

Available online at www.sciencedirect.com



Procedia Engineering 31 (2012) 1012 - 1018

Procedia Engineering

www.elsevier.com/locate/procedia

International Conference on Advances in Computational Modeling and Simulation

# The Convergence Rate of Multidimensional Density Kernel Estimation with Bootstrap

Dewang Li<sup>a\*</sup>, Meilan Qiu<sup>a</sup>

<sup>a</sup>Department of Mathematics, Hechi University, Yizhou Guangxi, 546300, China.

#### Abstract

There have important applications of density kernel estimation in statistics. In certain conditions, we obtain the convergence rate of multidimensional density kernel estimation by exploiting Bootstrap.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Kunming University of Science and Technology Open access under CC BY-NC-ND license.

Keyword: Bootstrap, multidimensional probability density, kernel estimation, convergence rate.

#### 1. Introduction

In 1979, Efron proposed a re-sampling procedure, called Bootstrap [1]. By using this method, we resample the empirical distribution of samples at random, and get Bootstrap sub-samples. Then, we reestimate the amount of statistics. In this paper, basing on references [2-3], we study the Bootstrap convergence rate of multidimensional density kernel estimation. Let X be a d -dimensional random variable,  $X_1, \dots, X_n$  be the sample of X. Suppose that  $F_n(X)$  is the empirical distribution function based on following samples  $X_1, \dots, X_n$  which with observed values  $x_1, \dots, x_n \cdot X_1^*, \dots, X_n^*$  are independent identically distributed samples deriving from  $F_n(X)$ . The kernel estimates f(X) about

<sup>\*</sup> Corresponding author. Tel.:+ 86-13558384315.

E-mail address: LDWLDW1976@126.COM.

probability density function of X defined as  $f_n(X) = \frac{1}{nh^d \det(S)^{\frac{1}{2}}} \sum_{i=1}^n K[\frac{(X-X_i)^T S^{-1}(X-X_i)}{h^2}]$ . Where

 $X = (X_1, \dots, X_d)^T, X_i = (X_{i1}, \dots, X_{id})^T (i = 1, \dots, n), K(\cdot) \text{ is a given probability density kernel function, <math>h$  is a bandwidth coefficient, n is the sample capability, S denotes the symmetric sample covariance matrix for  $d \times d$  -dimension.  $f_n^*(X) = \frac{1}{nh^d \det(S)^{\frac{1}{2}}} \sum_{i=1}^n K[\frac{(X - X_i^*)^T S^{-1}(X - X_i^*)}{h^2}]$  is estimated by

f(X) with Bootstrap.

## 2 Main results

**Theorem** If K(u) and f(X) satisfy the following conditions:

- a)  $f(X) \neq 0$ , f''(X) is continuous around everywhere and bounded at  $\mathbb{R}^d$ ;
- b) K(u) is the probability density function which is bounded at  $R^d$ , and  $\int_{R^d} uK(u)du = 0$ ,  $\int_{R^d} u^2 K(u)du < +\infty$ ;
- c)  $\lim_{|u|\to\infty} |uK(u)| = 0$  or f(X) is bounded from above on  $\mathbb{R}^d$ ;

d) 
$$h = \left(\frac{\left(\log n\right)^{\frac{1}{2}}}{n}\right)^{\frac{1}{d(1+\lambda)}}, \lim_{n \leftarrow \infty} nh^{d} = +\infty, \lim_{n \to \infty} \frac{\log n}{nh^{d}} = 0$$

Then if  $n \rightarrow +\infty$ , there is

$$\left\|P^*\left\{\sqrt{nh^d \det(s)^{\frac{1}{2}}}(f_n^*(X) - f_n(X)) \le Z\right\} - P\left\{\sqrt{nh^d \det(s)^{\frac{1}{2}}}(f_n(X) - f(X)) \le Z\right\}\right\|_{\infty}$$
$$= o\left(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}}M_n\right), a.s.$$

## **3** Several Lemmas

Almost the same as in Chen –Fang[4],we can get the following lemmas. Lemma 1 If K(u) and f(X) satisfy the parts b), c) of Theorem 1, and let

$$g_n(X) = \frac{1}{h^d \det(S)^{\frac{1}{2}}} \int_{\mathbb{R}^d} K^j \left[ \frac{(X - u_i)^T S^{-1} (X - u_i)}{h^2} \right] f(u) du, \text{ then we have}$$
$$\lim_{n \to \infty} g_n(X) = f(X) \int_{\mathbb{R}^d} K^j(u) du, \text{ j=1,2,3.}$$

Lemma 2 If K(u) and f(X) satisfy the parts b), c), d) of Theorem 1, then if  $n \to +\infty$ , there have

$$\sqrt{nh^d \det(S)^{\frac{1}{2}}} (Ef_n(X) - f(X)) \to 0$$

Lemma 3 If K(u) and f(X) satisfy the parts b), c), d) of Theorem 1, and X is the continuous point of f(X), we have

$$\lim_{n \to \infty} \frac{1}{nh^d \det(S)^{\frac{1}{2}}} \sum_{i=1}^n K^j \left[ \frac{(X - X_i)^T S^{-1} (X - X_i)}{h^2} \right] = f(X) \int_{\mathbb{R}^d} K^j(u) du, \quad (j=2,3).$$

**Lemma 4** For p > 0, there have [5]

(1) 
$$\sup_{x} |\Phi(x+q) - \Phi(x)| \le \frac{|q|}{\sqrt{2\pi}},$$
  
(2)  $\sup_{x} |\Phi(px) - \Phi(x)| \le \frac{1}{\sqrt{2\pi e}} \{ |p-1| + |p^{-1} - 1| \}.$ 

. .

Lemma 5 If K(u) and f(X) satisfy the parts a),b), c), d) of Theorem 1, there have [3]

$$\sup_{z} \left| P\left\{ \frac{\sqrt{nh^{d} \det(S)^{\frac{1}{2}}} \left(f_{n}(X) - f(X)\right)}{\left(f(X)\int_{R^{d}} K^{2}(u)du\right)^{\frac{1}{2}}} \le Z \right\} - \Phi(Z) \right| \to 0 \text{, where } \Phi(Z) \text{ is the standard normal}$$

distribution function.

## **4** Proofs of Theorem

Proof. Note that 
$$V = \frac{(X - X_i)^T S^{-1} (X - X_i)}{h^2}, V^* = \frac{(X - X_i^*)^T S^{-1} (X - X_i^*)}{h^2}, \text{ denote } \sup_{z} | | \text{ by } || ||_{\infty}.$$
  
 $\left\| P^* \left\{ \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f_n^*(X) - f_n(X)) \le Z \right\} - P \left\{ \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f_n(X) - f(X)) \le Z \right\} \right\|_{\infty}$   
 $\leq \left\| P^* \left\{ \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f_n^*(X) - f_n(X)) \le Z \right\} - \Phi(\frac{Z}{(\frac{1}{h^d \det(s)^{\frac{1}{2}}} Var^* K[V^*])^{\frac{1}{2}}}) \right\|_{\infty}$   
 $+ \left\| P \left\{ \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f_n(X) - Ef_n(X)) \le Z + \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f(X) - Ef_n(X)) \right\}$ 

1014

$$-\Phi(\frac{Z + \sqrt{nh^{d} \det(s)^{\frac{1}{2}}}(f(X) - Ef_{n}(X))}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}])^{\frac{1}{2}}})\right)_{\infty}$$

$$+ \left\| \Phi(\frac{Z}{(\frac{1}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}])^{\frac{1}{2}}}) - \Phi(\frac{Z + \sqrt{nh^{d} \det(s)^{\frac{1}{2}}}(f(X) - Ef_{n}(X))}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}])^{\frac{1}{2}}})\right\|_{\infty}$$

$$\stackrel{\widehat{}}{=} L_{1} + L_{2} + L_{3} . \qquad (1)$$

Almost analogy the same proof of  $I_1$  as Lemma 5, we obtain

$$L_1 = O((nh^d \det(s)^{\frac{1}{2}})^{-\frac{1}{2}}) \quad a.s.$$
<sup>(2)</sup>

Almost analogy the same proof of  $J_{1n}$  as Lemma 5, we obtain

$$L_{2} = O((nh^{d} \det(s)^{\frac{1}{2}})^{-\frac{1}{2}}) \quad a.s.$$

$$L_{3} \leq \left\| \Phi(\frac{Z}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}])^{\frac{1}{2}}}) - \Phi(\frac{Z}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V])^{\frac{1}{2}}}) \right\|_{\infty}$$

$$+ \left\| \Phi(\frac{Z}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V])^{\frac{1}{2}}}) - \Phi(\frac{Z + \sqrt{nh^{d} \det(s)^{\frac{1}{2}}} (f(X) - Ef_{n}(X))}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}])^{\frac{1}{2}}}) \right\|_{\infty}$$

$$\stackrel{\wedge}{=} L_{3}^{(1)} + L_{3}^{(2)}.$$

$$(4)$$

By Lemma 4, we have

$$L_{3}^{(1)} \leq \frac{1}{\sqrt{2\pi e}} \left| \left( \frac{VarK[V]}{Var^{*}K[V^{*}]} \right)^{\frac{1}{2}} - 1 \right| + \frac{1}{\sqrt{2\pi e}} \left| \left( \frac{Var^{*}K[V^{*}]}{VarK[V]} \right)^{\frac{1}{2}} - 1 \right| \\ = \frac{1}{\sqrt{2\pi e}} \left\{ \frac{\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}] - \frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V]}{\left(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}]\right)^{\frac{1}{2}} \left(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V]\right)^{\frac{1}{2}}} \right\}^{(5)}$$

With marks  $b_n(X), a_n(X)$ 

$$\frac{1}{h^d \det(s)^{\frac{1}{2}}} Var^* K[V^*] = b_n^2(X) \to f(X) \int_{\mathbb{R}^d} K^2(u) du, a.s.$$

$$\frac{1}{h^d \det(s)^{\frac{1}{2}}} VarK[V] = a_n^2(X) \to f(X) \int_{\mathbb{R}^d} K^2(u) du, a.s.$$

Since K(u) is bounded on  $\mathbb{R}^d$ , there exist a constant M > 0, which satisfy  $|K(u)| \le M$ ,

$$\left| \frac{1}{h^{d} \det(s)^{\frac{1}{2}}} Var^{*}K[V^{*}] - \frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V] \right|$$
  

$$\leq \left| \frac{1}{nh^{d} \det(s)^{\frac{1}{2}}} \sum_{i=1}^{n} (K^{2}[V] - EK^{2}[V]) \right| + 2M \left| \frac{1}{nh^{d} \det(s)^{\frac{1}{2}}} \sum_{i=1}^{n} (K[V] - EK[V]) \right|.$$
  
For  $h = (\frac{(\log n)^{\frac{1}{2}}}{n})^{\frac{1}{d(1+\lambda)}}$ , by the inequality of Bernstein, there is  

$$\sum_{i=1}^{\infty} p \left[ \left| \frac{1}{n} \sum_{i=1}^{n} (W^{2}EW) - EW^{2}EW} \right| = \frac{\lambda^{(1+d)+d}}{n} \right].$$

$$\sum_{n=N}^{\infty} P\left\{ \left| \frac{1}{nh^d \det(s)^{\frac{1}{2}}} \sum_{i=1}^n \left( K^2[V] - EK^2[V] \right) \right| \ge \varepsilon \left( \frac{(\log n)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}} M_n \right) \right\} < +\infty^{-1}$$

Therefore, by the lemma of Borel-Cantelli, we get

$$\left| \frac{1}{nh^{d} \det(s)^{\frac{1}{2}}} \sum_{i=1}^{n} (K^{2}[V] - EK^{2}[V]) \right|$$
  
=  $o(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}} M_{n}), a.s.$  (6)

The same proof as above, we get

The same proof as above, we get
$$\left|\frac{1}{nh^{d} \det(s)^{\frac{1}{2}}} \sum_{i=1}^{n} (K[V] - EK[V])\right|$$

$$= o(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}} M_{n}), a.s.$$
(7)

Combining with (5), (6) and (7), we have  $\frac{2(1+d)+d}{2}$ 

$$L_3^{(1)} = o\left(\frac{\left(\log n\right)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}}M_n\right), a.s.$$
(8)

By Lemma 4, we have

$$\begin{split} L_{3}^{(2)} &\leq \frac{1}{\sqrt{2\pi}} \frac{\sqrt{nh^{d} \det(s)^{\frac{1}{2}}} |f(X) - Ef_{n}(X)|}{(\frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V])^{\frac{1}{2}}}, \\ |f(X) - Ef_{n}(X)| \\ &= \left| f(X) - \frac{1}{h^{d} \det(s)^{\frac{1}{2}}} \int_{\mathbb{R}^{d}} K[\frac{(X-u)^{T}S^{-1}(X-u)}{h^{2}}]f(u)du \right| \\ &\leq Ch^{d\lambda} \int_{\mathbb{R}^{d}} |v|^{\lambda} K(v)dv. \\ \text{For } \frac{1}{h^{d} \det(s)^{\frac{1}{2}}} VarK[V] = a_{n}^{2}(X) \rightarrow f(X) \int_{\mathbb{R}^{d}} K^{2}(u)du, a.s. \\ &h = (\frac{(\log n)^{\frac{1}{2}}}{n})^{\frac{1}{d(1+\lambda)}}. \\ \text{So } L_{3}^{(2)} &= O(n^{\frac{1}{2d}}h^{\frac{1}{2}+\lambda}) \\ &= O(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{2d(1+\lambda)}{4}}}), a.s. \end{split}$$
(9)

Combining with (4), (8) and (9), we have  $\lambda^{(1+d)+d}$ 

$$L_{3} = o\left(\frac{(\log n)^{\frac{\lambda(1+a)+a}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}}M_{n}\right), a.s.$$
(10)

Together with (1), (2), (3), (10) and  $h = (\frac{(\log n)^{\frac{1}{2}}}{n})^{\frac{1}{d(1+\lambda)}}$ , we obtain

$$\left\| P^* \left\{ \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f_n^*(X) - f_n(X)) \le Z \right\} - P \left\{ \sqrt{nh^d \det(s)^{\frac{1}{2}}} (f_n(X) - f(X)) \le Z \right\} \right\|_{\infty}$$
  
=  $o(\frac{(\log n)^{\frac{\lambda(1+d)+d}{4d(1+\lambda)}}}{n^{\frac{\lambda}{2d(1+\lambda)}}} M_n), a.s.$ 

This completes the proof of the theorem.

#### Acknowledgement

The authors gratefully acknowledge the support from department of education-funded projects in Guangxi (201010LX459), the introduction of talent project of He chi University of China (2010QS-N003). School-level issues of He chi University of China (2009A-N006).

#### References

[1] B. Eforn. Bootstrap methods, Another look at the jackknife[J], Ann.Statist. 1979, 7 (1)p1-26.

[2]Qian Weiming. Bootstrapping kernel estimates [J], Journal of Tongji University. 1992, 20(1)p 87-93.

[3]Li Dewang, Chen xin, Yu Dalei. Bootstrap approximation for the kernel estimates of multivariate density[J], Journal of Southwest University. 2007, 29 (11)p 34-37.

[4]Chen Xiru, Fag Zhaoben, Lie Guoying . NonparametricStatistics [M]. Shanghai Scientific and Technical Publishers. 1989, p 283-305...

[5]G<sup>*a*</sup> nssler P.et al. Wahrscheinlichkeitstheorie[M]. Heidelberg: Springer Verlag. 1977, p105-106.