Procedia

The Convergence Rate of Multidimensional Density Kernel Estimation with Bootstrap

Dewang Li ${ }^{\mathrm{a}^{*}}$, Meilan Qiu ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Hechi University, Yizhou Guangxi, 546300, China.

Abstract

There have important applications of density kernel estimation in statistics. In certain conditions, we obtain the convergence rate of multidimensional density kernel estimation by exploiting Bootstrap.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Kunming University of Science and Technology Open access under CC BY-NC-ND license.

Keyword: Bootstrap, multidimensional probability density, kernel estimation, convergence rate.

1. Introduction

In 1979, Efron proposed a re-sampling procedure, called Bootstrap [1]. By using this method, we resample the empirical distribution of samples at random, and get Bootstrap sub-samples. Then, we reestimate the amount of statistics. In this paper, basing on references [2-3], we study the Bootstrap convergence rate of multidimensional density kernel estimation. Let X be a d-dimensional random variable, X_{1}, \cdots, X_{n} be the sample of X. Suppose that $F_{n}(X)$ is the empirical distribution function based on following samples X_{1}, \cdots, X_{n} which with observed values $x_{1}, \cdots, x_{n}, X_{1}^{*}, \cdots, X_{n}^{*}$ are independent identically distributed samples deriving from $F_{n}(X)$. The kernel estimates $f(X)$ about

[^0]probability density function of X defined as $f_{n}(X)=\frac{1}{n h^{d} \operatorname{det}(S)^{1 / 2}} \sum_{i=1}^{n} K\left[\frac{\left(X-X_{i}\right)^{T} S^{-1}\left(X-X_{i}\right)}{h^{2}}\right]$. Where $X=\left(X_{1}, \cdots, X_{d}\right)^{T}, X_{i}=\left(X_{i 1}, \cdots X_{i d}\right)^{T}(i=1, \cdots, n), K(\cdot)$ is a given probability density kernel function, h is a bandwidth coefficient, n is the sample capability, S denotes the symmetric sample covariance matrix for $d \times d$-dimension. $f_{n}^{*}(X)=\frac{1}{n h^{d} \operatorname{det}(S)^{1 / 2}} \sum_{i=1}^{n} K\left[\frac{\left(X-X_{i}^{*}\right)^{T} S^{-1}\left(X-X_{i}^{*}\right)}{h^{2}}\right]$ is estimated by $f(X)$ with Bootstrap.

2 Main results

Theorem If $K(u)$ and $f(X)$ satisfy the following conditions:
a) $f(X) \neq 0, f^{\prime \prime}(X)$ is continuous around everywhere and bounded at R^{d};
b) $K(u)$ is the probability density function which is bounded at R^{d}, and $\int_{R^{d}} u K(u) d u=0$,

$$
\int_{R^{d}} u^{2} K(u) d u<+\infty ;
$$

c) $\lim _{|u| \rightarrow \infty}|u K(u)|=0$ or $f(X)$ is bounded from above on R^{d};
d) $h=\left(\frac{(\log n)^{1 / 2}}{n}\right)^{\frac{1}{d(1+\lambda)}}, \lim _{n \leftarrow \infty} n h^{d}=+\infty, \lim _{n \rightarrow \infty} \frac{\log n}{n h^{d}}=0$.

Then if $n \rightarrow+\infty$, there is

$$
\begin{aligned}
& \left\|P^{*}\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}^{*}(X)-f_{n}(X)\right) \leq Z\right\}-P\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}(X)-f(X)\right) \leq Z\right\}\right\|_{\infty} \\
& =o\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{\frac{\lambda}{n^{2 d(1+\lambda)}}} M_{n}\right), \text { a.s. }
\end{aligned}
$$

3 Several Lemmas

Almost the same as in Chen -Fang[4], we can get the following lemmas.
Lemma 1 If $K(u)$ and $f(X)$ satisfy the parts b), c) of Theorem1, and let

$$
\begin{array}{r}
g_{n}(X)=\frac{1}{h^{d} \operatorname{det}(S)^{1 / 2}} \int_{R^{d}} K^{j}\left[\frac{\left(X-u_{i}\right)^{T} S^{-1}\left(X-u_{i}\right)}{h^{2}}\right] f(u) d u \text {, then we have } \\
\lim _{n \rightarrow \infty} g_{n}(X)=f(X) \int_{R^{d}} K^{j}(u) d u, \mathrm{j}=1,2,3 .
\end{array}
$$

Lemma 2 If $K(u)$ and $f(X)$ satisfy the parts b), c), d) of Theorem1, then if $n \rightarrow+\infty$, there have

$$
\sqrt{n h^{d} \operatorname{det}(S)^{1 / 2}}\left(E f_{n}(X)-f(X)\right) \rightarrow 0
$$

Lemma 3 If $K(u)$ and $f(X)$ satisfy the parts b), c), d) of Theorem1, and X is the continuous point of $f(X)$, we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n h^{d} \operatorname{det}(S)^{1 / 2}} \sum_{i=1}^{n} K^{j}\left[\frac{\left(X-X_{i}\right)^{T} S^{-1}\left(X-X_{i}\right)}{h^{2}}\right]=f(X) \int_{R^{d}} K^{j}(u) d u, \quad(\mathrm{j}=2,3) .
$$

Lemma 4 For $p>0$, there have[5]
(1) $\sup _{x}|\Phi(x+q)-\Phi(x)| \leq \frac{|q|}{\sqrt{2 \pi}}$,
(2) $\sup _{x}|\Phi(p x)-\Phi(x)| \leq \frac{1}{\sqrt{2 \pi e}}\left\{p-1\left|+\left|p^{-1}-1\right|\right\}\right.$.

Lemma 5 If $K(u)$ and $f(X)$ satisfy the parts a),b), c), d) of Theorem1, there have[3]

$$
\sup _{z}\left|P\left\{\frac{\sqrt{n h^{d} \operatorname{det}(S)^{1 / 2}}\left(f_{n}(X)-f(X)\right)}{\left(f(X) \int_{R^{d}} K^{2}(u) d u\right)^{1 / 2}} \leq Z\right\}-\Phi(Z)\right| \rightarrow 0 \text {, where } \Phi(Z) \text { is the standard normal }
$$ distribution function.

4 Proofs of Theorem

Proof. Note that $V=\frac{\left(X-X_{i}\right)^{T} S^{-1}\left(X-X_{i}\right)}{h^{2}}, V^{*}=\frac{\left(X-X_{i}^{*}\right)^{T} S^{-1}\left(X-X_{i}^{*}\right)}{h^{2}}$, denote $\sup _{z}| |$ by $\left\|\|_{\infty}\right.$. $\left\|P^{*}\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}^{*}(X)-f_{n}(X)\right) \leq Z\right\}-P\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}(X)-f(X)\right) \leq Z\right\}\right\|_{\infty}$

$$
\begin{aligned}
\leq & \left\|P^{*}\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}^{*}(X)-f_{n}(X)\right) \leq Z\right\}-\Phi\left(\frac{Z}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}}\right)\right\|_{\infty} \\
& +\| P\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}(X)-E f_{n}(X)\right) \leq Z+\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f(X)-E f_{n}(X)\right)\right\}
\end{aligned}
$$

$$
-\Phi\left(\frac{Z+\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f(X)-E f_{n}(X)\right)}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}} \|_{\infty}\right.
$$

$$
+\left\|\Phi\left(\frac{Z}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}}\right)-\Phi\left(\frac{Z+\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f(X)-E f_{n}(X)\right)}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}}\right)\right\|_{\infty}
$$

$$
\begin{equation*}
\hat{=} L_{1}+L_{2}+L_{3} . \tag{1}
\end{equation*}
$$

Almost analogy the same proof of I_{1} as Lemma 5, we obtain

$$
\begin{equation*}
L_{1}=\mathrm{O}\left(\left(n h^{d} \operatorname{det}(s)^{1 / 2}\right)^{-1 / 2}\right) \quad \text { a.s. } \tag{2}
\end{equation*}
$$

Almost analogy the same proof of $J_{1 n}$ as Lemma 5, we obtain

$$
\begin{equation*}
L_{2}=\mathrm{O}\left(\left(n h^{d} \operatorname{det}(s)^{1 / 2}\right)^{-1 / 2}\right) \quad \text { a.s. } \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
L_{3} \leq & \left\|\left(\frac{Z}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}}\right)-\Phi\left(\frac{Z}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]\right)^{1 / 2}}\right)\right\|_{\infty} \\
& +\left\|\left(\frac{Z}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]\right)^{1 / 2}}\right)-\Phi\left(\frac{Z+\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f(X)-E f_{n}(X)\right)}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}}\right)\right\|_{\infty}
\end{aligned}
$$

$$
\begin{equation*}
\hat{=} L_{3}^{(1)}+L_{3}^{(2)} \tag{4}
\end{equation*}
$$

By Lemma 4, we have

$$
\begin{align*}
& L_{3}^{(1)} \leq \frac{1}{\sqrt{2 \pi e}}\left|\left(\frac{\operatorname{Var} K[V]}{\operatorname{Var}^{*} K\left[V^{*}\right]}\right)^{1 / 2}-1\right|+\frac{1}{\sqrt{2 \pi e}}\left|\left(\frac{\operatorname{Var}^{*} K\left[V^{*}\right]}{\operatorname{Var} K[V]}\right)^{1 / 2}-1\right| \\
& =\frac{1}{\sqrt{2 \pi e}}\left\{\frac{1}{\left(\frac{h^{d} \operatorname{det}(s)^{1 / 2}}{\operatorname{Var}^{*} K\left[V^{*}\right]}\right]-\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]} \operatorname{Var}^{*} K\left[V^{*}\right]\right)^{1 / 2}\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]\right)^{1 / 2} \tag{5}
\end{align*} .
$$

With marks $b_{n}(X), a_{n}(X)$
$\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]=b_{n}^{2}(X) \rightarrow f(X) \int_{R^{d}} K^{2}(u) d u$, a.s.
$\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]=a_{n}^{2}(X) \rightarrow f(X) \int_{R^{d}} K^{2}(u) d u$, a.s.
Since $K(u)$ is bounded on R^{d}, there exist a constant $M>0$, which satisfy $|K(u)| \leq M$,
$\left|\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var}^{*} K\left[V^{*}\right]-\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]\right|$
$\leq\left|\frac{1}{n h^{d} \operatorname{det}(s)^{1 / 2}} \sum_{i=1}^{n}\left(K^{2}[V]-E K^{2}[V]\right)\right|+2 M\left|\frac{1}{n h^{d} \operatorname{det}(s)^{1 / 2}} \sum_{i=1}^{n}(K[V]-E K[V])\right|$.
For $h=\left(\frac{(\log n)^{1 / 2}}{n}\right)^{\frac{1}{d(1+\lambda)}}$, by the inequality of Bernstein, there is

$$
\sum_{n=N}^{\infty} P\left\{\left|\frac{1}{n h^{d} \operatorname{det}(s)^{1 / 2}} \sum_{i=1}^{n}\left(K^{2}[V]-E K^{2}[V]\right)\right| \geq \varepsilon\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{1 d(1+\lambda)}}}{\frac{\lambda}{n^{2 d(1+\lambda)}}} M_{n}\right)\right\}<+\infty
$$

Therefore, by the lemma of Borel-Cantelli, we get

$$
\begin{align*}
& \left|\frac{1}{n h^{d} \operatorname{det}(s)^{1 / 2}} \sum_{i=1}^{n}\left(K^{2}[V]-E K^{2}[V]\right)\right| \\
& =o\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{n^{\frac{\lambda}{2 d(1+\lambda)}}} M_{n}\right), \text { a.s. } \tag{6}
\end{align*}
$$

The same proof as above, we get

$$
\begin{align*}
& \left|\frac{1}{n h^{d} \operatorname{det}(s)^{1 / 2}} \sum_{i=1}^{n}(K[V]-E K[V])\right| \\
& =o\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{n^{\frac{\lambda}{2 d(1+\lambda)}}} M_{n}\right), \text { a.s. } \tag{7}
\end{align*}
$$

Combining with (5) (6) and (7), we have

$$
\begin{equation*}
L_{3}^{(1)}=o\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{n^{\frac{\lambda}{2 d(1+\lambda)}}} M_{n}\right), \text { a.s. } \tag{8}
\end{equation*}
$$

By Lemma 4, we have

$$
\begin{aligned}
& L_{3}^{(2)} \leq \frac{1}{\sqrt{2 \pi}} \frac{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left|f(X)-E f_{n}(X)\right|}{\left(\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{VarK}[V]\right)^{1 / 2}}, \\
& \left|f(X)-E f_{n}(X)\right| \\
& =\left|f(X)-\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \int_{R^{d}} K\left[\frac{(X-u)^{T} S^{-1}(X-u)}{h^{2}}\right] f(u) d u\right| \\
& \leq C h^{d \lambda} \int_{R^{d}}|v|^{\lambda} K(v) d v .
\end{aligned}
$$

For $\frac{1}{h^{d} \operatorname{det}(s)^{1 / 2}} \operatorname{Var} K[V]=a_{n}^{2}(X) \rightarrow f(X) \int_{R^{d}} K^{2}(u) d u$, a.s.

$$
h=\left(\frac{(\log n)^{1 / 2}}{n}\right)^{\frac{1}{d(1+\lambda)}} .
$$

So $L_{3}^{(2)}=\mathrm{O}\left(n^{\frac{1}{2 d}} h^{\frac{1}{2}+\lambda}\right)$

$$
\begin{equation*}
=\mathrm{O}\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{n^{\frac{\lambda}{2 d(1+\lambda)}}}\right), \text { a.s. } \tag{9}
\end{equation*}
$$

Combining with (4) (8) and (9) , we have
$L_{3}=o\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{n^{\frac{\lambda}{2 d(1+\lambda)}}} M_{n}\right)$, a.s.
Together with (1), (2), (3), (10) and $h=\left(\frac{(\log n)^{1 / 2}}{n}\right)^{\frac{1}{d(1+\lambda)}}$, we obtain $\left\|P^{*}\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}^{*}(X)-f_{n}(X)\right) \leq Z\right\}-P\left\{\sqrt{n h^{d} \operatorname{det}(s)^{1 / 2}}\left(f_{n}(X)-f(X)\right) \leq Z\right\}\right\|_{\infty}$
$=O\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4 d(1+\lambda)}}}{n^{\frac{\lambda}{2 d(1+\lambda)}}} M_{n}\right)$, a.s.
This completes the proof of the theorem.

Acknowledgement

The authors gratefully acknowledge the support from department of education-funded projects in Guangxi (201010LX459), the introduction of talent project of He chi University of China (2010QSN003). School-level issues of He chi University of China (2009A-N006).

References

[1] B. Eforn. Bootstrap methods, Another look at the jackknife[J], Ann.Statist. 1979, 7 (1)p1-26.
[2]Qian Weiming. Bootstrapping kernel estimates [J], Journal of Tongji University. 1992, 20(1)p 87-93.
[3]Li Dewang, Chen xin, Yu Dalei. Bootstrap approximation for the kernel estimates of multivariate density[J], Journal of Southwest University. 2007, 29 (11)p 34-37.
[4]Chen Xiru, Fag Zhaoben, Lie Guoying . NonparametricStatistics [M]. Shanghai Scientific and Technical Publishers. 1989, p 283-305...
[5]G $a_{\text {nssler P.et al. Wahrscheinlichkeitstheorie[M]. Heidelberg: Springer Verlag. 1977, p105-106. }}$

[^0]: * Corresponding author. Tel.:+ 86-13558384315.

 E-mail address: LDWLDW1976@126.COM.

