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Abstract 

There have important applications of density kernel estimation in statistics. In certain conditions, we 
obtain the convergence rate of multidimensional density kernel estimation by exploiting Bootstrap. 
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1. Introduction 

 
In 1979, Efron proposed a re-sampling procedure, called Bootstrap [1]. By using this method, we re-

sample the empirical distribution of samples at random, and get Bootstrap sub-samples. Then, we re-
estimate the amount of statistics. In this paper, basing on references [2-3], we study the Bootstrap 
convergence rate of multidimensional density kernel estimation. Let X be a d -dimensional random 
variable, nXX ,,1 be the sample of X . Suppose that )(XFn  is the empirical distribution function 

based on following samples nXX ,,1  which with observed values nxx ,,1 . nXX ,,1  are 

independent identically distributed samples deriving from )(XFn . The kernel estimates )(Xf about 
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idii XXX ),( 1 ),,1( ni , )(K is a given probability density kernel 

function, h  is a bandwidth coefficient , n is the sample capability, S denotes the symmetric sample 
covariance matrix for dd -dimension. 
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Xf
 is estimated by 

)(Xf  with Bootstrap. 

2 Main results 

 

Theorem   If )(uK and )(Xf satisfy the following conditions: 

a) 0)(Xf , )(Xf is continuous around everywhere and bounded at
dR ; 

b) )(uK  is the probability density function which is bounded at 
dR , and duuKu
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3 Several Lemmas 

 
Almost the same as in Chen Fang[4],we can get the following lemmas. 

Lemma 1 If )(uK and )(Xf satisfy the parts b), c) of Theorem1, and let  
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Lemma 2 If )(uK and )(Xf satisfy the parts b), c), d) of Theorem1, then if n , there have 
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Lemma 3 If )(uK and )(Xf satisfy the parts b), c), d) of Theorem1, and X is the continuous point of 
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Lemma 4   For 0p , there have[5] 
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Lemma 5  If )(uK and )(Xf satisfy the parts a),b), c), d) of Theorem1, there have[3] 
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, where )(Z is the standard normal 

distribution function. 

4 Proofs of Theorem  
 

Proof.   Note that  
2
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Almost analogy the same proof of 1I  as Lemma 5, we obtain 
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By Lemma 4, we have 
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Since ( )K u  is bounded on dR , there exist a constant M > 0, which satisfy ( )K u M , 
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Therefore, by the lemma of Borel-Cantelli, we get 
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The same proof as above, we get 
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Combining with 5 , 6 and 7 , we have 
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By Lemma 4, we have 
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Combining with 4 , 8 and 9 , we have 
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Together with 1 , 2 , 3 , 10 and 
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This completes the proof of the theorem. 
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