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This paper presents some results on the existence and uniqueness of solutions
for the boundary value problems on the half-line with impulses and infinite delay.
Moreover, an existence theorem of multiple solutions is obtained also. The problems
may be singular at the boundary. © 2001 Academic Press

Key Words: boundary value problems; impulses; infinite delay; fixed point index.

1. INTRODUCTION

Boundary value problems on the half-line arise quite naturally in the
study of radially symmetric solutions of nonlinear elliptic equations and
there are many results in this area; see [1–5] for examples. On the other
hand, the theory of impulsive differential equations has been emerging
as an important area of investigations in recent years (see [14, 15]). Very
recently, some authors considered the delay equation x′�t� = f �t� xt�
together with impulses and established some existence and uniqueness
results with initial value(see [16–21]). However, no results are available for
the boundary value problems on the half-line with impulses and infinite
delay. As a result the goal of this paper is to fill the gap in this area. We
obtain some results on the existence and uniqueness of solutions and on
the existence of multiple solutions. Moreover, the problems may be suplin-
ear and singular. A more direct condition than that in [16–19] is obtained
and our theorems improve some results in [8, 11]. Our main techniques
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are the Leray–Schauder theorem and fixed point index theory (see [9]).
Finally, we give some examples in Section 5.

2. PRELIMINARIES

First we give a lemma.

Lemma 2.1. Assume that x � �a� b� → R is a bounded and measur-
able function. Then g�t� = sup	
x�s�
� s ∈ �a� t�� is a measurable function
on �a� b�.
Proof. Given α > 0� E = 	t ∈ �a� b�� g�t� ≥ α�. If t ∈ E, then for all

t ′ ≥ t� g�t ′� ≥ α. So E is an interval. Thus E is measurable. Consequently,
g�t� is a measurable function. The proof is complete.

Assume that h � �−∞� 0� → R is a continuous function with l =∫ 0
−∞ h�t�dt < +∞, h�t� > 0� t ∈ �0�+∞�, and for a > 0, define

BM��−a� 0��� R� = {
ψ � �−a� 0� → R
ψ�t� is a bounded

and measurable function on �−a� 0�}
with norm �ψ��−a� 0� = sups∈�−a� 0� 
x�s�
. By Lemma 2.1 and the definition
of BM , we can define

BMh��−∞� 0�� R� =
{
ψ � �−∞� 0� → R
 for any

c > 0� ψ
∣∣
�−c� 0� ∈ BM��−c� 0�� R� and∫ 0

−∞
h�t��ψ��t� 0�dt < +∞

}

with norm

�ψ�h =
∫ 0

−∞
h�t��ψ��t� 0�dt < +∞�

and

PCl��0�+∞�� R� = {
ψ � �0�+∞� → R
ψ�t� is continuous at each

t �= tk, left continuous at t = tk� ψ�t+k � exists

�k = 1� 2� � � � �m� and lim
t→+∞x�t� exists

}
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with norm

�x�l = sup
t∈�0�+∞�


x�t�
�

PC��0�+∞�� R� = {
ψ � �0�+∞� → R
ψ�t� is continuous at each

t �= tk, left continuous at t = tk� ψ�t+k �
exists �k = 1� 2� � � � �m�}�

It is easy to see that BMh��−∞� 0�� R� and PCl��0�+∞�� R� are Banach
spaces.

Specifically, consider the problem


�Lx��t� + f �t� xt� = 0� t �= tk;
�x
t=tk = Ik�xtk�� k = 1� 2� � � � �m;
λx�0� − β limt→0 p�t�x′�t� = a�
γx�∞� + δ limt→∞ p�t�x′�t� = b�
x�t� is bounded on �0�+∞��

(2.1)

where " ∈ BMh��−∞� 0�� R� and xt is defined by

xt�s� =
{
x�t + s�� t ≥ t + s ≥ 0;
"�t + s�� −∞ < t + s < 0, (2.2)

and f � �0�+∞� × BMh��−∞� 0�� R� → R� Ik � BMh��−∞� 0�� R� →
R�k = 1� 2� � � � �m. Denote �Lx��t� = 1

p�t� �p�t�x′�t��′� p ∈ C��0�+∞��
R�⋂C1�0�+∞�� p�t� > 0 for t ∈ �0�∞�,

�x
tk = lim
ε→0+

[
x�tk + ε� − x�tk − ε�]�

Let λ�β� γ� δ ≥ 0 with βγ + λδ + λγ > 0, and a� b ≥ 0. The following
conditions will be assumed throughout:∫ +∞

0

dt

p�t� < +∞� (2.3)

Denote τ0�t� =
∫ t

0
1

p�s�ds� τ∞�t� = ∫∞
t

1
p�s�ds� ρ

2 = βγ + λδ+ λγ
∫∞

0
1

p�t�dt,
and ρ > 0. Define

u�t� = 1
ρ

[
δ+ γτ∞�t�]� v�t� = 1

ρ

[
β+ λτ0�t�

]
� (2.4)

Then γv + λu ≡ ρ. Let

G�t� s� =
{
u�t�v�s�p�s�� 0 ≤ s ≤ t < ∞
v�t�u�s�p�s�� 0 ≤ t ≤ s < ∞. (2.5)
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Then

lim
t→+∞G�t� s� = u�+∞�v�s�p�s�� s ∈ �0�+∞�� (2.6)

We denote �G�s� = u�+∞�v�s�p�s�� s ∈ �0�+∞�. Let

e�t� = 1
ρ2

[
bλτ0�t� + aγτ∞�t�]+ 1

ρ2 �aδ+ bβ�� (2.7)

From (2.4), (2.5), and (2.7), there exist tm < a∗ < b∗ < +∞ and 1 ≥ c∗ =
c∗�a∗� b∗� > 0 such that

G�t� s� ≥ c∗G�u� s� for ∀t ∈ �a∗� b∗��
u ∈ �0�+∞�� s ∈ �0�+∞�� (2.8)

e�t� ≥ c∗e�s� for ∀t ∈ �a∗� b∗�� s ∈ �0�+∞�� (2.9)

δ+ γτ∞�t� ≥ c∗
[
δ+ γτ∞�s�] for ∀t ∈ �a∗� b∗�� s ∈ �0�+∞�� (2.10)

Write Q = 	x ∈ PCl��0�+∞�� R�� x�t� ≥ 0 with x�t� ≥ c∗x�s� for ∀t ∈
�a∗� b∗�� s ∈ �0�+∞��.

Now we give following lemma.

Lemma 2.2. Suppose x ∈ PCl��0�+∞�� R��a > 0� and xt is defined by
(2.2). Then for t ∈ �0�+∞�� xt ∈ BMh��−∞� 0�� R�. Moreover,

�xt�h ≥ l
x�t�
�
where

l =
∫ 0

−∞
h�s�ds�

Proof. For any t ∈ �0� a�, it is easy to see that for any a > 0� xt is
bounded and measurable on �−a� 0� and∫ 0

−∞
h�s��xt��s�0�ds

=
∫ −t

−∞
h�s��xt��s�0�ds+

∫ 0

−t
h�s��xt��s�0�ds

≤
∫ −t

−∞
h�s�max	�x0��t+s�0���xt��−t�0��
ds+

∫ 0

−t
h�s��x��0�t�ds

≤
∫ 0

−∞
h�s��x0��s�0�ds+2

∫ 0

−∞
h�s�ds sup

s∈�0�t�

x�s�


=�x0�h+2l sup
s∈�0�t�


x�s�


≤�"�h+3l sup
s∈�0�t�


x�s�
� (2.11)
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Since " ∈ BMh��−∞� 0�� R�, then xt ∈ BMh��−∞� 0�� R�. Moreover,

�xt�h =
∫ 0

−∞
h�s��xt��s� 0�ds ≥

∫ 0

−∞
h�s�ds
x�t�
 = l
x�t�
�

The proof is complete.

Remark 2.1. Generally, for x ∈ PCl��0�+∞�� R�� xt is not continuous
at t ∈ �0�+∞�. For example, let

x�t� =
{

0� �0� t1�,
1� �t1�+∞�.

Assume that t ′� t ∈ �t1�+∞� and t > t ′. Then for any s < −t� supr∈�s� 0�

x�t + r� − x�t ′ + r�
 ≥ 1. Then

�xt − xt ′ �h =
∫ 0

−∞
h�s��xt − xt ′ ��s� 0�ds

≥
∫ −t

−∞
h�s��xt − xt ′ ��s� 0�ds

≥
∫ −t

−∞
h�s�ds�

which implies that limt→t ′ �xt − xt ′ � ≥ ∫ −t ′
−∞ h�s�ds. Consequently, xt is not

continuous at t ′. Since t ′ is arbitrary in �t1�+∞�� xt is not continuous
everywhere on �t1�+∞�. Then it is possible that f �t� xt� is not continu-
ous everywhere even if f �t� ψ� is continuous at each �t� ψ� ∈ �0�+∞� ×
BMh��−∞� 0�� R�. In order to assure the integrality of f �t� xt�, it is neces-
sary to advance a suitable condition.

Definition 2.1. A function G � BMh��−∞� 0�� R� → R is said to
be weakly continuous at φ0 ∈ BMh��−∞� 0�� R� if for any 	φn� ⊆
BMh��−∞� 0�� R� with limn→+∞φn�s� = φ0�s�, a.e. s ∈ �−∞� 0�, then

lim
n→+∞G�φn� = G�φ0��

G is said to be weakly continuous on BMh��−∞� 0�� R� if G is weakly
continuous at φ for any φ ∈ BMh��−∞� 0�� R�.
Remark 2.2. This condition is more direct than that in [16], which

requires that f �t� xt� be measurable. The definition includes the condi-
tions in [17–21], where it is required that f �t� ψ� be continuous at each
ψ ∈ L1��−r� 0�� Rn� for all t ∈ �0�+∞�.
Definition 2.2. A function g � �0�+∞� × BMh → R is a L w—

Carathéodary function if the following conditions hold:

(a) the map t → g�t� ψ� is measurable for all ψ ∈ BMh;
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(b) the map ψ → g�t� ψ� is weakly continuous for almost all t ∈
�0�+∞�;

(c) for any r > 0, there exists a µr ∈ L��0�+∞�� R+� such that for
all �ψ�h ≤ r,


g�s� ψ�
 ≤ µr�s�
with

sup
t∈�0�+∞�

∫ +∞

0
G�t� s�µr�s�ds < +∞

and ∫ +∞

0
�G�s�µr�s�ds < +∞�

Lemma 2.3. Assume that D ⊆ PCl��0�+∞�� R� is bounded. Then there
exists an r > 0 such that

�xt�h ≤ r for all x ∈ D and all t ∈ �0�+∞��
Proof. Since D is bounded, there exists a d > 0 such that �x�l ≤ d for

all x ∈ D. By Lemma 2.2, for all t ∈ �0�+∞�,
�xt�h ≤ �"�h + 3l sup

s∈�0� t�

x�s�
 ≤ �"�h + 3ld�

Let r = �"�h + 3ld. Then r is what we need. The proof is complete.

Lemma 2.4. Assume that a function g � �0�+∞� × BMh → R is a
L w—Carathéodary function and x ∈ PCl��0�+∞�� R�. Then g�t� xt� is
measurable.

Proof. We can define x�t� = "�t� for all t ∈ �−∞� 0�. Then there exists
a continuous sequence 	xn� such that

lim
n→+∞xn�t� = x�t�� for all t ∈ �−∞�+∞��

By Lemma 4 in [22], xnt is continuous at t ∈ �0�+∞�. Since g � �0�+∞� ×
BMh → R is a L w—Carathéodary function, then g�t� xnt� is measurable on
�0�+∞�. Since limn→+∞ xnt �s� = xt�s�, for all s ∈ �−∞� 0�, then

lim
n→+∞ g�t� xnt� = g�t� xt�� for all t ∈ �0�+∞��

So g�t� xt� is measurable on �0�+∞�.
By Lemma 2.4 and normal method as in [7, 8], we have following lemma.
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Lemma 2.5. Suppose f is a L w—Carathéodary function. If x satisfies
equation

x�t� = e�t� + �Ax��t� + �Bx��t�� (2.12)

then x is a solution of Eq. (2.1), where

�Ax��t� =
∫ +∞

0
G�t� s�f �s� xs�ds�

�Bx��t� = �δ+ γτ∞�t�� ∑
0<tk<t

Ik�xtk�
δ+ γτ∞�tk�

�

The following theorems are needed in this paper.

Theorem 2.1 (Nonlinear Alternative). Let C be a convex subset of a
normed linear space E, and U be an open subset of C, with p∗ ∈ U . Then
every compact, continuous map N � �U → C has at least one of the following
two properties:

(a) N has a fixed point;
(b) there is an x ∈ ∂U , with x = �1 − λ̄�p∗ + λ̄Nx for some 0 < λ̄ < 1.

Theorem 2.2. Let M ⊆ PCl��0�+∞�� R�. Then M is compact in PCl

×��0�+∞�� R� if the following conditions hold:

(a) M is bounded in PCl;
(b) the functions belonging to M are piecewise equicontinuous on any

interval of �0�+∞�;
(c) the functions from M are equiconvergent, that is, given ε > 0, there

corresponds T �ε� > 0 such that 
f �t� − f �+∞�
 < ε for any t ≥ T �ε� and
f ∈ M .

This theorem is a simple improvement of the Corduneanu Theorem
in [10].

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we list the following conditions for convenience:

�H1� f is a L w—Carathéodary function;
�H2� Ik ∈ C�BMh�R� is bounded, k = 1� 2� � � � �m.

From the proof of Lemma 2.4, for x ∈ PCl��0�+∞�� R+�, we can define

�Jx��t� = e�t� + �Ax��t� + �Bx��t�� t ∈ �0�+∞�� (3.1)
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Lemma 3.1. Assume that �H1� and �H2� hold. Then J � PCl��0�+
∞�� R� → PCl��0�+∞�� R� is completely continuous.

Proof. First we need to prove that for all x ∈ PCl��0�+∞�� R�, Jx ∈
PCl��0�+∞�� R�. By x ∈ PCl��0�+∞�� R� and Lemma 2.3, there exists an
r > 0 such 
f �t� xt�
 ≤ µr�t�. For any t ′ ∈ �0�+∞� and t < t ′,


�Jx��t� − �Jx��t ′�

= 
e�t� − e�t ′� + �Ax��t� − �Ax��t ′� + �Bx��t� − �Bx��t ′�


≤ 
e�t� − e�t ′�
 +
∫ +∞

0

G�t� s� −G�t ′� s�
 
f �s� xs�
ds + 
γτ∞�t ′�

−γτ∞�t�
 ∑
0<tk<t


Ik�xtk�

δ+ γτ∞�tk�

+ 
δ+ γτ∞�t ′�
 ∑
t≤tk<t ′


Ik�xtk�

δ+ γτ∞�tk�

≤ 
e�t� − e�t ′�
 +
∫ +∞

0

G�t� s� −G�t ′� s�
µr�s�ds + 
γτ∞�t ′�

−γτ∞�t�
 ∑
0<tk<t


Ik�xtk�

δ+ γτ∞�tk�

+ 
δ+ γτ∞�t ′�
 ∑
t≤tk<t ′


Ik�xtk�

δ+ γτ∞�tk�

�

By virtue of (c) of Definition 2.2, one has∫ +∞

0

G�t� s� −G�t ′� s�
µr�s�ds ≤ 2 sup

t∈�0�+∞�

∫ +∞

0
G�t� s�µr�s�ds�

Then by the Lebesgue Dominated Convergence Theorem, we get

lim
t→t ′−

�Jx��t� = �Jx��t ′� for t ′ ∈ �0�+∞�� (3.2)

By a similar proof, it is easy to see that

lim
t→t ′+

�Jx��t� = �Jx��t ′� for all but t ′ �= tk� k = 1� 2� � � � � tm�

and �Jx��t+k � exists, k = 1� 2� � � � �m. Now we will prove

lim
t→+∞�Jx��t� = e�+∞� +

∫ +∞

0
�G�s�f �s� xs�ds + δ

m∑
k=1

Ik�xtk�
δ+ γτ∞�tk�

�

For t > tm, one has


�Jx��t� − e�+∞� +
∫ +∞

0
�G�s�f �s� xs�ds + δ

m∑
k=1

Ik�xtk�
δ+ γτ∞�tk�




≤ 
e�t� − e�+∞�
 +
∫ +∞

0

G�t� s� − �G�s�
 
f �s� xs�
ds

+γ
τ∞�t�

m∑
k=1


Ik�xtk�

δ+ γτ∞�tk�

�
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By virtue of (c) of Definition 2.2, we get∫ +∞

0

G�t� s� − �G�s�
 
f �s� xs�
ds ≤ sup

t∈�0�+∞�

∫ +∞

0
G�t� s�µr�s�ds

+
∫ +∞

0
�G�s�µr�s�ds�

Then by the Lebesgue Dominated Convergence Theorem, one has


�Jx��t� − e�+∞� +
∫ +∞

0
�G�s�f �s� xs�ds

+ δ
m∑
k=1

Ik�xtk�
δ+ γτ∞�tk�


 → 0� t → +∞�

Therefore, Jx ∈ PCl��0�+∞�� R�.
Next we show that J � PCl��0�+∞�� R� → PCl��0�+∞�� R� is con-

tinuous. Let y�n� → y�0� in PCl��0�+∞�� R�. Then we must show that
Jy�n� → Jy�0� in PCl��0�+∞�� R�. Since y�n� → y�0� in PCl��0�+∞�� R�,
	y�0�� y�1�� � � � � y�n�� � � �� is bounded in PCl��0�+∞�� R�. By Lemma 2.3,
there exists an r > 0 such that

�y�n�t �h ≤ r� �y�0�t �h ≤ r

for all n ≥ 1 and all t ≥ 0. Then condition �H1� implies that there exists a
µr � �0�+∞� such that 
f �t� ψ�
 ≤ µr�t� for all �ψ�h ≤ r and

sup
t∈�0�+∞�

∫ +∞

0
G�t� s�µr�s�ds < +∞�

and ∫ +∞

0
�G�s�µr�s� < +∞�

First we note that


�Jy�n���+∞� − �Jy�0���+∞�
 ≤
∫ +∞

0
�G�s�
f �s� y�n�s � − f �s� y�0�s �
ds

+ δ
m∑
k=1


Ik�y�n�tk
� − Ik�y�0�tk

�

δ+ γτ∞�tk�

�

Since y�n� → y�0� in PCl��0�+∞�� R�, by the proof of Lemma 2.2, for any
t ∈ �0�+∞�, one has

lim
n→+∞�y�n�t − y

�0�
t � = lim

n→+∞

∫ 0

−∞
h�s��y�n�t − y

�0�
t ��s� 0�ds

≤ lim
n→+∞

∫ 0

−∞
h�s�ds sup

s∈�0� t�

y�n��s� − y�0��s�


≤ l�y�n� − y�0��l
= 0�
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The Lebesgue Dominated Covergence Theorem guarantees that

lim
n→+∞

∫ +∞

0
�G�s�
f �s� y�n�s � − f �s� y�0�s �
ds = 0�

Since Ik � BMh → R is continuous, k = 1� 2� � � � �m, we get

lim
n→+∞ δ

m∑
k=1


Ik�y�n�tk
� − Ik�y�0�tk

�

δ+ γτ∞�tk�

= 0�

So

lim
n→+∞ 
�Jy�n���+∞� − �Jy�0���+∞�
 = 0�

Then for any ε > 0, there exists an N0 ≥ 1 such that for all n ≥ N0


�Jy�n���+∞� − �Jy�0���+∞�
 < ε

3
� (3.3)

Also note that for t > tm


�Jy�n���t� − �Jy�n���+∞�


≤ 
e�t� − e�+∞�
 +
∫ +∞

0

G�t� s� − �G�s�
 
f �s� y�n�s �
ds

+γ
τ∞�t�

m∑
k=1


Ik�y�n�tk
�


δ+ γτ∞�tk�

≤ 
e�t� − e�+∞�
 +
∫ +∞

0

G�t� s� − �G�s�
µr�s�ds

+ 
γτ∞�t�

m∑
k=1


Ik�y�n�tk
�


δ+ γτ∞�tk�
→ 0� as t → +∞�

Similarly, we get


�Jy�0��t� − �Jy�0���+∞�
 → 0� as t → +∞�

Therefore there exists T0 ≥ tm such that for all t ≥ T0


�Jy�n���t�−�Jy�n���+∞�
< ε

3
� 
�Jy�0���t�−�Jy�0���+∞�
< ε

3
(3.4)

for all n ≥ 1. Combining (3.3) and (3.4) yields an N0 ≥ 1 and T0 > tm such
that for all n ≥ N0


�Jy�n���t� − �Jy�0���t�
 < ε (3.5)
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for all t ≥ T0. Let �I1 = �0� t1�, �I2 = �t1� t2�� � � � ��Im = �tm−1� tm�,�Im+1 =
�tm� T0�. For t ∈ �I1,∣∣�Jy�n���t ′� − �Jy�n���t ′′�∣∣ ≤ ∣∣e�t ′� − e�t ′′�∣∣

+
∫ +∞

0

∣∣G�t ′� s� −G�t ′′� s�∣∣µr�s�ds� (3.6)

So 	Jy�n�� is equicontinuous on �I1. By a similiar proof, we know that 	Jy�n��
is equicontinuous on �Ik� k = 1� 2� � � � �m + 1. On the other hand, by the
Lebesgue Dominated Convergence Theorem, for any t ∈ �0� T0�∣∣�Jy�n���t�−�Jy�0���t�∣∣≤∫ +∞

0
G�t�s�

∣∣∣f �s�y�n�s �−f �s�y�0�s �
∣∣∣ds

+∣∣δ+γτ∞�t�∣∣ m∑
k=1


Ik�y�n�tk
�−Ik�y�0�tk

�

δ+γτ∞�tk�

→0�

as n→+∞� (3.7)

Combining (3.6) and (3.7), and using the compactness of �0� T0�, yield an
N1 such that for all n ≥ N1,


�Jy�n���t� − �Jy�0���t��
 < ε

for all t ∈ �0� T0�. Let N = max	N0�N1�. Then for n ≥ N , we get


�Jy�n���t� − �Jy�0���t�
 < ε (3.8)

for all t ∈ �0�+∞�, which implies that

�Jy�n� − Jy�0��l ≤ ε�

So Jy�n� → Jy�0� as n → +∞.
Finally, we show that J � PCl��0�+∞�� R� → PCl��0�+∞�� R� is com-

pletely continuous. Assume that 9 ⊆ PCl��0�+∞�� R� is bounded. By
Lemma 2.3, there exists an r > 0 such that for all x ∈ 9� t ∈ �0�+∞�,
�xt� ≤ r. From condition �H1�, there exists an µr ∈ L such that

f �t� ψ�
 ≤ µr�t� for all �ψ�h ≤ r� t ∈ �0�+∞�. Then for x ∈ 9,


�Jx��t�
≤
e�t�
+
∫ +∞

0
G�t�s�µr�s�ds+�δ+γτ∞�t�� ∑

0<tk<t


Ik�xtk�

δ+γτ∞�tk�

�

≤�e�l+ sup
t∈�0�+∞�

∫ +∞

0
G�t�s�µr�s�ds+ sup

t∈�0�+∞�
�Bx��t�=M0�

We can prove (b) and (c) of Theorem 2.2 in exactly the same way that
we prove (3.6) and (3.3), respectively. Therefore, by Theorem 2.2, J � PCl

×��0�+∞�� R� → PCl��0�+∞�� R� is completely continuous. The proof is
complete.
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Theorem 3.1. Suppose that �H1� and �H2� hold. In addition suppose
there exists an M > 0 such that for any λ̄ ∈ �0� 1�, if y is a solution of equation




�Lx��t� + λ̄f �t� xt� = 0� t �= tk;
�x
t=tk = λ̄Ik�xtk�� k = 1� 2� � � � �m,
λx�0� − β limt→0 p�t�x′�t��t� = a�
γx�∞� + δ limt→∞ p�t�x′�t��t� = b�
x�t� is bounded on �0�+∞��

�1�1�λ̄

then �y�l �= M , where " ∈ BMh��−∞� 0�� R� and xt is defined by (2.2). Then
Eq. (2.1) has at least one solution.

Proof. For x ∈ PCl��0�+∞�� R�, the operator J � PCl��0�+∞�� R� →
PCl��0�+∞�� R� is defined by (3.1). By Lemma 3.1, J is completely
continuous.

Let 9 = 	x ∈ PCl��0�+∞�� R�� �x�l < M�. We can now apply the Non-
liear Alternative with N = �0�+∞� and C = PCl��0�+∞�� R�. Possibility
(b) of Theorem 2.1 cannot occur. Consequently, J has a fixed point in 9,
that is, Eq. (2.1) has a solution.

By virtue of Theorem 3.1, we have the following theorem.

Theorem 3.2. Suppose that �H1� and �H2� hold. In addition suppose the
following conditions hold:

(a) there exists a continuous and nondecreasing function f1 � �0�+
∞� → �0�+∞� with f1�u� > 0 for u > 0 and a q ∈ L with q�t� > 0 for
a.e. t ∈ �0�+∞� such that 
f �t� φ�
 ≤ q�t�f1��φ�h� for all t ∈ �0�+∞�,
φ ∈ BMh;

(b) there exist continuous and nondicreasing functions Pk � �0�+∞� →
�0�+∞�� k = 1� 2� � � � �m such that


Ik�ψ�
 ≤ Pk��ψ�h�� k = 1� 2� � � � �m

for all ψ ∈ BMh;
(c) let

sup
c∈�0�+∞�

c

�e�l + q0f1��"�h + 3lc� + �δ+ γτ∞�0��
∑m

k=1�Pk��"�h + 3lc�/�δ+ γτ∞�tk���
> 1�

where q0 = supt∈�0�+∞�
∫ +∞

0 G�t� s�q�s�ds < +∞.

Then Eq. (2.1) has at least one solution in PCl��0�+∞�� R�.
Proof. Let M0 > 0 satisfy

M0

�e�l + q0f1��"�h + 3lM0� + �δ+ γτ∞�0��
∑m

k=1�Pk��"�h + 3lM0�/�δ+ γτ∞�tk���
> 1�
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For λ0 ∈ �0� 1�, suppose y is a solution of Eq. �3�9�λ0
with �y�l = M1. Then

for t ∈ �0�+∞�

y�t�
≤
e�t�
+
�Ay��t�
+
�By��t�


≤
e�t�
+
∫ +∞

0
G�t�s�q�s�f1��ys�h�ds

+
δ+γτ∞�t�
 ∑
0<tk<t

Pk��ytk 
h�
δ+γτ∞�tk�

≤�e�l+
∫ +∞

0
G�t�s�q�s�f1��"�h+3lM1�ds

+�δ+γτ∞�t�� ∑
0<tk<t

Pk��"�h+3lM1�
δ+γτ∞�tk�

≤�e�l+q0f1��"�h+3lM1�+�δ+γτ∞�0��
m∑
k=1

Pk��"�h+3lM1�
δ+γτ∞�tk�

�

So

M1 = sup
t∈�0�+∞�


y�t�
 ≤ �e�l + q0f1��"�h + 3lM1�

+ �δ+ γτ∞�0��
m∑
k=1

Pk��"�h + 3lM1�
δ+ γτ∞�tk�

�

which implies that
M1

�e�l + q0f1��"�h + 3lM1� + �δ+ γτ∞�0��
∑m

k=1�Pk��"�h + 3lM1�/�δ+ γτ∞�tk���
≤ 1�

Then M1 �= M0, which yields that the condition of Theorem 3.1 is true. By
Theorem 3.1, Eq. (2.1) has at least one solution.

Theorem 3.3. Suppose that �H1� and �H2� hold. In addition suppose
there exist q ∈ L and c1� � � � � cm such that


f �t� ψ� − f �t� φ�
 ≤ q�t��ψ−φ�h
and


Ik�ψ� − Ik�φ�
 ≤ ck�ψ−φ�h� k = 1� 2� � � � �m

for all ψ�φ ∈ BMh with

k = l

(
sup

t∈�0�+∞�

∫ +∞

0
G�t� s�q�s�ds + �δ+ γτ∞�0��

m∑
k=1

ck
δ+ γτ∞�tk�

)
< 1�

Then Eq. (2.1) has a unique solution.
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Proof. For x� y ∈ PCl��0�+∞�� R�, by the proof of Lemma 2.2, we get

�xt − yt�h =
∫ +∞

0
h�s��xt − yt��s� 0�ds ≤ l�x− y�l

for all t ≥ 0. Then


�Jx��t�−�Jy��t�


≤
∫ +∞

0
G�t�s�
f �s�xs�−f �s�ys�
ds

+�δ+γτ∞�t�� ∑
0<tk<t


Ik�xtk�−Ik�ytk�

δ+γτ∞�tk�

≤
∫ +∞

0
G�t�s�q�s��xs−ys��hds+�δ+γτ∞�t�� ∑

0<tk<t

ck�xtk−ytk�h
δ+γτ∞�tk�

≤
∫ +∞

0
G�t�s�q�s�dsl�x−y�l+�δ+γτ∞�t�� ∑

0<tk<t

lck�xtk−ytk�h
δ+γτ∞�tk�

≤k�x−y�l�
Then

�Jx− Jy�l = sup
t∈�0�+∞�


�Jx��t� − �Jy��t�
 ≤ k�x− y�l�

So J � PCl��0�+∞�� R� → PCl��0�+∞�� R� is a contraction map and there
exists a unique fixed point in PCl��0�+∞�� R�, that is, Eq. (2.1) has a
unique solution.

4. THE EXISTENCE OF MULTIPLE SOLUTIONS

Let Qh = 	x ∈ BMh� x�t� ≥ 0 for all t ≥ �−∞� 0��. By the fixed point
index theory in cone, we can obtain an results on the existence of multiple
solutions.

Theorem 4.1. Suppose that the conditions �H1� and �H2� hold in Section 3.
In addition suppose f � �0�+∞� × Qh → �0�+∞� and Ik � Qh → �0�+∞�
and

(a) there exist two continuous and nondecreasing functions f1� f2 �
�0�+∞� → R+ with f1�u� > 0� f2�u� > 0 for u > 0 and two nonneg-
ative q� q̄ ∈ L with q�t� > 0� q̄�t� > 0 for a.e. t ∈ �0�+∞� such that
q̄�t�f2�
φ�0�
� ≤ f �t� φ� ≤ q�t�f1��φ�h� for all t ∈ �0�+∞�� φ ∈ BMh;
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(b) there exist continuous and nondecreasing functions Pk � �0�+∞� →
�0�+∞�� k = 1� 2� � � � �m such that

Ik�ψ� ≤ Pk��ψ�h�� k = 1� 2� � � � �m

for all ψ ∈ Qh;
(c) let

sup
c∈�0�+∞�

c

�e�l + q0f1��"�h + 3lc� + �δ+ γτ∞�0��
∑m

k=1�Pk��"�h + 3lc�/�δ+ γτ∞�tk���
> 1�

where q0 = supt∈�0�+∞�
∫ +∞

0 G�t� s�q�s�ds < +∞;
(d) let

lim
u→+∞

f2�u�
u

= +∞� (4.1)

Then Eq. (2.1) has at least two nonnegative solutions in PCl��0�+∞�� R�.
Proof. First we will prove that JQ ⊆ Q. For x ∈ Q, it is easy to see that

�Jx��t� ≥ 0 for all t ∈ �0�+∞�, and by virtue of (2.8), (2.9), and (2.10), for
t ∈ �a∗� b∗�

�Jx��t�=e�t�+
∫ +∞

0
G�t�s�f �s�x�s��ds+�δ+γτ∞�t��

m∑
k=1

�Ik�xtk�
δ+γτ∞�tk�

≥c∗
[
e�u�+

∫ +∞

0
G�u�s�f �s�x�s��ds+�δ+γτ∞�u��

×
m∑
k=1

Ikx��tk�
δ+γτ∞�tk�

]

=c∗�Jx��u�
for all u ∈ �0�+∞�. Therefore JQ ⊆ Q.

By condition (c), we choose an M0 > 0 such that
M0

�e�l+q0f1��"�h+3lM0�+�δ+γτ∞�0��∑0<tk<t
�Pk��"�h+3lM0�/�δ+γτ∞�tk��� > 1� �4�2�

Condition (d) implies that there exists an M1 > M0 such that

f2�u� ≥ N∗u (4.3)

for all n ≥ M1, where

N∗ >
(
c∗ inf

t∈�a∗� b∗�

∫ b∗

a∗
G�t� s�q�s�ds

)−1

�

Let M ′ = max	M1� �2M0/c
∗�� and define

91 = {
x ∈ PCl��0�+∞�� R�
 �x�l < M0

}
�
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and

92 = {
x ∈ PCl��0�+∞�� R�∣∣�x�l < M ′}�

If there exists a λ0 ∈ �0� 1� and x ∈ ∂91 ∩ Q with x = λ0Ax, then for
t ∈ �0�+∞�


x�t�
≤
e�t�
+
�Ax��t�
+
�Bx��t�


≤
e�t�
+
∫ +∞

0
G�t�s�q�s�f1��xs�l�ds

+�δ+γτ∞�t�� ∑
0<tk<t

Pk��xtk�h�
δ+γτ∞�tk�

≤�e�l+
∫ +∞

0
G�t�s�q�s�f1��"�h+3lM0�ds

+�δ+γτ∞�t�� ∑
0<tk<t

Pk��"�h+3lM0�
δ+γτ∞�tk�

≤�e�l+q0f1��"�h+3lM0�+�δ+γτ∞�0��
m∑
k=1

Pk��"�h+3lM0�
δ+γτ∞�tk�

�

So

M0 = sup
t∈�0�+∞�


x�t�
 ≤ �e�l + q0f1��"�h + 3lM0�

+ �δ+ γτ∞�0��
m∑
k=1

Pk�� Phi�h + 3lM0�
δ+ γτ∞�tk�

�

which implies that
M0

�e�l + q0f1��"�h + 3lM0� + �δ+ γτ∞�0��
∑m

k=1�Pk��"�h + 3lM0�/�δ+ γτ∞�tk���
≤ 1�

This contradicts (4.2). Then for any x ∈ ∂91 ∩ Q and any λ̄ ∈ �0� 1�� x �=
λ̄Jx, which implies that

i�J�Q ∩91�Q� = 1� (4.4)

Now for x ∈ ∂92 ∩Q, if �Jx��t� ≤ x�t�� t ∈ �0�+∞�, then for t ∈ �a∗� b∗�
x�t� ≥ �Jx��t�

≥
∫ +∞

0
G�t� s�f �s� xs�ds

≥
∫ +∞

0
G�t� s�q̄�s�f2�x�s��ds
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≥
∫ b∗

a∗
G�t� s�q̄�s�f2�x�s��ds

>
∫ b∗

a∗
G�t� s�q̄�s�N∗x�s�ds

≥
∫ b∗

a∗
G�t� s�q̄�s�dsN∗c∗�x�l

> �x�l�

This is a contradiction. Then for any x ∈ ∂92 ∩Q� Jx�x, which implies

i�J�92 ∩Q�Q� = 0� (4.5)

So

i�J� �92 −91� ∩Q�Q� = −1� (4.6)

By (4.4) and (4.6), J has a fixed point x1 ∈ 91 ∩Q and a fixed point x2 ∈
�92 −91� ∩Q. x1 and x2 are two nonnegative solutions of Eq. (2.1).

5. SOME EXAMPLES

In this section, we will give some examples to illustrate the theorems in
Section 4.

Example 5.1. Consider the problem

x′′�t� + iti−1

1+ti x
′�t� +φ�t�(ln(2 + ∫ 0

−∞ es
xt�s�
ds
)

+x
1
3 �t� + x

1
5 �t − 1�) = 0� t ∈ �0�+∞� − 	1��

�xt=1 = ln
(
1 + ∫ 0

−∞ e2s
x1�s�
ds
)�

x�0� = 0� limt→+∞�1 + ti�x′�t� = 0�
(5.1)

where

φ�t� =
{

1
200 t

− 1
2 � t ∈ �0� 1�;

1
50�1+ti�2 � t ∈ �1�+∞�,

1 < i, and

"�t� = t · sgn�cos t�� t ∈ �−∞� 0��

Conclusion. Problem (5.1) has at least one solution.
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Proof. Let h�t� = et� t ∈ �−∞� 0�. Then l = ∫ 0
−∞ etdt = 1 and we can

define BMh-space and PCl-space. It is easy to see that p�t� = 1 + ti and

f �t� ψ� = φ�t�
(

ln
(

2 +
∫ 0

−∞
es
ψ�s�
ds

)
+ ψ

1
3 �0� + ψ

1
5 �−1�

)

I1�ψ� = ln
(

1 +
∫ 0

−∞
e2s
ψ�s�
ds

)
for t ∈ �0�+∞� × BMh. If y ∈ PCl is a solution of


�Lx��t� + λ̄f �t� xt� = 0� t �= 1�
�x

∣∣
t=1 = λ̄I1�x1��

x�0� = 0� limt→+∞�1 + ti�x′�t� = 0�
x�t� is bounded on �0�+∞��

�5�1�λ̄

then


y�t�
 ≤
∫ +∞

0
G�t� s�φ�s�

(
ln
(

2 +
∫ 0

−∞
es
ys�r�
dr

)
ds

+ y
1
3 �s� + y

1
5 �s − 1�

)
+ ∑

0<1<t

I1�y1�

≤
∫ +∞

0
G�t� s�φ�s�ds

(
ln�2 + �"�h + 3�y�l� + �y�

1
3
h + e

1
5 �y�

1
5
h

)
+ ln�1 + �"�h + 3�y�l�� t ∈ �0�+∞��

which implies

�y�l≤ sup
t∈�0�+∞�

∫ +∞

0
G�t�s�φ�s�ds

(
ln�2+�"�h+3�y�l�+�y�

1
3
h+e

1
5 �y�

1
5
h

)
+ ln�1+�"�h+3�y�l��

Thus there exists a c > 0 such that �y�l < c for all y satisfies �5�1�λ̄. Now
by virtue of Theorem 3.1, Eq. (5.1) has at least one solution.

Example 5.2. Consider the problem


x′′�t� + 2t
1+t2 x

′�t� +φ�t�
(

ln
(

2 + ∫ 0
−∞ es
xt�s�
ds

)
+x�t� + x�t − 1�

)
= 0� t ∈ �0�+∞� − 	1�;

�xt=1 = 1
2 ln

(
1 + ∫ 0

−∞ e2s
x1�s�
ds
)
�

x�0� = 0� limt→+∞�1 + ti�x′�t� = 0�+

�5�2�

where

φ�t� = 1
4π2�2 + e�2�1 + ti�2 � t ∈ �0�+∞��

"�t� = t · sgn�cos t�� t ∈ �−∞� 0��
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Conclusion. Problem (5.2) has a unique solution in PCl��0�+∞�� R�.
Proof. Let h�t� = et� t ∈ �−∞� 0�. Then l = ∫ 0

−∞ etdt = 1 and we can
define BMh-space and PCl-space. It is easy to see that p�t� = 1 + t2 and

f �t� ψ� = φ�t�
(

ln
(

2 +
∫ 0

−∞
es
ψ�s�
ds

)
+ ψ�0� + ψ�−1�

)
�

and

I1�ψ� =
1
2

ln
(

1 +
∫ 0

−∞
e2s
ψ�s�
ds

)

for t ∈ �0�+∞� × BMh and


f �t� ψ1� − f �t� ψ2�
 ≤ φ�t��2 + e��ψ1 − ψ2�h��
and


I1�ψ1� − I1�ψ2�
 ≤
1
2
��ψ1 − ψ2�h��

Then

k = sup
t∈��0�+∞�

[∫ +∞

0
G�t� s�φ�s�ds

]
+ 1

2
< 1�

So the conditions of Theorem 3.3 hold. Then Eq. (5.2) has a unique solution
in PCl��0�+∞�� R�.
Example 5.3. Consider the problem




x′′�t� + 2t
1+t2 x

′�t� +φ�t�
(

ln
(

2 + ∫ 0
−∞ es
xt�s�
ds

)
+x3�t� + x

1
5 �t − 1�

)
= 0� t ∈ �0�+∞� − 	1�,

�x
t=1 = 1
8x�1��

x�0� = 0� limt→+∞�1 + t2�x′�t� = 0�

�5�3�

where

φ�t� = 1
4π2�ln 6 + 64 + 41/5e1/5��1 + t2�2

and

"�t� = 
 sin t
� t ∈ �−∞� 0��
Conclusion. Problem (5.3) has at least two nonnegative solutions.
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Proof. Let h�t� = et� t ∈ �−∞� 0�. Then l = ∫ 0
−∞ etdt = 1 and we can

define BMh-space and PCl-space. Q is defined in Section 2. It is easy to
see that p�t� = 1 + t2 and

f �t� ψ� = φ�t�
(

ln
(

2 +
∫ 0

−∞
es
ψ�s�
ds

)
+ ψ3�0� + ψ

1
5 �−1�

)
�

I1�ψ� =
1
8
ψ�0��

It is easy to see that

φ�t�ψ3�0� ≤ f �t� ψ� ≤ φ�t�(ln�2 + �ψ�h� + �ψ�3
h + e

1
5 �ψ�

1
5
h

)
�


I1�ψ�
 ≤
1
8
�ψ�h

for all t ∈ �0�+∞� and ψ ∈ Qh. Then f1�x� = ln�2 + x� + x3 +
e1/5x1/5� q�t� = φ�t�� f2�x� = x3� q̄�t� = φ�t�. Now limx→+∞�f2�x�/x� =
+∞ and

sup
c∈�0�+∞�

c

q0f1��"�h + 3c� + P1��"�h + 3c� ≥ 1
q0f1�4� + P1�4�

> 1�

where q0 = supt∈�0�+∞�
∫ +∞

0 G�t� s� φ�s�ds ≤ 1
4 . So the conditions

of Theorem 4.1 hold. Thus Eq. (5.3) has at least two nonnegative
solutions.
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