence it is M-bounded of order 1 and therefore is an L p-multiplier.
From the identity

ANk = bk

ik
Mk − 1

η̃(k)
I (5.3)

we conclude that {ANk} is an L p-multiplier. The proof is complete. �
From the proof of Theorem 5.5 we deduce the following result on maximal regularity.
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Corollary 5.6. The solution u of problem (1.1) given by Theorem 5.5 satisfies the following maximal
regularity property: u, u′, Au ∈ L p((0,2π); X). Moreover, there exists a constant C > 0 independent of
f ∈ L p((0,2π); X) such that

‖u‖p + ‖u′‖p + ‖Au‖p � C‖ f ‖p . (5.4)

Note that by Definition 5.1 (cf. also Remark 5.2), u, u′ as well as all the terms in the left-hand
side of (5.4) belong to L p with continuous dependence on f . Similarly μ ∗ u′, ν ∗ u, η ∗ Au belong to
L p((0,2π); X) and for some positive constant K we have

‖ν ∗ u‖p + ‖μ ∗ u′‖p + ‖η ∗ Au‖p � K‖ f ‖p .

Example 5.7. Consider the equation

u′(t) = Au(t) +
t∫

−∞
c(t − s)Au(s)ds + f (t) (5.5)

with the boundary condition u(0) = u(2π). This is a special case of Eq. (1.1) corresponding to μ = δ0,
ν = 0, η = δ0 − c(t)χ[0,∞)(t) where we identify an L1 function with the associated measure. By Ex-
ample 4.8, it follows that if

ck := c̃(k) is M-bounded of order 1,

then by Theorem 5.5, Eq. (5.5) has a unique strong L p solution for every f ∈ L p(0,2π ; X) if and only
if the equivalent conditions (ii) and (iii) of Theorem 5.5 hold. Hence we recover the results established
in [29] in the L p case (note incidentally that in that paper, we used c̃ to denote the Laplace transform
of c).

Example 5.8. Let γ ∈ R, τ > 0 and consider the delay equation

u′(t) = Au(t) − γ u(t − τ ) + f (t), t ∈ R. (5.6)

This problem is motivated by feedback-systems and control theory, see [7] and the references therein.
In Eq. (5.6) the operator A corresponds to the system operator which is generally assumed to be the
generator of a C0-semigroup. The term γ u(t − τ ) can be interpreted as the feedback. We note that
usually the above equation is studied in the context of Hilbert spaces. Here we show that our theory
applies and we obtain strong well-posedness.

Indeed, here we have μ̃(k) = 1, ν̃(k) = γ e−ikτ and η̃(k) = 1. The hypotheses of the theorem are
easily seen to be satisfied if |γ | /∈ N. More precisely, when X is a UMD space, problem (5.6) is strongly
L p well-posed (1 < p < ∞) if and only if {ik + γ e−ikτ }k∈Z ⊂ ρ(A) and {ik(ik + γ e−ikτ − A)−1}k∈Z

is R-bounded. When X is a Hilbert space, the last condition is equivalent to boundedness of
{ik(ik + γ e−ikτ − A)−1}k∈Z. For example, if A generates an analytic semigroup T = {T (t)} of type
ω(T ) < −|γ | then it is easy to check that this condition is satisfied.

6. Mild well-posedness in L p

In this section we study mild solutions of the integro-differential equation (1.1). The definition of
mild solution we adopt here first appeared in Staffans [36] in the context of mild L2 solutions on
Hilbert spaces. For the special equation (1.3), another concept of mild solution is studied in [6] and
its relationship to the present approach is considered in [26]. Later in this section we will relate the
notion of mild solution to the strong solutions studied in Section 5. This will be done in a natural
way by constructing a one-parameter family of concepts of mild solutions.
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Definition 6.1. We say that problem (1.1) is (H1
p, L p) mildly well-posed if there exists a linear operator

B that maps L p((0,2π); X) continuously into itself as well as H1
p((0,2π); X)∩ L p((0,2π); D(A)) into

itself and which satisfies

ABu = B Au = u

for all u ∈ H1
p((0,2π); X)∩ L p((0,2π); D(A)). In this case the function B f is called the (H1

p, L p) mild
solution of (1.1) and B the solution operator.

More specifically, we require that the following diagram be commutative:

L p((0,2π); X)
B

L p((0,2π); X)

H1
p((0,2π); X) ∩ L p((0,2π); D(A))

A

B

I

H1
p((0,2π); X) ∩ L p((0,2π); D(A))

A

where I is the natural injection of H1
p((0,2π); X) ∩ L p((0,2π); D(A)) into L p((0,2π); X).

Clearly, the solution operator B above is unique, if it exists. Recall that for two Banach spaces Z
and X , the notation Z ↪→ X means that Z is continuously embedded into X .

Lemma 6.2. Suppose Z ↪→ X and B : D(B) ⊂ X → X is a closed linear operator. Define B Z , the part of B in
Z by D(B Z ) = {x ∈ D(B) ∩ Z , Bx ∈ Z}. Then B Z is a closed operator.

Proof. Suppose zn is a sequence in D(B Z ) which converges in Z to z (thus z ∈ Z ) and B Z zn converges
in Z to w. Then by the continuity of the injection of Z into X, both sequences converge in X to the
same limits. Since B is closed, z ∈ D(B) and Bz = w. We then have that z ∈ D(B)∩ Z and Bz = w ∈ Z .

This concludes the proof. �
The following corollary is immediate.

Corollary 6.3. Suppose Z ↪→ X and B ∈ L(X). If Z is invariant under B, then B Z which we continue to denote
by B, satisfies B ∈ L(Z).

Next, we characterize mild solutions using operator-valued Fourier multipliers.

Theorem 6.4. Assume that D(A) = X . Let 1 < p < ∞. Assume that η̃(k) �= 0, for all k ∈ Z. Then the following
assertions are equivalent:

(i) Problem (1.1) is (H1
p, L p) mildly well-posed;

(ii) { ikμ̃(k)+ν̃(k)

η̃(k)
}k∈Z ⊆ ρ(A) and { 1

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is an L p-multiplier.

Proof. (ii) ⇒ (i) Consider dk := ikμ̃(k)+ν̃(k)

η̃(k)
, ck = 1

η̃(k)
and let B be the operator which maps f ∈

L p((0,2π); X) into the function u ∈ L p((0,2π); X) whose kth Fourier coefficient is ck R(dk, A) f̂ (k),

i.e.

(̂B f )(k) = ck R(dk, A) f̂ (k) = û(k) (6.1)
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for all k ∈ Z and all f ∈ L p((0,2π); X). By the remark following Definition 2.1, B is a bounded linear
operator on L p((0,2π); X). Let g ∈ H1

p((0,2π); X) ∩ L p((0,2π); D(A)) and set h = B g. Then,

ikĥ(k) = ck R(dk, A)ikĝ(k) = ck R(dk, A)ĝ′(k) (6.2)

for all k ∈ Z. Since g′ ∈ L p((0,2π); X), by (i) there exists w ∈ L p((0,2π); X) such that

ŵ(k) = ck R(dk, A)ĝ′(k) (6.3)

for all k ∈ Z. Hence from (6.2), (6.3) and [6, Lemma 2.1] we obtain h ∈ H1
p((0,2π); X). Note that

ĥ(k) ∈ D(A), k ∈ Z since ĥ(k) = ck R(dk, A)ĝ(k) and then AB̂ g(k) = B̂ Ag(k). Since by assumption Ag ∈
L p((0,2π); X), the closedness of A implies that AB g ∈ L p((0,2π); X), that is B g ∈ L p((0,2π); D(A)).

We have proved that B maps H1
p((0,2π); X) ∩ L p((0,2π); D(A)) into itself. Continuity of B fol-

lows from Corollary 6.3 since the space H1
p((0,2π); X) ∩ L p((0,2π); D(A)) embeds continuously into

L p((0,2π); X).

Finally, for u ∈ H1
p((0,2π); X) ∩ L p((0,2π); D(A)) we have

(̂Au)(k) = 1

ck
(dk I − A)û(k) (6.4)

for all k ∈ Z. Hence from (6.1) and [6, Lemma 3.1] we obtain ABu = B Au = u.

(i) ⇒ (ii) Let x ∈ X and xn ∈ D(A) such that xn → x. Fix k ∈ Z and let fn(t) = eikt xn for all n ∈ N

and f0(t) = eikt x. Note that f̂n(k) = xn and f̂n( j) = 0 for j �= k. Clearly fn → f0 in the L p-norm as
n → ∞. Let un = B fn. Then we have

ikμ̃(k)ûn(k) + ν̃(k)ûn(k) − η̃(k)Aûn(k) = (̂Aun)(k) = ̂(AB fn)(k) = f̂n(k) = xn.

Since B is bounded on L p((0,2π); X), un → u0 := B f0 in the L p-norm, we conclude that ûn(k) →
û0(k), and (

ikμ̃(k) + ν̃(k) − η̃(k)A
)
û0(k) = x.

Hence, for all k ∈ Z, (ikμ̃(k) + ν̃(k) − η̃(k)A) is surjective.
Let x ∈ D(A) be such that (ikμ̃(k) + ν̃(k) − η̃(k)A)x = 0, for k ∈ Z fixed. Define u(t) = eikt x. Then,

clearly, u ∈ W 1,p((0,2π); X) ∩ L p((0,2π); D(A)) and Au = 0. Hence

u = B Au = 0,

and therefore x = 0. Since A is closed, we have proved that {dk}k∈Z ⊂ ρ(A).

To verify that (ck R(dk, A))k∈Z is an L p-multiplier, let f ∈ L p((0,2π); X). We observe that since
D(A) = X and 1 � p < ∞, the space H1

p((0,2π); X) ∩ L p((0,2π); D(A)) is dense in L p((0,2π); X).

Hence there exists a sequence fn ∈ H1
p((0,2π); X) ∩ L p((0,2π); D(A)) such that fn → f in the L p-

norm. Define

gn = B fn, n ∈ N.

Then gn ∈ H1
p((0,2π); X) ∩ L p((0,2π); D(A)) and

A gn = AB fn = fn, n ∈ N.
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Taking Fourier coefficients and using the fact that {dk}k∈Z ⊂ ρ(A), we obtain from the above that

ĝn(k) = ck(dk I − A)−1 f̂n(k) (6.5)

for all k ∈ Z. By continuity of B, {gn}n∈N is a Cauchy sequence in L p((0,2π); X). Hence there exists
g ∈ L p((0,2π); X) such that gn → g in the L p-norm. From this and using Hölder’s inequality we
deduce that ĝn(k) → ĝ(k) and, analogously, f̂n(k) → f̂ (k). Therefore we conclude from (6.5) that
ĝ(k) = ck(dk I − A)−1 f̂ (k), for all k ∈ Z. The claim is proved. �

As a direct consequence of Proposition 5.3 and Theorem 4.6, we obtain the following result. It is
remarkable that in some cases we can characterize mild well-posedness in terms of R-boundedness
of resolvents. This phenomenon seems to be new.

Theorem 6.5. Let 1 < p < ∞. Let X be a UMD space and assume that D(A) = X . Suppose that

η̃(k) is 1-regular and ikμ̃(k) + ν̃(k) is 1-regular and bounded. (6.6)

Then the following assertions are equivalent:

(i) Problem (1.1) is (H1
p, L p) mildly well-posed;

(ii) ikμ̃(k)+ν̃(k)

η̃(k)
⊆ ρ(A) and { 1

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is an L p-multiplier;

(iii) ikμ̃(k)+ν̃(k)

η̃(k)
⊆ ρ(A) and { 1

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is R-bounded.

Remark 6.6. Condition (6.6) might seem strong. If we consider ϑ an arbitrary bounded measure and
set μ = 1

2i (ϑπ − ϑ−π ), where ϑa denotes the a-translate of ϑ , then we have μ̃(k) = 0 for all k ∈ Z.

Another case is when μ has a density f with respect to the Lebesgue measure and f ∈ W 1,1(R) =
{g ∈ L1(R): g′ ∈ L1(R)} where the derivative is taken in distributional sense.

Remark 6.7. Observe that when μ = δ0, ν = 0, η = δ0, condition (6.6) is not satisfied. In this case,
which corresponds to the equation of the first order

u′(t) = Au(t) + f (t), (6.7)

there is no regularization on the first derivative in Eq. (1.1). This case corresponds to mild solutions
for (6.7) and was investigated in [6]. There it was observed that they cannot be characterized in terms
of R-boundedness of the set {(ikI − A)−1}k∈Z solely.

Example 6.8 (Renewal equation). We take ν = δ0, μ = 0 and η is chosen such that η̃(k) is 1-regular.
Then, an application of Theorem 4.6(iii) shows that the assumptions in Theorem 6.5 are satisfied and
we obtain that the integral equation

u = η ∗ Au + f

is (H1
p, L p) mildly well-posed if and only if the equivalent conditions (ii), (iii) in Theorem 6.5 are

verified. Note that maximal regularity to the above equation was characterized for periodic L p spaces
in the scalar case (cf. [24, Theorem 4.7, p. 48]). Our result extends such characterization to the infinite-
dimensional setting.

We now introduce a one-parameter family of concepts of well-posedness for Eq. (1.1). The main
idea is to embed the space H1

p((0,2π); X) ∩ L p((0,2π); D(A)) into a scale of intermediate spaces of
L p((0,2π); X). Related notions appear in [36]. In [6], the spaces Hα

p ((0,2π); X) used below are also



V. Keyantuo et al. / J. Differential Equations 246 (2009) 1007–1037 1023
considered but just to obtain continuity and even Hölder continuity of mild solutions from a different
definition.

For 1 < p < ∞ and α � 0, define the space Hα
p ((0,2π); X) as

Hα
p

(
(0,2π); X

) = {
f ∈ L p(

(0,2π); X
)
, ∃g ∈ L p(

(0,2π); X
)

such that ĝ(k) = |k|α f̂ (k), k ∈ Z
}
.

We note due to the UMD property (more precisely the continuity of the Hilbert transform on
L p((0,2π); X)), we have

W m,p(
(0,2π); X

) = Hm
p

(
(0,2π); X

)
, for 1 < p < ∞ and m ∈ N ∪ {0} (6.8)

(see for example [37, Chapter III], [1] and for the relationship with intermediate spaces, see [14,
Chapter IV, especially Section 4.4, p. 272]). Now we give the definition of (H1

p, H1−α
p ) well-posedness.

Definition 6.9. Let 0 � α � 1. We say that the problem (1.1) is (H1
p, H1−α

p ) mildly well-posed if
there exists a linear operator B that maps L p((0,2π); X) continuously into itself with range in
H1−α

p ((0,2π); X), as well as H1
p((0,2π); X) ∩ L p((0,2π); D(A)) into itself and which satisfies

ABu = B Au = u

for all u ∈ H1
p((0,2π); X) ∩ L p((0,2π); D(A)).

This means that in the diagram following Definition 6.1, we replace L p((0,2π); X) in the upper
right corner with H1−α

p ((0,2π); X). Thanks to the closed graph theorem, this means that B is con-

tinuous from L p((0,2π); X) into H1−α
p ((0,2π); X).

We have the following result.

Theorem 6.10. Assume that D(A) = X . Let 1 < p < ∞ and 0 � α � 1. Assume that η̃(k) �= 0, for all k ∈ Z.
Then the following assertions are equivalent:

(i) Problem (1.1) is (H1
p, H1−α

p ) mildly well-posed;

(ii) { ikμ̃(k)+ν̃(k)

η̃(k)
}k∈Z ⊆ ρ(A) and { (ik)1−α

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is an L p-multiplier.

Proof. The proof is a modification of the proof of Theorem 6.4 and we omit it. �
Remark 6.11. When α = 1, Theorem 6.10 corresponds to Theorem 6.4 and when α = 0 the concept
of solution that appears in the new context differs from that of strong solution covered by Theo-
rem 5.5. The main difference is that in the new context we do not require that the solution operator
B maps into L p((0,2π), D(A)). However, in some cases, the requirement that the range of B be in
H1

p automatically implies that B also maps into L p((0,2π), D(A)). See Proposition 6.15 below. A spe-
cific example is Eq. (6.7) for which the analysis was done in [26]. There, we also justified why it is
reasonable to assume that 0 � α � 1.

The next theorem characterizes (H1
p, H1−α

p ) mild well-posedness under an additional assumption.

Theorem 6.12. Let 1 < p < ∞,0 � α � 1 and X be a UMD space. Assume that D(A) = X and η̃(k) �= 0, for
all k ∈ Z and

η̃(k) is 1-regular and (ik)αμ̃(k) + ν̃(k)

(ik)1−α
is 1-regular and bounded. (6.9)

Then the following assertions are equivalent:
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(i) Problem (1.1) is (H1
p, H1−α

p ) mildly well-posed;

(ii) { ikμ̃(k)+ν̃(k)

η̃(k)
}k∈Z ⊆ ρ(A) and { (ik)1−α

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is an L p-multiplier;

(iii) { ikμ̃(k)+ν̃(k)

η̃(k)
}k∈Z ⊆ ρ(A) and { (ik)1−α

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is R-bounded.

Proof. Thanks to (6.9) we can use Proposition 5.3 to prove the equivalence between (ii) and (iii). The
equivalence between (i) and (ii) is Theorem 6.10. �
Example 6.13. Consider the equation

u′(t) =
∞∫

−∞
Au(t − s)η(ds) + f (t). (6.10)

This case corresponds to Eq. (1.1) with μ = δ0, ν = 0 and η a bounded measure. It follows from
Theorem 6.12 with α = 0 that if

ak := η̃(k) is 1-regular, (6.11)

then Eq. (6.10) is (H1
p, H1

p) mildly well-posed if and only if the equivalent conditions (ii) and (iii) hold.
Hence we extend the results established in [24, Theorem 3.11, p. 87] to the vector-valued L p case.

Example 6.14. Let a > 0 and γ > −1. We take in (1.1) μ(dt) = 1
�(γ +1)

tγ e−at dt (t > 0) and μ(t) = 0

for t < 0; ν = 0 and η a bounded measure. In this case Eq. (1.1), which reads μ ∗ u′ = η ∗ Au + f , is
(H1

p, L p) mildly well-posed if γ � α − 1, γ > −1 and one of the equivalent conditions (ii) or (iii) is

satisfied. We note that in this case μ̃(k) = 1
(ik+a)γ +1 .

In case α = 0 we have

Proposition 6.15. Assume that either A is bounded or { 1
η̃(k)

} is an L p-multiplier. Then, problem (1.1) is

(H1
p, H1

p) mildly well-posed if and only if problem (1.1) is strongly L p well-posed.

Proof. Suppose problem (1.1) is (H1
p, H1

p) mildly well-posed. In case A is bounded, we note that

D(A) = H1
p((0,2π); X) and the assertion follows. On the other hand, let Nk and Mk be as in the proof

of Theorem 5.5. By Theorem 6.10 we have that Mk is an L p-multiplier. When 1
η̃(k)

is an L p-multiplier,

the identity (5.3) and the fact that dk
ik = 1

η̃(k)
[μ̃(k) + ν̃(k)

ik ] show that ANk is an L p-multiplier as well

(see Example 2.3). Then the solution u, defined by (5.2), satisfies Au ∈ L p((0,2π), X) and hence the
range of B is contained in H1

p((0,2π); X) ∩ L p((0,2π); D(A)), proving the proposition.
We point out that several concrete criteria for R-boundedness have been established (see e.g.

[20,23] and [6]). �
7. Well-posedness on Besov spaces

In this section we consider solutions in Besov spaces. For the definition and main properties of
these spaces we refer to [5] or [28]. For the scalar case, see [14,34]. Contrary to the L p case the
multiplier theorems established so far are valid for arbitrary Banach spaces; see [2,5] and [22]. Special
cases here allow one to treat Hölder–Zygmund spaces. Specifically, we have Bs∞,∞ = C s for s > 0.

Moreover, if 0 < s < 1 then Bs∞,∞ is just the usual Hölder space C s. We begin with the definition of
operator-valued Fourier multipliers in the context of Besov spaces.
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Definition 7.1. Let 1 � p � ∞. A sequence {Mk}k∈Z ⊂ B(X) is a Bs
p,q-multiplier if for each f ∈

Bs
p,q((0,2π); X) there exists a function g ∈ Bs

p,q((0,2π); X) such that

Mk f̂ (k) = ĝ(k), k ∈ Z.

The following general multiplier theorem for periodic vector-valued Besov spaces is due to Arendt
and Bu [5, Theorem 4.5]. The continuous case (multipliers on the real line) was studied by Amann [2]
and later by Girardi and Weis [22].

Theorem 7.2. (i) Let X be a Banach space and suppose that {Mk}k∈Z ⊂ B(X) is M-bounded of order 2. Then
for 1 � p,q � ∞, s ∈ R, {Mk}k∈Z is a Bs

pq-multiplier.
(ii) Let X be a Banach space with nontrivial Fourier type. Then any sequence {Mk}k∈Z ⊂ B(X) which is

M-bounded of order 1 is a Bs
pq-multiplier for all 1 � p,q � ∞, s ∈ R.

The analogue of Proposition 5.3 in the present context is:

Proposition 7.3. Let A be a closed linear operator defined on the Banach space X. Let {ak}k∈Z, {bk}k∈Z be 2-
regular sequences such that { bk

ak
} is bounded and {bk}k∈Z ⊂ ρ(A). Then the following assertions are equivalent:

(i) {ak(bk I − A)−1}k∈Z is a Bs
p,q-multiplier, 1 � p � ∞, 1 � q � ∞, s ∈ R;

(ii) {ak(bk I − A)−1}k∈Z is bounded.

Proof. Let Mk = ak(bk I − A)−1. By [6, Proposition 1.11], it follows that (i) implies (ii). We turn to (ii)
implies (i). The part corresponding to M-boundedness of order 1 is contained in Proposition 5.3. To
complete the verification of M-boundedness of order 2, we use the following identity

k2(Mk+1 − 2Mk + Mk−1) = k2(ak+1 − 2ak + ak−1)
1

ak+1
Mk+1

− 2k

[
ak − ak−1

ak

]
k

1

ak−1
(bk+1 − bk)Mk Mk−1

− k2 1

ak
(bk+1 − 2bk + bk−1)Mk Mk−1

+ 2k
1

ak+1
(bk+1 − bk)k

1

ak−1
(bk+1 − bk−1)Mk+1Mk Mk−1

− k
1

ak
(bk+1 − bk)k

1

ak+1
(bk+1 − bk−1)Mk+1Mk Mk−1. �

We remark that the case ak = bk was proved in [29, Proposition 3.4].
Next, we consider strong well-posedness for Eq. (1.1).

Definition 7.4. We say that problem (1.1) is strongly Bs
p,q well-posed if for each f ∈ Bs

p,q((0,2π); X)

there exists a unique function u ∈ Bs+1
p,q ((0,2π); X) ∩ Bs

p,q((0,2π); D(A)) and (1.1) is satisfied almost
everywhere.

As above, we call u the strong solution of (1.1). As in Section 5, in what follows we will assume
that (5.1) is valid. Strong well-posedness of (1.1) in the Bs

p,q spaces is established in the following
theorem.

Theorem 7.5. Let 1 � p,q � ∞, s ∈ R. Suppose that the sequences {ikμ̃(k) + ν̃(k)} and {η̃(k)} are 2-regular.
Then the following assertions are equivalent:
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(i) Problem (1.1) is strongly Bs
p,q well-posed;

(ii) { ikμ̃(k)+ν̃(k)

η̃(k)
} ⊆ ρ(A) and { k

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is a Bs

p,q-multiplier;

(iii) { ikμ̃(k)+ν̃(k)

η̃(k)
} ⊆ ρ(A) and { k

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is bounded.

Proof. The proof follows the same lines as the proof of Theorem 5.5 using Proposition 7.3 with ak = bk
instead of Corollary 5.4 and making use of the properties on M-boundedness of order 2 and 2-
regularity for sequences established in Sections 4 and 5. �
Example 7.6. In reference to Example 4.9 we consider the following integro-differential equation with
infinite delay studied in [28]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
γ0u′(t) + d

dt

( t∫
−∞

b(t − s)u(s)ds

)
+ γ∞u(t)

= c0 Au(t) −
t∫

−∞
a(t − s)Au(s)ds + f (t), 0 � t ∈ R,

(7.1)

where γ0, γ∞, c0 are constants and a(·),b(·) ∈ L1(R+). In [28], strong well-posedness on periodic
Besov spaces for Eq. (7.1) was characterized as in Theorem 7.5 (see [28, Theorem 3.12]) under a set of
conditions which we reformulate as:

(IDE1) { 1
c0−ã(k)

}k∈Z is a bounded sequence.

(IDE2) {ã(k)} and {b̃(k)} are M-bounded of order 2.

(IDE3) {kã(k)} and {kb̃(k)} are bounded sequences.

Eq. (7.1) is a special case of Eq. (1.1) corresponding to η = c0δ0 − a(t)χ[0,∞)(t), μ = γ0δ0 +
b(t)χ[0,∞)(t), ν = γ∞δ0 when we identify an L1 function with the associated measure. As a con-
sequence of Example 4.9 with ak = ã(k) and bk = b̃(k) one easily checks that Theorem 7.5 applies only
under c0 �= ã(k) for all k ∈ Z and (IDE2).

We observe here that the removal of condition (IDE3) is due to Proposition 7.3. As a consequence
the hypotheses are formulated entirely in terms of M-boundedness and n-regularity.

The particular case of Eq. (7.1) with γ∞ = 0 and c0 = γ∞ = 1 and b ≡ 0 was considered in [29,
Theorem 3.9]. From the above, we conclude that there, we only need the condition

{ak} is M-bounded of order 2 (7.2)

in order to have the characterization of strong well-posedness. It shows that the set of conditions
imposed in Theorem 7.5 is in some sense more natural, giving an improvement over the results in the
above mentioned papers.

In analogy to mild solutions in the L p case we proceed to define mild Bs
p,q solutions.

Definition 7.7. Let 1 � p,q � ∞ and s > 0. We say that the problem (1.1) is (Bs+1
p,q , Bs

p,q) mildly well-
posed if there exists a linear operator B that maps Bs

p,q((0,2π); X) continuously into itself as well as

Bs+1
p,q ((0,2π); X) ∩ Bs

p,q((0,2π); D(A)) into itself and which satisfies

ABu = B Au = u
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for all u ∈ Bs+1
p,q ((0,2π); X) ∩ Bs

p,q((0,2π); D(A)). In this case the function B f is called the

(Bs+1
p,q , Bs

p,q) mild solution of (1.1) and B the associated solution operator.

The following result follows directly from Proposition 7.3 and Theorem 4.6.

Theorem 7.8. Let 1 � p,q � ∞, s > 0 and X be a Banach space. Assume that D(A) = X and

η̃(k) is 2-regular and ikμ̃(k) + ν̃(k) is 2-regular and bounded. (7.3)

Then the following assertions are equivalent:

(i) Problem (1.1) is (Bs+1
p,q , Bs

p,q) mildly well-posed;

(ii) { ikμ̃(k)+ν̃(k)

η̃(k)
}k∈Z ⊆ ρ(A) and { 1

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is a Bs

p,q-multiplier;

(iii) { ikμ̃(k)+ν̃(k)

η̃(k)
}k∈Z ⊆ ρ(A) and { 1

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is bounded.

Remark 7.9. When the space X has nontrivial Fourier type, then due to Theorem 7.2(ii) the assump-
tions of M-boundedness of order 2 and 2-regularity in Theorems 7.5 and 7.8 can be replaced by
M-boundedness of order 1 and 1-regularity respectively.

8. Well-posedness on Triebel–Lizorkin spaces

In this section we study strong and mild well-posedness of problem (1.1) on the scale of Triebel–
Lizorkin spaces of vector-valued functions. The important feature in this case, as in the context of
Besov spaces, is that the results do not use R-boundedness but merely boundedness conditions on
resolvents. In concrete applications, one can therefore handle operators on familiar spaces X like
C(Ω), the Schauder spaces C s(Ω), 0 < s < 1, and L1(Ω) where Ω is a bounded open subset of Rn.

These spaces are not UMD, and are not even reflexive. The price to pay is that when p = 1 or q = 1
then one needs a Marcinkiewicz estimate of order 3 whereas, for the Besov scale, order 2 is enough.

We briefly recall the definition of periodic Triebel–Lizorkin spaces in the vector-valued case used
in [12]. For the scalar case, these spaces have been studied for a long time, see Triebel [38, Chapter II,
Section 9], Schmeisser and Triebel [34] and references therein. A vector-valued Fourier multiplier in
the Triebel–Lizorkin scale appears in [37, Chapter 3, Section 15.6].

Let S be the Schwartz space on R and let S ′ be the space of all tempered distributions on R. Let
Φ(R) be the set of all systems φ = {φ j} j�0 ⊂ S satisfying

supp(φ0) ⊂ [−2,2],
supp(φ j) ⊂ [−2 j+1,−2 j−1] ∪ [

2 j−1,2 j+1], j � 1,∑
j�0

φ j(t) = 1, t ∈ R,

and for α ∈ N ∪ {0}, there exists Cα > 0 such that

sup
j�0, x∈R

2α j
∥∥φ

(α)
j (x)

∥∥ � Cα. (8.1)

Recall that such a system can be obtained by choosing φ ∈ S(R) with

supp(φ0) ⊂ [−2,2]

and φ0(x) = 1 if ‖x‖ � 1, then setting φ1(x) = φ0(x/2) − φ0(x) and φ j(x) = φ1(2− j x), j � 2.
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Let 1 � p < ∞, 1 � q � ∞, s ∈ R and φ = (φ j) j�0 ∈ Φ(R). The X-valued periodic Triebel–Lizorkin
spaces are defined by

F s,φ
p,q =

{
f ∈ D′(T; X): ‖ f ‖

F s,φ
p,q

=
∥∥∥∥(∑

j�0

2sjq

∥∥∥∥∑
k∈Z

ek ⊗ φ j(k) f̂ (k)

∥∥∥∥q)1/q∥∥∥∥
p

< ∞
}
.

The usual modification is adopted when q = ∞.

Here (ek ⊗ x)(t) := eit x, t ∈ [0,2π ]. The space F s,φ
p,q is independent of φ ∈ Φ(R) and the norms

‖ · ‖
F s,φ

p,q
are equivalent. We will simply denote ‖ · ‖

F s,φ
p,q

by ‖ · ‖F s
p,q

.

We remark that when X is a Banach space, the scale of Triebel–Lizorkin spaces does not in gen-
eral contain the L p scale. In fact, the Littlewood–Paley assertions F 0

p,2((0,2π); X) = L p((0,2π); X),

1 < p < ∞ hold if and only if X can be renormed as a Hilbert space. This follows from [33]. In the
scalar case, the well-known assertions may be found in [37, Chapter 3, Section 10]. For the nonvalidity
of the Littlewood–Paley assertions in the vector-valued case, see also the introduction to [12].

Note that F s
p,p((0,2π); X) = Bs

p,p((0,2π); X) by a look at the definitions (for the scalar case
see [32]). This relation is true when X is the scalar field C (see [34, Remark 4, p. 164]). Using the
definitions of the spaces one easily sees that the relation remains true in the vector-valued case.

Definition 8.1. Let 1 � p < ∞. A sequence {Mk}k∈Z ⊂ B(X) is an F s
p,q-multiplier if, for each f ∈

F s
p,q((0,2π); X) there exists a function g ∈ F s

p,q((0,2π); X) such that

Mk f̂ (k) = ĝ(k), k ∈ Z.

The following multiplier theorem for periodic vector-valued Triebel–Lizorkin spaces is due to Bu
and Kim [12, Theorem 3.2 and Remark 3.4].

Theorem 8.2. Let X be a Banach space and suppose {Mk}k∈Z ⊂ B(X). Then the following assertions hold.

(1) Assume that {Mk}k∈Z is M-bounded of order 3. Then for 1 � p < ∞, 1 � q � ∞, s ∈ R, {Mk}k∈Z is an
F s

p,q-multiplier.
(2) Assume that {Mk}k∈Z is M-bounded of order 2. Then for 1 < p < ∞, 1 < q � ∞, s ∈ R, {Mk}k∈Z is an

F s
p,q-multiplier.

Remark 8.3. When p = q the assertion (1) of Theorem 8.2 holds true for {Mk}k∈Z M-bounded of
order 2. Moreover if X has nontrivial Fourier type, M-boundedness of order 1 suffices. This follows
from the relation F s

p,p((0,2π); X) = Bs
p,p((0,2π); X) and [5, Theorems 4.2 and 4.5] (see also [22]) or

simply Theorem 7.2.

The following result was proved in [10, Theorem 2.2].

Proposition 8.4. Let X be a Banach space and A a closed linear operator defined on X. Let {bk}k∈Z be a
3-regular sequence such that {bk}k∈Z ⊂ ρ(A). Then the following assertions are equivalent:

(i) {bk(bk I − A)−1}k∈Z is an F s
p,q-multiplier, 1 � p � ∞, 1 � q < ∞, s ∈ R;

(ii) {bk(bk I − A)−1}k∈Z is bounded.

In case p = q the same observations as in Remark 8.3 allow us to relax the hypotheses of Proposi-
tion 8.4. More specifically, in this case, it is enough to assume that {bk}k∈Z is 2-regular. Moreover if X
has nontrivial Fourier type, the assumption that {bk}k∈Z is 1-regular suffices to ensure the conclusion.
This again follows from Theorem 7.2 and the relation F s

p,p((0,2π); X) = Bs
p,p((0,2π); X). A similar

remark holds for Proposition 8.5 and Theorem 8.7 below.
We have the following extension of this result (in analogy to Propositions 5.3 and 7.3).
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Proposition 8.5. Let X be a Banach space and A a closed linear operator defined on X. Let {ak}k∈Z, {bk}k∈Z be
3-regular sequences such that {bk}k∈Z ⊂ ρ(A). Suppose that {bk/ak} is bounded. Then the following assertions
are equivalent:

(i) {ak(bk I − A)−1}k∈Z is an F s
p,q-multiplier, 1 � p � ∞, 1 � q < ∞, s ∈ R;

(ii) {ak(bk I − A)−1}k∈Z is bounded.

Proof. Let Mk = ak(bk − A)−1 and Nk = bk(bk − A)−1. Note that Nk = bk
ak

Mk. Since by hypothesis {Mk}
and {bk/ak} are bounded, we obtain that {Nk}k∈Z is bounded.

From the proofs of Propositions 5.3 and 7.3 we obtain that

sup
k∈Z

‖Mk‖ < ∞, sup
k∈Z

∥∥k�(Mk)
∥∥ < ∞ and sup

k∈Z

∥∥k2�2(Mk)
∥∥ < ∞.

Hence in order to prove that {Mk} is M-bounded of order 3, we need only check that
sup{‖k3�3(Mk)‖: k ∈ Z} < ∞. In fact, from the proof of Theorem 3.3 part (iii) (writing Nk = bk

ak
Mk ,

k ∈ Z), we have that

�3(Mk) = �3
(

ak

bk
Nk

)

= �3
(

ak

bk

)
Nk+3 + �2

(
ak

bk

)[
�(Nk+2) + �(Nk+1) + �(Nk)

]
+ �3(Nk)

ak+2

bk+2
+ 2�

(
ak+1

bk+1

)
�2(Nk) + �

(
ak+1

bk+1

)
�2(Nk+1),

where each term in the right-hand side of the above identity can be handled separately as follows:

�3
(

ak

bk

)
Nk+3 = �3(ak/bk)

ak+2/bk+2

bk+3

bk+2

ak+2

ak+3
Mk+3,

�2
(

ak

bk

)
�(Nk+2) = �2(ak/bk)

ak+1/bk+1

[
�(bk+2)

bk+1

ak+1

ak+3
Mk+3 − bk+3

bk+1

ak+1

ak+3

bk+2

ak+2
Mk+3

�(bk+2)

bk+3
Mk+2

]
,

�2
(

ak

bk

)
�(Nk+1) = �2(ak/bk)

ak+1/bk+1

[
�(bk+1)

bk+1

ak+1

ak+2
Mk+2 − bk+2

ak+2
Mk+2

�(bk+1)

bk+2
Mk+1

]
,

�2
(

ak

bk

)
�(Nk) = �2(ak/bk)

ak+1/bk+1

[
�(bk)

bk+1
Mk+1 − bk

ak
Mk+1

�(bk)

bk+1
Mk

]
,

�3(Nk)
ak+2

bk+2
= −�3(bk)

bk+2
Mk+2(Nk+1 − I)

+ �2(bk+1)

bk+2

�(bk+2) + �(bk+1) + �(bk)

bk+3
Mk+2Nk+3(Nk+1 − I)

+ �2(bk)

bk+2

�(bk+2) + �(bk+1) + �(bk)

bk+3
Mk+2Nk+3(Nk − I)

− 2
�(bk)

b

�(bk+1)

b

�(bk+2) + �(bk+1) + �(bk)

b
Nk+1Mk+2Nk+3(Nk − I),
k+1 k+2 k+3
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�

(
ak+1

bk+1

)
�2(Nk) = �(ak+1/bk+1)

ak+1/bk+1

�(bk)

bk

�(bk+1) + �(bk)

bk+1
Mk+1Nk(Nk+2 − I)

− �(ak+1/bk+1)

ak+1/bk+1

�2(bk)

bk+1
Mk+1(Nk+2 − I),

�

(
ak+1

bk+1

)
�2(Nk+1) = �(ak+1/bk+1)

ak+1/bk+1

�(bk+1)

bk+1

�(bk+2) + �(bk+1)

bk+2
Nk+2Mk+1(Nk+3 − I)

− �(ak+1/bk+1)

ak+1/bk+1

bk+2

bk+1

ak+1

ak+2

�2(bk+1)

bk+2
Mk+2(Nk+3 − I).

Then a moment of reflection shows that the assertion follows from the hypothesis and Theorem 4.6
(see also the observation after Definition 4.1). �
Definition 8.6. We say that the problem (1.1) is strongly F s

p,q well-posed if for each f ∈ F s
p,q((0,2π); X)

there exists u ∈ F s+1
p,q ((0,2π); X) ∩ F s

p,q((0,2π); D(A)) such that (1.1) is satisfied.

We now discuss the conditions on the parameters appearing in Eq. (1.1) which ensure that the
above theorem applies. As in Section 5, we assume that (5.1) is valid.

Theorem 8.7. Let 1 � p < ∞, 1 � q � ∞, s ∈ R. Suppose that the sequences {ikμ̃(k) + ν̃(k)} and {η̃(k)} are
3-regular. Then the following assertions are equivalent:

(i) Problem (1.1) is strongly F s
p,q well-posed;

(ii) { ikμ̃(k)+ν̃(k)

η̃(k)
} ⊆ ρ(A) and { ik

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is an F s

p,q-multiplier;

(iii) { ikμ̃(k)+ν̃(k)

η̃(k)
} ⊆ ρ(A) and { ik

η̃(k)
(

ikμ̃(k)+ν̃(k)

η̃(k)
− A)−1} is bounded.

Proof. (ii) ⇔ (iii) The assertion follows from hypothesis, Remark 4.7 and Proposition 8.5. The equiva-
lence (ii) ⇔ (iii) is shown in the same way as the analogous parts of Theorems 7.5 and 5.5. �

Due to Theorem 8.2(2) we note that when p > 1, the requirement can be relaxed to 2-regularity
for the sequences {ikμ̃(k) + ν̃(k)} and {η̃(k)}.

Finally, we observe that one can study mild solutions in this context as well.

9. Application to nonlinear equations

In this section, we apply the above results to nonlinear equations in Banach and Hilbert spaces.
We consider three situations where equations can be solved by the method of maximal regularity.
One corresponds to Theorem 9.1 in which one deals with a semi-linear problem. Such problem was
previously considered in [28] in Hölder spaces. We cover here the complete scale of Lebesgue, Besov
and Triebel–Lizorkin spaces. The second application uses a method based on [16, Theorem 4.1] to
solve a nonlinear integro-differential equation. The third application is concerned with semi-linear
equations in Hilbert spaces (Theorem 9.6) corresponds to an extension of Staffans [36]. One of the
main assumptions made in Theorem 9.6 below is that A has compact resolvent. Typically, this oc-
curs in problems involving elliptic operators on bounded domains in Rn with appropriate boundary
conditions. Such equations arise in heat conduction of materials with memory.
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As already indicated, linear results on maximal regularity are very useful in dealing with nonlinear
problems. For example the following problem was considered in [28,35]:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d

dt

(
γ0u(t, x) +

t∫
−∞

b(t − s)u(s, x)ds

)
+ γ∞u(t, x)

= c0�u(t, x) −
t∫

−∞
a(t − s)Au(s)ds + g

(
x, u(t, x)

) + f (t, x), x ∈ Ω.

(9.1)

Here, Ω ⊂ Rn is open and bounded, and � = ∑n
j=1

∂

∂x2
j

is the Laplace operator with Dirichlet bound-

ary conditions on X = C(Ω). The positive constants γ0 and c0 represent the heat capacity and the
thermal conductivity respectively, for the material under study (see e.g. [35] where Hölder continuous
solutions on the real line are considered).

Let X be a Banach space and μ,ν,η be bounded measures. We shall say that a closed linear
operator A belongs to the class K(X) if

{
ikμ̃(k) + ν̃(k)

η̃(k)

}
k∈Z

⊆ ρ(A) and sup
k∈Z

∥∥∥∥ ik

η̃(k)

(
ikμ̃(k) + ν̃(k)

η̃(k)
− A

)−1∥∥∥∥ < ∞. (9.2)

On the other hand, we say that A belongs to the class K R(X) if

{
ikμ̃(k) + ν̃(k)

η̃(k)

}
k∈Z

⊆ ρ(A) and

{
ik

η̃(k)

(
ikμ̃(k) + ν̃(k)

η̃(k)
− A

)−1}
k∈Z

is R-bounded. (9.3)

Given m ∈ {1,2,3}, we will say that μ,ν,η are m-admissible if the sequences {ikμ̃(k) + ν̃(k)} and
{η̃(k)} are m-regular, and η is a finite scalar-valued measure on R such that (5.1) is valid.

We consider the semi-linear problem:

(μ ∗ u′)(t) + (ν ∗ u)(t) − (η ∗ Au)(t) = G(u)(t) + ρ f (t), 0 � t � 2π, (9.4)

with periodic boundary conditions. Here ρ > 0 is a small parameter and G is a nonlinear mapping.
Suppose a ∈ L1(R) and b ∈ W 1,1(R). Note that Eq. (9.1) with periodic boundary conditions

corresponds to problem (9.4), where we have μ = γ0δ0, ν = (γ∞ + b(0))δ0 + b′(t)χ[0,∞)(t) and
η = −c0δ0 + a(t)χ[0,∞)(t). By Theorem 4.6 it follows that under the hypothesis of n-regularity of
ã(k) and b̃(k) we have that μ,η,ν are n-admissible (n = 1,2,3). In such case, for example condition
(9.2) reads as

{dk}k∈Z ⊆ ρ(�) and sup
k∈Z

∥∥∥∥ ik

ã(k) − c0
(dk − �)−1

∥∥∥∥ < ∞, (9.5)

where dk := ik(γ0+b̃(k))+(γ∞+b(0))

ã(k)−c0
.

The following result deals with the general situation.

Theorem 9.1. Let X be a UMD space and suppose A ∈ K R(X); μ,η,ν are 1-admissible. Furthermore, assume
that 1 < p < ∞ and

(i) G maps H1
p((0,2π); X) ∩ L p((0,2π); D(A)) into L p((0,2π); X) and f ∈ L p((0,2π); X);

(ii) G(0) = 0; G is continuously (Fréchet) differentiable at u = 0 and G ′(0) = 0.
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Then there exists ρ∗ > 0 such that Eq. (9.4) is solvable for each ρ ∈ [0,ρ∗), with solution u = uρ ∈
L p((0,2π); X).

Proof. Define the operator L0 : H1
p((0,2π); X) ∩ L p((0,2π); D(A)) → L p((0,2π); X) where as usual,

D(A) is endowed with the graph norm, by

(L0u)(t) = (μ ∗ u′)(t) + (ν ∗ u)(t) − (η ∗ Au)(t). (9.6)

Since A is closed, the space Z := H1
p((0,2π); X)∩ L p((0,2π); D(A)) becomes a Banach space with

the norm

‖u‖Z = ‖u‖p + ‖u′‖p + ‖Au‖p . (9.7)

By hypothesis and Theorem 5.5 it follows that L0 is an isomorphism onto. We consider for ρ ∈ (0,1),

the one-parameter family of problems:

H[u,ρ] = −L0u + G(u) + ρ f = 0. (9.8)

Keeping in mind that G(0) = 0, we see that H[0,0] = 0. Also, by hypothesis, H is continuously
differentiable at (0,0). Since L0 is an isomorphism, the partial Fréchet derivative H1

(0,0) = L0 is in-
vertible. The conclusion of the theorem now follows from the implicit function theorem (see [21,
Theorem 17.6]). �
Remark 9.2. When X is an arbitrary Banach space, an analogous result holds for the cases Besov or
Triebel–Lizorkin spaces. In such cases we have to assume for the kernels μ,η,ν the hypothesis of 2
or 3 admissibility, respectively.

Specifically, for the Besov case, we have

Theorem 9.3. Let 1 � p,q � ∞ and set s > 0. Let X be a Banach space and suppose A ∈ K(X) and μ,η,ν
are 2-admissible. Assume that

(i) G maps Bs
p,q((0,2π); X) ∩ Bs+1

p,q ((0,2π); D(A)) into Bs
p,q((0,2π); X) and f ∈ Bs

p,q((0,2π); X);
(ii) G(0) = 0; G is continuously (Fréchet) differentiable at u = 0 and G ′(0) = 0.

Then there exists ρ∗ > 0 such that Eq. (9.4) is solvable for each ρ ∈ [0,ρ∗), with solution u = uρ ∈
Bs

p,q((0,2π); X).

Let a ∈ R \ {0}, 0 < α < 1 and b ∈ L1(R, |t|α dt) ∩ L1
loc(R). Let D be a Banach space continuously

embedded in X and let G : D → X be a nonlinear mapping. Let g ∈ Cα((0,2π); X). We consider next
the following nonlinear integral equation:

u(t) =
t∫

−∞
b(t − s)

(
G
(
u(s)

) + g(s)
)

ds + aG
(
u(t)

) + ag(t), t � 0, (9.9)

with the boundary condition u(0) = u(2π). In case a = 0, existence and regularity of solutions for
Eq. (9.9) (on the line), in several vector-valued spaces, has been studied in [16] under the assumption
that A := G ′(0) generates an analytic semigroup.
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Define T : Cα((0,2π); X) → Cα((0,2π); X) by

T (v) = η ∗ v, (9.10)

where η = b(t)χ[0,∞)(t) + aδ0 (we identify an L1 function with the associated measure).

Proposition 9.4. Suppose {b̃(k)}k∈Z is 2-regular and b̃(k) + a �= 0 for all k ∈ Z. Then T defined as above is an
isomorphism of Cα((0,2π); X).

Proof. Suppose T (v) = 0. By (2.1) we have, for all k ∈ Z

T̂ (v) = η̂ ∗ v(k) = η̃(k)v̂(k) = (
b̃(k) + a

)
v̂(k) = 0.

Then v̂(k) = 0 for all k ∈ Z, i.e. v = 0. Note that b ∈ L1(R) and thus, by the Riemann–Lebesgue lemma,
we have lim|s|→∞ b̃(s) = 0.

Define Mk = 1
b̃(k)+a

I . Let k ∈ N. It is not difficult to see, using the results of Section 4 (specifically

Proposition 4.2 and Theorem 4.6), that (Mk) is M-bounded of order 2 if {b̃(k)}k∈Z is 2-regular. In
particular, it follows from Theorem 7.2 that (Mk) is a Cα-multiplier. Let f ∈ Cα((0,2π); X). Then
there exists u ∈ Cα((0,2π); X) such that û(k) = Mk f̂ (k) = 1

b̃(k)+a
f̂ (k), for all k ∈ Z. This proves that

u ∈ Cα((0,2π); X) satisfies T (u) = f . �
Other conditions under which T defined as above is an isomorphism (in case a = 0) have been

studied in [16, Proposition 2.1].

Theorem 9.5. Suppose that T is an isomorphism and G : D → X is continuously (Fréchet) differentiable
with G(0) = 0. Let A := G ′(0) and assume that A is a closed operator with domain D(A) = D dense
in X. Suppose moreover that A ∈ K(X) and {b̃(k)}k∈Z is 2-regular. Then there exist r > 0, s > 0 such that
for each g ∈ Cα((0,2π); X) satisfying ‖g‖α < r Eq. (9.9) has a unique solution u ∈ Cα+1((0,2π); X) ∩
Cα((0,2π); D(A)) verifying the estimate

‖u‖Cα+1((0,2π);X) + ‖u‖Cα((0,2π);D(A)) � s.

Proof. Define the mapping F : Cα+1((0,2π); X) ∩ Cα((0,2π); D(A)) → Cα((0,2π); X) by

F (u)(t) = T −1(u)(t) − G
(
u(t)

)
,

where T is defined by (9.10).
Since T is an isomorphism, we see that Eq. (9.9) is equivalent to

F (u) = g. (9.11)

Note that by hypothesis, F is continuously differentiable, F (0) = 0 and

F ′(u)v = T −1 v − G ′(u)v (9.12)

for all u, v ∈ Cα+1((0,2π); X) ∩ Cα((0,2π); D(A)). Then F ′(0)v = T −1 v − Av. Consider the linear
problem

v(t) =
t∫

c(t − s)Av(s)ds + aAu(t) +
t∫

c(t − s)g(s)ds + ag(t) = (η ∗ Av)(t) + T (g)(t). (9.13)
−∞ −∞
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Note that (9.13) is of the form (1.1) with μ = 0, ν = δ0 and η = b(t)χ[0,∞)(t)+aδ0 and f (t) = T (g)(t).

Since the sequence (b̃(k)) is 2-regular and A ∈ K(X), that is,

{
1

b̃(k) + a

}
k∈Z

⊆ ρ(A) and sup
k∈Z

∥∥∥∥ ik

b̃(k) + a

(
1

b̃(k) + a
I − A

)−1∥∥∥∥ < ∞, (9.14)

we conclude by Theorem 7.5 that Eq. (9.13) is Cα-well-posed. We next prove that F ′(0) is an
isomorphism from Cα+1((0,2π); X) ∩ Cα((0,2π); D(A)) to Cα((0,2π); X). In fact, for f = T (g) ∈
Cα((0,2π); X) there exists a unique v ∈ Cα+1((0,2π); X) ∩ Cα((0,2π); D(A)) such that (9.13) is sat-
isfied, that is F ′(0)v = T −1 v − Av = f . This shows that F ′(0) is onto. Suppose F ′(0)v = 0. Then
v(t) = (η ∗ Av)(t). By uniqueness, v = 0. Hence, F ′(0) is injective, proving the claim. The conclusion
of Theorem 9.5 is now a direct consequence of the implicit function theorem. �

In the next application, we consider semi-linear equations in Hilbert space associated with opera-
tors with compact resolvent. Let H be a Hilbert space. We consider the problem:

(μ ∗ u′)(t) + (ν ∗ u)(t) − (η ∗ Au)(t) = G(u)(t), t ∈ [0,2π ], (9.15)

where G is a nonlinear function that maps L2((0,2π); H) into L2((0,2π); H).
We define the bounded linear operator

B : L2((0,2π); H
) → H1

2

(
(0,2π); H

) ∩ L2((0,2π); D(A)
)

by B(g) = u where u is the unique solution of the linear problem

(μ ∗ u′)(t) + (ν ∗ u)(t) − (η ∗ Au)(t) = g(t), t ∈ [0,2π ].

Observe that B is well defined due to Theorem 5.5. Also, B is a bounded operator regarded as an
operator from L2((0,2π); H) into itself (cf. Corollary 5.6).

We assume that for some M > 0,

sup
‖u‖�M

∥∥G(u)
∥∥

L2((0,2π);H)
� M/‖B‖, (9.16)

then one proves the following result.

Theorem 9.6. Let H be a Hilbert space, and suppose A ∈ K(H) and μ,η,ν are 1-admissible measures.
Assume that the unit ball of D(A) is compact in H. Let G be a continuous mapping of L2((0,2π); H) into
itself, and such that (9.16) holds. Then Eq. (9.15) has a solution u ∈ H1

2((0,2π); H) ∩ L2((0,2π); D(A)) such
that (9.15) is satisfied, with ‖u‖L2((0,2π);H) � M.

Proof. Define dk := ikμ̃(k)+ν̃(k)

η̃(k)
and ck := 1

η̃(k)
. Since A ∈ K(H), for each K ∈ N we can define operators

B K : L2((0,2π); H) → L2((0,2π); H) by

(B K g)(t) =
K∑

k=−K

ck R(dk, A)ĝ(k)eikt, 0 � t � 2π. (9.17)

Since the unit ball of D(A) is compact in H we have that R(dk, A) is compact for all k ∈ Z. Hence
for each K , the operator B K is a finite sum of compact operators, hence compact. Now, because
of (9.2), as K → ∞, B K converges in norm to B, so B is compact.
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Define H : L2((0,2π); H) → H1
2((0,2π); H) ∩ L2((0,2π); D(A)) by H(u) = B(G(u)). Let E := {u ∈

L2((0,2π); H): ‖u‖ � M} be the closed ball of radius M centered at the origin in L2((0,2π); H).

Owing to (9.16) we have H : E → E and H is compact. Hence the conclusion of the theorem is
achieved by applying Schauder’s fixed point theorem to the operator H in E . �

Of course, if H is finite-dimensional, then the assumption that the unit ball of D(A) is compact
in H is redundant.

We remark that in [36, Theorem 6.1] the additional condition supk∈Z ‖ 1
η̃(k)

A(
ikμ̃(k)+ν̃(k)

η̃(k)
−

A)−1‖ < ∞ was required. Instead, we require admissibility of the kernels μ,ν and η only.
We end this paper with the following application of Theorem 9.6. Let us consider the equation

u′(t) − M(η ∗ u)(t) = f (t), t ∈ [0,2π ], (9.18)

where f ∈ L2((0,2π);Cn) and η is a finite, scalar-valued measure and M is an n × n matrix.
Eq. (9.18) corresponds to a particular case of an integro-differential equation studied in [24, Theo-

rem 3.11, p. 87]. There it was proved that Eq. (9.18) has a unique solution in the same space as f if
and only if det[ikI − η̃(k)M] �= 0 for all k ∈ Z. Here we are interested in solutions of the semi-linear
version:

u′(t) − M(η ∗ u)(t) = G(u)(t), t ∈ [0,2π ].

To recast (9.18) in the form of Eq. (1.1) we make μ = δ0 and ν = 0 and A = M. Then Theorem 5.5
gives that, provided {η̃(k)} is 1-regular and {1/η̃(k)} is bounded, there exists a unique solution u ∈
H1

2((0,2π);Cn) if and only if det[ikI − η̃(k)M] �= 0 for all k ∈ Z and

sup
k∈Z

∥∥∥∥ ik

η̃(k)

(
ik

η̃(k)
− M

)−1∥∥∥∥ < ∞. (9.19)

Observe that condition (9.19) is always satisfied (since ik
η̃(k)

→ ∞ as |k| → ∞). We note that the con-

dition of 1-regularity of η̃(k), or equivalently 1-regularity of ζ̃ (k), is satisfied by the class of functions
ζ ∈ W 1,1(R+). This follows from [28, Remark 3.5].

The foregoing comments, together with Theorem 9.6, lead to the following corollary.

Corollary 9.7. Assume that

(i) det[ikI − η̃(k)M] �= 0 for all k ∈ Z,
(ii) {η̃(k)} is a 1-regular sequence, where η = aδ0 + ζ , a �= 0,

(iii) G is a continuous mapping of L2((0,2π);Cn) into itself, and there exists δ > 0 such that

2π∫
0

∥∥G(φ)(s)
∥∥2

ds � δ2

whenever φ ∈ L2((0,2π);Cn) satisfies

2π∫
0

∥∥φ(s)
∥∥2

ds � ‖B‖2δ2.
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Then there exists a solution u ∈ H1
2((0,2π);Cn) of the equation

u′(t) − K (η ∗ u)(t) = G(u)(t), t ∈ [0,2π ],

satisfying
∫ 2π

0 ‖u(s)‖2 ds � ‖B‖2δ2.
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