
Applied Mathematics Letters 21 (2008) 155–160
www.elsevier.com/locate/aml

From the discrete kinetic theory to modelling open systems of
active particles

I. Brazzoli

Department of Mathematics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Received 2 December 2006; received in revised form 21 January 2007; accepted 23 February 2007

Abstract

This work deals with a methodological development of the kinetic theory for open systems of active particles with discrete
states. It essentially refers to the derivation of mathematical tools which provide the guidelines for modelling open systems in
different fields of applied sciences. After a description of closed systems, mathematical frameworks suitable for depicting the
evolution of open systems are proposed. Finally, some research perspectives towards modelling are outlined.
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1. Introduction

A mathematical discrete kinetic theory for describing the collective behavior of large systems of interacting active
particles has been developed in [1], where the concept of active particles refers to those interacting entities whose
microscopic state includes, in addition to mechanical variables, also additional variables called activities, related to
their peculiar functions. Interactions among the active particles modify their individual state and generate proliferating
and destructive events.

Paper [1] deals with a kinetic methodological approach where a class of evolution equations are proposed for
modelling large systems of interacting individuals such that the microscopic state is a discrete variable; see also [2,
3]. The aim for analyzing such systems is induced by modelling requirements rather than by the intention of reducing
computational complexity.

The variety of mathematical tools provided in [1] can be used towards modelling closed systems in applied sciences.
Therefore the contents refer to methodological aspects, while a specific application is presented in [4], which deals
with the immune competition between tumor and immune cells. The study of methods of the mathematical kinetic
theory for modelling multicellular systems with application to the immune competition is documented in several
recent papers; see [5,6].

On the other hand, a suitable development of the methods of the kinetic theory for active particles applied to open
systems subject to external actions is proposed in [7], which deals with the modelling of degradation phenomena
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for works of art under the action applied by external agents. The model consists in an evolution equation for the
probability distribution of the degradation stage. The interpretation of empirical data provides the identification of the
parameters of the model and a quantitative prediction of degradation events. The analysis developed in [7] motivates
the necessity to define a general framework for open systems of active particles within the discrete kinetic theory
approach.

This work is addressed to a deeper and technical analysis of open systems, with the aim of providing a general
mathematical framework suitable for modelling a large class of physical open systems. The contents of the work are
divided into four sections. Section 1 is this introduction. Section 2 recalls briefly the general structures defined in [1]
to illustrate the evolution in time of closed systems of active particles. Section 3 exploits the frameworks reported in
the preceding section toward the modelling of open systems of active particles. Some generalizations are proposed in
the last part of the section. Finally, in Section 4, the contents of the work are critically analyzed and some perspectives
are given.

2. Mathematical frameworks for closed systems

This section provides a brief survey of the mathematical frameworks relating to closed systems of active particles
proposed in [1]. Consider the class of systems constituted by a large number of active particles organized into n
populations labelled with the subscripts i = 1, . . . , n. The activity of the particles is represented by a discrete variable
u belonging to the set Iu = {u1, . . . , uh, . . . , u H }, with components uh , where h = 1, . . . , H .

Consider the case in which the statistical distributions suitable for describing the overall state of the system depend
only on time. They are the set of functions f = { f h

i }, where each element f h
i = fi (t, u = uh) has been called a

‘discrete generalized distribution function’ corresponding to the i th population and the hth activity uh .
The framework proposed in [1] consists in a set of non-linear differential equations deduced analogously to the

Boltzmann equation, by considering the variation of the test particle number of the i th population with microscopic
state uh in the elementary state volume. Equating the variation rate of the test particles to the fluxes of particles which
reach and leave such a state due to interactions, and the source/sink term, leads to a balance equation, which in the
spatially homogeneous case takes the form

d f h
i

dt
=

n∑
j=1

(
H∑

p,q=1

ηi jB pq
i j (h) f p

i f q
j − f h

i

H∑
q=1

ηi j (1 − µ
hq
i j ) f q

j

)
. (2.1)

The terms modelling the above microscopic interactions are:

- The encounter rate ηi j , which denotes the number of encounters per unit of time between two interacting particles
of the i th and j th populations respectively.

- The discrete transition density B pq
i j (h), which denotes the probability density for a particle of the i th population

with state u p falling into the state uh , after an interaction with a particle of the j th population with state uq .

- The source/sink rate µ
hq
i j , which denotes, for each encounter between a particle of the i th population in the state

uh and a particle of the j th population with state uq , the number of particles generated (in the case of proliferating
interactions) or destroyed (in the case of destructive ones) with state uh in the same population. This last term is
negative in the case of destructive interactions and positive for proliferating ones. Note that proliferation and/or
destruction occurs with the above defined encounter rate.

The mathematical structure of Eq. (2.1) is still relevant for modelling dynamics in which active particles have
the ability to generate new particles in a population (and/or a state) different from those of the interacting pair. The
expressions for the discrete transition density and the source/sink rate are not still valid. The evolution equations
suitable for modelling this kind of phenomenon can be written as follows:

d f h
i

dt
=

n∑
k, j=1

(
H∑

p,q=1

[ηi jB pq
k j (i, h) + ζ

pq
k j (i, h)] f p

i f q
j − f h

i

H∑
q=1

ηi j [1 + ξ
hq
i j ] f q

j

)
. (2.2)

The additional terms B pq
k j (i, h), ζ

pq
k j (i, h) and ξ

hq
i j have been introduced with the following meaning:
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- B pq
k j (i, h) denotes the probability density for the candidate particle of the kth population with state u p falling with

state uh into the i th population, after an interaction with a field particle of the j th population with state uq .
- ζ

pq
k j (i, h) denotes the proliferating encounters between a candidate particle of the kth population in state u p and a

field particle of the j th population in state uq , in which a particle is created in the i th population with state uh .

- ξ
hq
i j denotes the destructive encounters between test particles of the i th population in state uh and field particles of

the j th population with state uq .

3. Mathematical frameworks for open systems

The contents of this section aim at modelling how an open system of active particles interacts with the ‘outer
environment’. Specifically, we mean actions addressed to controlling the system, for instance therapeutical actions
in the case of biological systems [4], actions devoted to optimizing the flow conditions in the case of traffic flow
models [8,9], and actions devoted to controlling economic systems [3]. Consider the specific actions expressed by the
following terms:

- g(c)(t) = {g(c)
k (t)}, which is a set of conservative stochastic actions labelled with the subscripts k = 1, . . . , n.

They are known functions of time and act over the candidate active particle of the i th population in the state u p.

Conservative actions g(c)
k (t) produce a transition of the particle into the state uh .

- g(p)(t) = {g(p)
k (t)}, which is a set of proliferating/destructive stochastic actions labelled with the subscripts

k = 1, . . . , n. They are known functions of time and act over the test active particle of the i th population in
the state uh . Proliferating/destructive actions g(p)

k (t) cause a proliferation or destruction in the state uh of the test
particle.

Modelling the interactions between the system and the ‘outer environment’, composed by the above conservative
and proliferating/destructive actions, is preliminary to deriving the evolution equation for the discrete distribution
function f h

i . These external interactions are modelled computing the following terms:

- The external interaction rate term, denoted as ce
ik , for the candidate or test particle of the i th population interacting

with the kth external conservative or proliferating/destructive action.
- The external and conservative transition density function, denoted as C p

ik(h), which is the probability that a particle
of the i th population with state u p falls into the state uh , after an interaction with the kth conservative external

action g(c)
k .

- The external and proliferating/destructive transition density function, denoted as Ph
ik , which is the proliferating or

destructive rate relating to the test particle of the i th population with state uh , with a birth or death process in its
state due to the interaction with the external non-conservative action g(p)

k .

The derivation of a general mathematical framework for describing such systems is analogous to that of the one
delivered by Eq. (2.1). The introduction of expressions taking into account the external interactions is necessary and
the evolution equations take the form

d f h
i

dt
=

n∑
j=1

(
H∑

p,q=1

ci jB pq
i j (h) f p

i f q
j − f h

i

H∑
q=1

ci j (1 − µ
hq
i j ) f q

j

)

+

H∑
p=1

n∑
k=1

ce
ikC

p
ik(h) f p

i g(c)
k − f h

i

n∑
k=1

ce
ik g(c)

k + f h
i

n∑
k=1

ce
ikP

h
ik g(p)

k . (3.1)

The mathematical framework proposed above is technically generalized in the sequel. Specifically, a mathematical
framework, suitable for modelling open systems of active particles including the ability to generate new particles in a
population (and/or a state) different from those of the interacting pair, is proposed. In detail, applying to Eq. (3.1) the
same technical reasoning as was used in the previous section, the following class of evolution equations is obtained:

d f h
i

dt
=

n∑
j=1

(
H∑

p,q=1

n∑
α=1

[cα jB pq
α j (i, h) + ζ

pq
α j (i, h)] f p

α f q
j − f h

i

H∑
q=1

ci j [1 + ξ
hq
i j ] f q

j

)
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+

n∑
k=1

(
H∑

p=1

n∑
α=1

ce
αkC

p
αk(i, h) f p

α g(c)
k − f h

i ce
ik g(c)

k

)

+

n∑
k=1

(
H∑

p=1

n∑
α=1

ce
αkζ

p
αk(i, h) f p

α g(p)
k − f h

i ce
ikγ

h
ik g(p)

k

)
, (3.2)

where the following terms, which refer to changes of population due to encounters with conservative and non-
conservative external actions, have been introduced:

- C p
αk(i, h), which denotes the probability that the candidate particle of the αth population with state u p falls, with

state uh , into the i th population, after an interaction with the kth conservative external action g(c)
k .

- ζ
p
αk(i, h), which denotes the number of particles created in the i th population with state uh , after an interaction

between a candidate particle of the αth population in state u p and the kth proliferating external action g(p)
k .

- γ h
ik , which denotes the number of test particles destroyed after interactions with kth destructive external actions

g(p)
k .

Guidelines for a further and remarkable generalization of Eq. (3.1) are now developed. Consider the problem
of modelling open systems with the assumption that the generalized distribution functions corresponding to the
external actions depend not only on time, but also on an additional variable. This variable describes the effect of
the ‘outer environment’ on the active particles. The overall effect of the conservative actions is defined by the discrete
generalized distribution functions gm,(c)

k = gk(t, v = vkm ). Similarly, the functions describing the overall effect of the

proliferating/destructive actions are gm,(p)
k = gk(t, z = zkm ). We have introduced conservative actions whose level of

intensity is described by a variable which can assume the set of values {vkm }, for m = 1, . . . , M . On the other hand,
the set {zkm }, for m = 1, . . . , M , is devoted to defining proliferating/destructive actions.

Moreover, the terms C p
ik(h) and Ph

ik need to be substituted, respectively, by the following ones:

- C pm
ik (h), which denotes the probability that a particle of the i th population with state u p falls into the state uh , after

an interaction with the kth conservative external action gm,(c)
k with effect vkm .

- Phm
ik , which denotes the proliferating or destructive rate relating to the test particle of the i th population in the state

uh with a birth or death process in its state due to the interaction with the external non-conservative action gm,(p)
k

with effect zkm .

On the basis of the above considerations and still referring to Eq. (3.1), a mathematical framework suitable for
describing the evolution of the system is

d f h
i

dt
=

n∑
j=1

(
H∑

p,q=1

ci jB pq
i j (h) f p

i f q
j − f h

i
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q=1

ci j (1 − µ
hq
i j ) f q

j

)

+

H∑
p=1

n∑
k=1

M∑
m=1

ce
ikC

pm
ik (h) f p
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k − f h

i

n∑
k=1
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m=1

ce
ik gm,(c)

k

+ f h
i

n∑
k=1

M∑
m=1

ce
ikP
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ik gm,(p)

k . (3.3)

This last equation can be generalized considering also the case where interactions with changes of population are
taken into account. Technical calculations analogous to those performed in Section 2 to obtain Eq. (2.2) yield

d f h
i

dt
=

n∑
j=1
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α f q
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hq
i j ] f q

j

)

+
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+

n∑
k=1

(
H∑

p=1

n∑
α=1

M∑
m=1

ce
αkζ

pm
αk (i, h) f p

α gm,(p)
k − f h

i

M∑
m=1

ce
ikγ

h
ik gm,(p)

k

)
, (3.4)

where:

- C pm
αk (i, h) denotes the probability that the candidate particle of the αth population with state u p falls, with state uh ,

into the i th population, after an interaction with the kth conservative external action gm,(c)
k with effect vkm .

- ζ
pm
αk (i, h) denotes the number of particles created in the i th population with state uh , after an interaction between a

candidate particle of the αth population in state u p and the kth proliferating external action gm,(p)
k with effect zkm .

- γ h
ik denotes the number of test particles destroyed after interactions with kth destructive external actions gm,(p)

k
with effect zkm .

4. Critical analysis and perspectives

A class of mathematical structures have been proposed in this work for describing physical systems within the
kinetic theory of active particles with discrete states. The analysis has been developed for an open system, i.e. in the
presence of external actions generated to control and optimize the evolution of the system.

As already mentioned, the analysis has been motivated by paper [7], which was however limited to the case of
conservative interactions, while this work deals with the more general case of proliferating/destructive events which
occur in various fields of applied sciences, e.g. in biology [4]. In this case, e.g. for multicellular systems [5], specific
therapeutical actions can be possibly addressed to repair or destroy cells that are carriers of pathology in competition
with cells of the immune system which, on the other hand, need to be activated in its specific biological functions.

Additional fields of applications have already been mentioned in Section 3; nevertheless it is not worth analyzing
them in detail considering that this work aims at providing some general frameworks to be used towards modelling
a variety of systems of interest in applied sciences. This objective has been precisely developed in Section 3. Further
developments of the mathematical framework may be possibly addressed to include delay terms, if these are required,
through a learning dynamics [10].

The mathematical structures derived in the preceding sections look at providing additional frameworks of the
kinetic theory for active particles to be used for applications in natural sciences. This work specifically completes the
analysis of [1].

Finally, it is worth mentioning that an interesting perspective is the analysis of the link between the classical kinetic
theory and that of active particles. This topic has been dealt with in [11] for closed systems, while the case of open
systems needs further analysis.
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