
ELSEVIER Artificial Intelligence 8 1 ( 1996) 11 I- 125 

Artificial 
Intelligence 

Some pitfalls for experimenters with random SAT 
David G. Mitchell *, Hector J. Levesque 2 

Department of Computer Science, University of Toronto, Toronto, Ontario M5S IA4, Canada 

Received July 1994; revised April 1995 

Abstract 

We consider the use of random CNF formulas in evaluating the performance of SAT testing 
algorithms, and in particular the role that the phase transition phenomenon plays in this use. 
Examples from the literature illustrate the importance of understanding the properties of formula 
distributions prior to designing an experiment. We expect this to be of increasing importance in 
the field. 
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1. Introduction 

Satisfiability testing lies at the core of many computational problems and because 

of its close relationship to various reasoning tasks, this is especially so in artificial 
intelligence. Randomly generated CNF formulas are a popular class of test problems 

for evaluating the performance of SAT testing programs. Not surprisingly, the choice 
of formula distribution is crucial to the validity of any investigation using random 
formulas. In [26], we argued that some families of distributions were more useful 
sources of test material than others, and suggested choosing formulas from the “hard 

region” associated with the satisfiable-to-unsatisfiable phase transition which occurs as 
the number of clauses is increased. Here we make this concrete, by presenting examples 
from the literature of experiments where sufficient consideration was not given to the 
properties of the formulas used. In most cases, the test formulas were implicitly assumed 
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to be challenging in some way, or at least to have hardness dependent on a particular 
parameter, which we show in further experimentation not to be the case. 

Our examples are based on currently popular “unstructured” random formulas. The 
value of these as test material-even when sampled from the “hard region”-can be 
questioned on the grounds that they may not be much like real problems [ 5,17,20], 
but some of these distributions appear challenging for a variety of methods, and we 
expect their use to continue. Moreover, most available alternatives are either puzzle-type 
problems (such as cross-word puzzles) or other distributions with no a priori greater 
validity. Nonetheless, some classes of “structured” random formulas are likely to become 
more popular, and in Section 8 we discuss the implications of our examples for such 
distributions. 

In Section 2 we describe our SAT testing algorithm and the formula distributions 
under consideration, and in Section 3 we survey some properties of these formulas. 
Sections 4-7 examine individual experiments, in light of what we now know about 
the formulas used. Additional data is presented as needed. In Section 8 we summa- 
rize. 

2. Materials and methods 

We assume the reader is familiar with the problem SAT as defined in [ 121. The 
data for our analysis was produced by testing randomly generated SAT instances with a 
simple version of the Davis-Putnam Procedure [ 81. Our procedure, which we refer to 
as “DP”, is shown in Fig. 1. In the figure, w denotes a CNF formula and w\p denotes 
the formula that results when we simplify w by setting the variable p true. We assume 
the variables are ordered, and let uars(w) denote the set of variables mentioned in w, 
and min{vars(w)) the least variable mentioned in w. 

DP is essentially the splitting variant of the Davis-Putnam Procedure as described in 
[7], but without the pure literal rule. It uses no heuristics other than unit propagation. 
This is perhaps the simplest complete SAT testing procedure that performs well enough 
to be useful, and so provides a kind of baseline for performance of many related methods. 
We count each recursive DP call (or equivalently, each simplification) as a step. We 

procedure DP( w) 
if w is empty then return satisfiable 
else if w contains an empty clause then return unsatis$able 
else if w contains a unit clause (1) then return DP(w\l). 
else 

let p := min(vars(w)} 
if DP( o\p) = satisfiable then return satisfiable 
else return DP(w\7p) 

end DP 

Fig. 1. The procedure DP. 
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report the median number of DP steps to find a satisfying assignment, if there is one, 
or report failure otherwise. (For most of the distributions used here, the median number 
of steps is highly correlated with mean, and also with mean and median run times.) 
We also report the proportion of formulas which are satisfiable. Each point in a graph 
represents a sample statistic based on 5000 formulas. 

We examine three families of random CNF formulas. Each family has three parame- 
ters; the number of variables n, the number of clauses M and for each n, a distribution 
of clauses over n variables. We will see that the constructed parameter c = m/n, the 
ratio of clauses to variables, is often more useful than m. The families are as fol- 
lows. 

l The widely studied fixed clause length family, which we call “random k-SAT”. 
Clauses are selected uniformly at random, with replacement, from the set of all 
2k(‘$ nontrivial3 clauses of length k defined over n variables. 

l The “constant density” distributions. In the simplest version, a clause is constructed 
by including each of the 2n literals with some probability p (which may be a 
function of n) . Clause lengths are binomially distributed, with expected length 2np. 
It is often useful to study these formulas in terms of expected clause length k, in 
which case we set p = k/2n. Since empty clauses, unit clauses and trivial clauses are 
easy to simplify out,4 experimenters began using variants in which certain clause 
types were disallowed (in which case expected clause length is altered slightly by 
rejection of forbidden clause types). In Section 4 we consider the case where unit 
clauses are permitted, but trivial and empty clauses are forbidden. In Sections 3 
and 5 we consider the case where empty, unit and trivial clauses are forbidden. 
We call this version random &k-SAT (using E to denote that k is an expectation). 

l Distributions with clause lengths distributed uniformly over some fixed range [k, Z] . 
We will call such distributions “[ k,l] -SAT”. 

3. Patterns in random SAT 

In this section we will survey some basic (empirical) properties of random formulas 
for reference in following sections. 

3.1. Random k-SAT 

The upper graph of Fig. 2 shows the proportion of random k-SAT formulas with n = 25 
variables which are satisfiable. There is one curve for each clause length k E {2,3,4,5}, 
and for each curve the ratio of clauses to variables c is varied from l/5 to 30. As has 
been shown before, at small ratios almost all formulas are satisfiable and at high ratios 
almost all are unsatisfiable. For each k there is some range of c values over which the 
proportion of satisfiable formulas changes from almost 1 to almost 0. The location of 

3 A clause is trivial if it contains both a variable and its negation. 

4 Moreover, Wu and Tang [27] extending work by Franc0 [9] and others presented an algorithm which 

solves instances of this family with probability not less than 1 - E, for any constant E > 0, in polynomial 

expected time. See also [ 2,221. 
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Fig. 2. Median DP steps for random k-SAT: varying c for selected values of k. 

30 

this “transition region” varies with k, but for each k it occurs at approximately the same 

ratio for all values of n [ 4,14,24]. The asymptotic location of the transition region 

is analytically bounded above and below: For k = 3, the currently known bounds are 
c = 4.758 [ 191 and c = 3.003 [lo] respectively. 

The lower graph of Fig. 2 shows the median number of DP steps required to test 

the same formulas, Note the logarithmic y-axis, necessitated by the dramatic increase 
of peak difficulty with increasing k. As expected, the peak at each k lines up with the 
corresponding transition region, We call the part of the curve near the peak the “hard 

region” (to distinguish it qualitatively from the regions far from the transition, which 
for small n are relatively easier. This is not to say there are no hard formulas in the 

“easy region”, nor that the “hard region” is necessarily hard in any rigorous sense). 

Moving to the left from the hard region, there is a range of ratios, for each curve, over 
which difficulty changes little as the ratio is varied, and which we will refer to as the 

“plateau” region. In this region, the number of DP steps is just less than 25 (the number 
of variables) and almost no backtracking occurs. Roughly speaking, DP just assigns 
values to variables by guessing and using unit propagation. We refer to the region below 
c = 1, where difficulty drops off quickly with decreasing c, as the “shoulder” region. 

When c is increased beyond the transition region, difficulty gradually decreases. This 
general pattern is also found for larger k than is shown here (although we do not know 
if it holds for very large k). 

Random 2-SAT 
Observe in Fig. 2 that as c is increased the difficulty of random 2-SAT increases only 

to the level of the plateau region and then begins to decrease again. Random 2-SAT does 
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Table 1 
DP performance on random 2-SAT when c = I 

?I 25 50 15 100 125 150 175 200 225 250 

DP steps 19 31 55 74 92 110 128 146 I64 182 
steps/n 0.76 0.74 0.73 0.74 0.74 0.73 0.13 0.73 0.73 0.73 
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Fig. 3. DP steps for random 3-SAT: selected values of n. 

not exhibit a hard region in the sense that is seen when k is larger, 5 which is perhaps 
not surprising since 2-SAT is solvable in time O(n + m) [ 11. Table 1 shows median 
DP steps, and the ratio of median DP steps to n, to test random 2-SAT with c = 1 and 
n up to 250. At least over this range the median number of steps is smaller than n, and 
grows no faster than n. DP requires time O(2”) in the worst case for random 2-SAT, 
but this data suggests it may be linear on average. 

Location of the peak 
We are usually interested in performance for increasing n, rather than just at a 

particular n. Fig. 3 shows the effect of increasing n on the curves for random 3- 
SAT. The transition region becomes narrower (that is, occurs over a smaller range of 
c) as n is increased. The peak hardness for DP occurs at approximately the point where 
40% of the formulas are satisfiable, and shifts slightly to the left as n is increased, in 
correspondence with the shift of that point. 

Since empirical tests measure difficulty for a particular algorithm on a given set of 
problems, we expect the location of peak hardness to be somewhat procedure-dependent. 

’ Cheeseman et al. [ 31 hypothesized that phase transitions might not occur for problems in l? Random 2-SAT 
is one of several counterexamples, but the present observation suggests a revised version of the hypothesis. 
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Fig. 4. Median DP steps for random CR-SAT varying c for selected values of k. 

For example, adding a heuristic to DP which tends to do better on satisfiable instances 
but poorer on unsatisfiable instances would result in a peak further to the right, because 

the average performance is a weighted average of performance on satisfiable and un- 

satisfiable subsets, and this weighting changes with c. In [26] we suggested that peak 
hardness of random 3-SAT for the Davis-Putnam Procedure was near the ratio where 
about half the instances were satisfiable, but the algorithms in each of [4,21,26] appear 

to peak at slightly different ratios. 

3.2. Random Zk-SAT 

Fig. 4 shows the proportion of satisfiable formulas and the median DP steps for testing 
random Ek-SAT with n = 2.5 variables, for k E {2,3,4,5} and c varied from l/5 to 
12. (Because of length restrictions, random EZSAT and random 2-SAT are identical 
distributions.) As with random k-SAT, the four curves all converge to the same shoulder 

shape at small c, in this case when c < 2, and for each k > 3 there is an easy plateau 
region, a hard region, and a trailing off of difficulty on the right. As with the fixed clause 

length formulas, the peaks and transition points shift right with increased k, and the peak 
hardness also increases with k. The most significant difference between these formulas 
and random k-SAT, as has been noted before, is that these are very much easier. The 
difference is a factor of 100 for clause lengths of 5, and increases with increasing n. 

Another difference is that the transition regions are shifted to somewhat lower ratios for 
the same average clause lengths. Since these distributions have a few very long clauses, 
most clauses are shorter than the average clause length, which apparently lowers the 
transition region also. 
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Fig. 5. Median DP steps for formulas used by Hooker. 

3.3. [k,Z]-SAT 

The general patterns shown above also occur for [ k,l] -SAT, albeit with the added 
complexity of an additional parameter (random k-SAT is the special case of [ k,l] -SAT 
when k = I). We content ourselves in this case with presenting only the particular data 
needed. in Sections 4 and 6. 

4. No hard region 

In Section 3.1 we noted that random 2-SAT did not exhibit a hard region, in the usual 
sense, and that it can be solved very efficiently even in the worst case. In this section, 
we will consider experiments using two distributions over NP-complete sets of formulas 
which also do not appear to have hard regions, and which our data suggests are as easy 
on average as random 2-SAT. As a consequence, we conclude that the data from the 
experiments described below provides no evidence that the procedures are effective on 
nontrivial problems. 

Hooker [ 171 compared the performance of a resolution-based procedure with that of 
one based on cutting planes, using constant density formulas with unit clauses allowed, 
but empty and trivial clauses prohibited. In this case, p was set so that the expected 
clause length was 5, and formulas were generated with c = 2, and n E { 10,20,30,50}, 
and also with n = 20 and c E { 1,2,3,4,6,32). We generated formulas from the same 
distribution and tested them with DP. Fig. 5 shows the median DP steps for these 
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Fig. 6. Median DP steps for [ 1,7] -SAT and [2,7]-SAT. 

formulas (labeled “Hooker” in the figure), with n = 50 and c being varied from l/5 to 
8. Corresponding curves for random 3-SAT and random 2-SAT, also with n = 50, are 
included for comparison. 

There is no evidence of a hard region for Hooker’s formulas, and the median number 
of DP steps to test these formulas was less than 50 at every ratio (we tested up to 
c = 50). We repeated the experiment with n = 100, and found exactly the same pattern. 
Hooker noted that the cutting plane algorithm required only a very small number of 
iterations to solve these problems, while his resolution procedure performed so poorly 
that he was unable to report completion times for most conditions. Yet DP-which can 
be expressed as a resolution strategy [ 151 -required almost no backtracking (less than 
3 backtracks on average) to test them, and consistently solves them in a small fraction 
of a second. 

Gallo and Urbani [ 1 l] compared the performance of several enhancements to the 
Davis-Putnam Procedure on [ 1,7]-SAT. We again generated a range of these formulas 
and tested them with DP. Fig. 6 shows the median DP steps and proportion satisfiable for 
[ 1,7] -SAT formulas with n = 50 variables (and corresponding curves for [ 2,7]-SAT, 
random 2-SAT and random 3-SAT). The [ 1,7] -SAT formulas exhibit essentially the 
same behavior as random 2-SAT, with the usual “shoulder” pattern at the left, but no 
evidence of a hard region. We confirmed this behavior up to n = 1000, where the peak 
remains smaller than that of random 2-SAT. Virtually no backtracking is required to test 
these formulas. 

We conclude that formula distributions such as [ 1,7]-SAT and those used by Hooker 
in [ 171 are no harder on average than random 2-SAT, and thus of little use in SAT 
algorithm evaluation. 



D.G. Mitchell, H.J. L.evesque/Art$icial Intelligence 81 (1996) 111-125 119 

5. Missing the hard region 

We observed in Section 3 that random &k-SAT does exhibit a hard region, although 

orders of magnitude easier than comparable random k-SAT formulas. In this section we 
will see that experimenters have often used formulas from this distribution, but from 

below the hard region, which are trivial in spite of their large size. 
Gu [ 161 and Kamath et al. [ 181 evaluated their procedures (based on local search 

and interior point programming, respectively) by testing large random &3-SAT formulas, 

Gu with n E {50,500,1000} and Kamath with n = 1000, in all cases with c = 2. We 

generated and tested random E3-SAT with n E (50,500, lOOO}, and show the results 

in the upper graph of Fig. 7. Also shown, for comparison, is the curve for random 
3-SAT with n = 50. The experiments at c = 2 clearly fall to the left of the hard region. 
To confirm our intuition that testing these requires only guessing and unit propagation, 

we plotted the median number of backtracks in the lower graph of Fig. 7. The median 

number of backtracks at c = 2 was 1 for II = 500 and 0 for n = 1000: even with fairly 

large n, these formulas are extremely easy. 6 
Both Gu and Kamath et al. also used formulas from random ElO-SAT. Gu tested 

formulas with various values of n up to 5000 and c up to 10, and Kamath et al. used 

formulas with IZ = 1000 and c up to 32. We expected that peak difficulty for these 

would be substantial, but also that the hard region should occur at quite a high value of 

c, probably in the hundreds. We generated and tested random ElO-SAT formulas with 

n = 50 and c varied from 1 to 50, with 1000 samples per point. We do not include a 
graph: the curve is essentially the same shape as the left one-fourth of a curve in the 

upper graph of Fig. 7. The shoulder region appears up to about c = 8, and from c = 8 

to c = 50 the curve is nearly flat. At c = 50 there is no evidence of approaching the 
hard region: all 1000 formulas tested were satisfiable, and essentially no backtracking 

was required to test these formulas at any ratio below 35, where the mean number 

of backtracks was about 1. We also tested random ElO-SAT formulas with n = 1000 
variables and c ranging up to 10. At c = 10, the curve of median DP steps for these 
formulas has only just passed the shoulder region. About 90% of the formulas at c = 10 

required zero backtracks to test, and only one of the 1,000 formulas we tested required 
as many as three. At lower ratios even fewer backtracks were needed. These formulas, 

despite being very large, are trivial to test on average. 

6. Interaction of parameters 

In [ 61 d’Anjou and his colleagues report tests using a variety of random formulas to 
demonstrate the performance of a Boltzmann Machine method for SAT testing (which 

h Truth in advertising: Although the vast majority of these formulas required 0, 1 or 2 backtracks, the mean 
number backtracks is in the thousands due to a very few formulas which ate harder (but still trivial compared 

with similarly sized hard random S-SAT formulas). The harder formulas occur so rarely we would not expect 
to see them in studies with small sample sizes such as the examples in this section. Gent and Walsh [ 131 

have studied apparently harder, but rarer still, formulas in this region. These are interesting in themselves, but 

we believe they occur even more rarely as n gets large, and do not make the distribution on the whole useful. 
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5 

we will refer to as BM). Their data is presented as evidence that BM solves SAT, on 

average, in time “nearly linear” in the number of variables, regardless of clause length 
or number of clauses. We will see that, in spite of the authors’ methodical manipulation 
of all distribution parameters, the data does not support this conclusion. 

To show run time of BM is independent of clause size d’Anjou et al. tested random 
k-SAT formulas with fixed n and m, and observed the effect on run time of varying 

k. The range for k was k E {2,5,6,7}, and the experiment was repeated for each 

n E { 10,15,20,25}. In all cases the formulas had m = 25 clauses. For each value of n, 

BM took essentially the same time for all choices of k. The clause-to-variable ratio for 
all of these test sets is in the range 1 < c < 2.5. They all fall in the plateau region for 

DP (cf. Fig. 2)) so if we performed this same experiment with DP instead of BM, we 
would also find no effect of k. But we know that in the hard region, k has a dramatic 

effect on hardness for DP. Just as importantly, if the same experiment design had been 
used, but with a larger value chosen for m so that some tests were in the transition 
region, the results would be just as suspect. For example, if we picked n = 25 and 
m = 250 (so c = lo), we would find that increasing k led to a dramatic decrease in DP 

steps! 
To show run time of BM is independent of the number of clauses in a formula, 

d’Anjou et al. tested formulas from [2,7]-SAT with n = 20 variables and m varied from 
25 to 55. The average time for BM increased only very slightly as m was varied from 25 



D.G. Mitchell, H.J. Levesque/Artijcial Intelligence 81 (1996) 111-125 121 

to 55 (although the variance did increase substantially). The range of clause-to-variable 
ratios for this experiment is from 1.25 to 2.75. As Fig. 6 shows, [2,7]-SAT does exhibit 
the easy-hard-easy pattern, but the number of steps for DP to test these formulas does 
not change significantly across the range of ratios tested by d’Anjou et al. Again, if 
we performed this experiment with DP we would get the same results. We do know, 
however, that the performance of DP is affected by the number of clauses. (To a large 
extent, and in a more general form, this is what this volume is all about.) Manipulation 
of m will detect the easy-hard-easy pattern, but only if the range spans the transition 
region. Anomalous results will occur with other uninformed choices too. For example, 
varying m from 130 to 160 in this experiment would produce a decrease in difficulty 
with increasing m. 

Believing BM to be unaffected by clause length and number of clauses, d’Anjou et 
al. concluded that they could demonstrate the scaling of run time by varying n, while 
keeping clause length distribution and m constant. Thus, to support their main claim 
they tested formulas from [ 2,7]-SAT with n E { 10,15,20,25,30,35,40, lOO}, in every 
case with m = 25 clauses. The times for BM to solve these problems, as a function of n, 
fit very closely to a linear curve. Once again the range of ratios tested (from 2.5 down 
to 0.25 as the number of variables was increased from 10 to 100) falls within the easy 
region ’ (cf. Fig. 6). If m is fixed, then increasing n decreases c, so picking a larger 
value for m would not have helped this experiment. For example, if we repeated this 
experiment using DP, and with m = 65, then at n = 10 (so c = 6.5) we would be testing 
in the hard region, but at large n we would be in the easy region (eg., with n = 40 we 
have c z 1.6). 

Our data suggests that none of the formula sets used in [6] are harder than random 
2-SAT, and so all experiments reported there are examples of “missing the hard region”, 
as discussed in Section 5. However, there are additional issues involved here. We don’t 
know how BM would perform on hard formulas, but the results in [6] seem to be an 
artifact of the easy formulas, and unfortunate parameter choices, rather than indicative of 
positive performance characteristics of BM. Increasing n while m is fixed leads to small 
values of c, and thus easy instances. Increasing m alone leads to large values of c, and 
thus easy (relative to the peak) problems. Moreover, increasing k alone shifts the hard 
area to higher values of c, thus producing easy problems. To generate hard formulas 
of varying size requires that n and m be varied at the same time, since hard formulas 
result from an interaction of parameters. Similarly, if we want to change k but obtain 
formulas with the same relative hardness, or the same proportion satisfiable, we must 
also change m at the same time. More generally, we see that varying all parameters does 
not necessarily make an experiment informative about performance of the test procedure, 
if the effects of those manipulations on the formulas are not to some extent understood 
beforehand. 

‘The IOO-variable point was suspect a priori. There are 200 literals to choose from, but we only expect 
about 115 literals in a 25 clause formula, so almost half the literak won’t even be mentioned. 
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Table 2 
Locations of tests in Gallo & Urbani [ 111 

Test 1 2 3 4 5 

Variables 10 20 30 40 50 
Clauses 50 100 140 170 200 
Ratio 5.0 5.0 4.67 4.25 4.0 
50% point 4.86 4.55 4.45 4.40 4.36 
Satisfiable 7 5 2 6 8 
Time (s) 0.3 1.2 5.1 13.5 32.7 

7. Picking ratios 

When the chosen distribution has a hard region that corresponds to the transition 

region, it seems a simple heuristic like “test where about half the formulas are satisfiable” 
might keep us on safe ground. In most experiments we will vary at least one parameter 

(typically n), but with a fair understanding of parameter interactions, we can often 
experimentally track the transition region fairly easily. For random L-SAT it may be as 

simple as knowing the approximate transition ratio for each k (e.g., setting m = 4.25n 

when k = 3). In this section we consider whether this approach is adequate in the 
common situation in which the experimenter cannot precisely determine the location of 

peak hardness. 
To begin, we consider an experiment by Gallo and Urbani [ 111, in which performance 

of several SAT procedures were compared on five sets of random 3-SAT formulas, for 

which partial results are shown in Table 2. The table gives the parameter values used, 
the number of test formulas which were satisfiable (out of lo), and the time in seconds 

for Gallo and Urbani’s implementation of the Davis-Putnam Procedure. Also shown are 
our own experimental estimates (based on large samples and accurate to two decimal 
places) of the ratio at which 50% of the formulas will be satisfiable for the given values 
of n and m. 

Gallo and Urbani chose m based on estimates of where about one half of the formulas 

would be satisfiable, but comparison with the known 50% ratios in Table 2 shows they 

were somewhat off, probably due to estimating from small sample sizes. We do not 
know exactly where the peak is for the procedure used in this experiment, but the 

procedure is almost identical to our DP, and our experience suggests the peaks for the 
two procedures will be very close. If we assume this to be true, then the choices for c 

in Table 2 shift from somewhat above the peak, to somewhat below the peak, crossing it 
near the third data point. Thus, looking at the first three points gives an overestimate of 
the growth in time with n, and looking at the last three points we gives an underestimate 
of growth. 

Fig. 8, shows median DP steps to test random 3-SAT with various it. Although we 
have not defined the hard region precisely, in some sense it seems to get wider with 
increasing n (even though the transition region gets narrower). We would claim that all 
the ratios used in [ 111 are well within this hard region. So can it matter that much if 
we test exactly at the peak? If we are reasonably close, and if we are only interested 
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fig. 8. Median DP steps for random 3-SAT selected values of n. 

in dramatic performance improvements, perhaps not. But this broadening of the hard 
region may not occur with other procedures, or other distributions, so we cannot count 
on it. Further, the left slope of the hard region becomes rapidly much steeper as n is 

increased. With n = 75, a shift in c of only four per cent can result in a factor of two 
difference in the number of steps taken, as is shown by the two vertical lines in Fig. 8, 
and this effect seems to become more pronounced with increasing n. Moreover, since the 
transition region becomes narrower as n is increased, finding an accurate experimental 

estimate of a particular point on the transition curve to within a few per cent can be a 
very expensive task for large n. 

The steep slope on the left of the hard region does seem rather far from the transition 

region to be much of a problem, but again for procedures other than DP this may not 
be the case. Likely candidates here are some of the local-search-based methods. These 

have been used with considerable success for finding satisfying truth assignments for 
satisfiable formulas [ 16,23,25]. Random 3-SAT formulas have been among the primary 
test sets used in this work, and success has been reported with formulas near the hard 

region and having thousands of variables [23]. Although performance of local search 
is very good where just over half of the formulas are satisfiable, as of this writing we 
know of no rigorous study of how these procedures perform as c is increased through 
the transition region, and it seems likely that if there are formulas on which they do 
poorly, they may be in the right-hand part of the transition region. 

A major difficulty in evaluating these procedures is that there is no sound and complete 

SAT testing program available capable of testing such hard formulas. Since the local 
search procedures are sound but incomplete, there is no way to know if such a procedure 
has solved all the satisfiable formulas given, and thus if reported average times are 
correct. Since failure is more likely as n increases, measured run times can be expected 
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to underestimate the actual increase in solution time with n. The narrowing of the 
transition region with increasing n further exacerbates the problem, because for large 
II an error of even one or two per cent in the choice of c could make a substantial 
difference in both the proportion of formulas which are satisfiable, and in the difficulty 
of these formulas. 

8. Discussion 

Random formulas have been used by many researchers to empirically evaluate the 
performance of SAT testing programs. The value of such studies depends upon careful 
selection of formula distribution and parameter values, and we presented a number of 
examples from the literature to illustrate this. The lesson here may be summarized as 
follows. When using random formulas, an extensive enough study of the distribution’s 
parameter space must be carried out before an experiment is designed, if the results are 
to be meaningful. In the case of a previously unused distribution family, this may require 
extensive testing, and even for known distributions considerable care may be needed. 
Simple heuristics for picking parameter settings may not always be adequate, and a 
range of parameter values should be tested at each IZ of interest, to establish where peak 
difficulty is. This is especially true for local search methods, since their incompleteness 
means we have less knowledge about behavior near the transition region. 

While it might be argued that it is too easy to point the finger at previous work 
in light of our current state of knowledge, there is an important lesson for future 
work, especially regarding “more structured” random distributions, such as those used 
in [20], or those used by workers in scheduling or constraint satisfaction. Similar 
pitfalls should be expected with any nontrivial parameterized distribution of random 
problems, and in fact will likely become even more troublesome. Suggestions for “re- 
alistically structured” problem distributions generally have more parameters than the 
currently popular “unstructured” families, so that effects of parameter manipulation on 
problem difficulty may be much more complex. A full understanding requires exami- 
nation of the effects of every parameter, and also of every combination of parameters. 
Understanding all interactions of even five or six parameters is not a task to be taken 
lightly. 

Watching for implicit assumptions in experimental designs is essential. We would 
like to stress two examples of particular importance with random SAT. The first is 
that size alone (or number of variables) is not a useful measure of hardness (cf. 
Section 5). This is important because in evaluating algorithm performance we are most 
interested in what happens as problem size increases. Formulas with 5000 variables, 
50,000 clauses and 500,000 literals [ 161 sound impressively large, but when they are 
from a distribution like the one we called random &lo-SAT, they can be solved very 
easily by a simple procedure like DP, with less than one backtrack on average. The 
second is that manipulating a single parameter while holding others constant does not 
necessarily give us a good indication of how that parameter affects instance difficulty 
(cf. Section 6). This is important because many distributions of interest have multiple 
parameters with interaction effects which are far from intuitively obvious. 
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