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a b s t r a c t

Corrosion behavior of 9Cr–1Mo steel (P91) with flowing Pb–17Li has been studied in a thermal

convection loop at a thermal gradient of 100 K between the hot and cold legs and a flow

velocity of 6 cm/s. After 1000 h of operation, samples of P91 from both hot and cold legs

were analyzed with the help of weight change measurements, Scanning Electron Microscopy

coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe Micro Analysis

(EPMA). The results showed preferential dissolution of constituent elements like Fe and Cr

from the hot leg samples leading to weight loss, though penetration of Pb–17Li into the inner

matrix was not observed. No corrosion was found in the cold leg and the sample surface
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SEM-EDS

EPMA

was found to contain deposits of the elements dissolved from hot leg.
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1. Introduction

One of the key challenges in the march toward demonstration
of an engineered nuclear fusion reactor concerns the com-
patibility of materials with the potential coolants. With an
objective to provide in-house breeding of tritium, lead–17 at.%
lithium eutectic (Pb–17Li) has been proposed by many
researchers as the coolant, breeder and neutron multiplier
for fusion systems. This material provides effective tritium
breeding and is safer, relative to molten lithium, under acci-

dent conditions since it is less reactive with air and water [1].
However, Pb–17Li has been found to be more corrosive toward
structural materials than pure lithium and the corrosion rate
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is affected by various factors like temperature, flow velocity,
etc [1,2]. Along with that, the accumulation of corrosion prod-
ucts in the cooler areas is expected to cause flow restrictions
that can increase pumping power requirements and decrease
heat transport. In this regard, different classes of structural
materials have been investigated for their corrosion com-
patibility with Pb–17Li in static and dynamic systems [3–6].
The corrosion mechanism is generally governed by solubility
driven mass transfer [7]. It was found that austenitic steels
have a poor resistance to Pb–17Li because of the high solu-
bility of nickel [7,8]. Presently, ferritic martensitic steels have

come up as better candidates for fusion reactor applications
due to their higher irradiation stability and are expected to
have better compatibility due to their very low nickel content

.ublished by Elsevier Editora Ltda.
/j.jmrt.2013.04.001

https://core.ac.uk/display/82731856?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
dx.doi.org/10.1016/j.jmrt.2013.04.001
http://www.jmrt.com.br
mailto:myworld.pc@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


j m a t e r r e s t e c h n o l . 2 0 1 3;2(3):206–212 207

Specimens

Heater 
(H10)

Heater
(H9)

Heater 

(H8)

Heater 

(H7)

Heater 

(H6)

Heater 
(H5)

Heater 
(H4)

Heater 
(H2)

Heater 
(H3)

C
ol

d 
le

g

Tc (400º C)

Tc (400º C)

Heater
(H1)

(480º C)Tc 

Tc (470º C)

Air cooled heat exchanger

Tc 

Spark Plug
(Level Indicator)

H
ot

 le
g

Tc (400º C)

Tc (420º C)

Tc (450º C)

Expansion
Tank

Tc (420º C)

Air Out

Air In

Vacuum Line

Gas Line

Tc (350º C)

Spark Plug
(Level Indicator)

(510º C)Tc 

(500º C)Tc 

Tc (410º C)

Tc (380º C)

Electromagnetic
Flow indicator

Tc (300º C)

Lead 
Lithium
Melting
Tank

Gas Line (Argon)
[Through purifier]

of th

[
i
c
[
f
P
h
d

2

T
c

Fig. 1 – Schematic drawing

9,10]. Modified 9Cr–1Mo steel (P91) is such a steel developed
n the 1970s as part of a program for developing advanced
reep resistant alloys for fast breeder power reactor programs
10–12]. The present paper discusses the results obtained
rom a 1000 h experiment to study the corrosion behavior of
91 steel in a thermally convective flow of Pb–17Li [4]. Samples
ave been exposed both at the hot and cold legs such that
issolution and deposition data could be presented together.

. Experimental
he experiment was conducted in a 0.8 L capacity thermal
onvection loop as shown in Fig. 1. For the present study,
e thermal convection loop.

modified 9Cr–1Mo (P91) coupons in normalized and tempered
condition and having dimensions of 10 mm × 35 mm × 2 mm
were placed in the loop. Five such samples each were placed
in the hot and cold legs at locations indicated in Fig. 1.
The chemical composition of P91 material taken from the
unexposed coupons is given in Table 1. The entire loop was
fabricated from a combination of SS316L and P91 pipes hav-
ing 12 mm internal diameter and 2 mm wall thickness. P91
material was used for fabricating the hot leg region of the loop
whereas SS316L was used for the rest. Kanthal heaters (H)

of different capacities along with K type thermocouples (Tc)
were wrapped on the pipe as indicated in Fig. 1. Spark plugs
acted as conduction probes for level indicators in the melt
tank and expansion tank. Pb–17Li chunks were placed in the
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Table 1 – Chemical composition of the P91 steel.

Elements C Cr Mo Mn Ni V Nb Fe

0.39 0.14 0.25 0.14 Balance

Table 3 – Deposition rate for cold leg samples at 673 K.

Initial
weight (g)

Final
weight (g)

Gain (g) Deposition
rate (�g/cm h)

Upstream 4.3091 4.3205 0.0114 1.12
Downstream 4.1651 4.1651 0.0139 1.37

Table 4 – Composition of lead–lithium eutectic from hot
and cold leg.

Cr Fe Mo

metallic species had dissolved into the adjacent liquid metal
during the loop operation. Lithium could not be detected due
wt.% 0.006 9.12 1.09

melt tank and a positive cover gas pressure of purified argon
was maintained over the entire loop. Expansion tank allows
accommodating the volumetric changes in the liquid eutectic
during heating or cooling operations and other temperature
fluctuations. Initially, the temperature of the entire loop along
with the melt tank was raised and maintained at 573 K. Filling
operation of the entire loop was carried out by gas pressur-
ization method till desired level was achieved as indicated by
expansion tank level sensor. After filling of the loop, the power
input to different heaters was adjusted in such a way that the
samples at hot leg experienced a uniform temperature of 773 K
(500 ◦C) whereas those at the cold leg were maintained at 673 K
(400 ◦C). The air cooled heat exchanger facilitated cooling of
the liquid eutectic to desired temperature before entering the
cold leg. A flow velocity of 6 cm/s for the molten eutectic was
achieved through a temperature gradient of 100 K as measured
by the electromagnetic flow meter attached at the cold leg.

After 1000 h of operation, molten Pb–17Li was drained back
into the melt tank and all the P91 samples were taken out
under argon atmosphere. A few of the samples from both
the legs were cleaned off the adhering Pb–17Li by repeatedly
exposing to a solution of acetic acid, ethyl alcohol and hydro-
gen peroxide mixed in the ratio of 1:1:1. Both these cleaned
and the rest un-cleaned samples were used for further char-
acterization.

The corrosion rate of P91 steel in thermally convec-
tive Pb–17Li was calculated as a function of time using
weight loss measurements. The corroded surfaces were
observed and analyzed for environmentally induced composi-
tional changes. Microstructural and compositional data were
obtained from Scanning Electron Microscopy coupled with
Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe
Micro Analysis (EPMA). For the above characterization pur-
poses, the samples were etched in Picral (picric acid:ethyl
alcohol = 1:1). The lead–lithium eutectic after exposure was
analyzed by Inductively Coupled Plasma – Atomic Emission
Spectroscopy (ICP-AES).

3. Results

Weight loss data for hot leg samples indicated sufficient

dissolution from P91 at 773 K. As observed from Table 2, the
dissolution rates were higher at the upstream side probably
due to greater temperature stabilization in this zone. On

Table 2 – Dissolution rate for hot leg samples at 773 K.

Initial
weight (g)

Final
weight (g)

Loss (g) Dissolution
rate (�g/cm h)

Upstream 4.2209 4.0150 0.2059 20.3
Downstream 4.5219 4.3745 0.1474 14.5
Hot leg 58 158 83
Cold leg 7 62 27

the other hand, an increase in weight was observed for P91
samples placed at 673 K in the cold leg. As indicated in Table 3,
the deposition of corrosion product was higher downstream
in the cold leg. This was possibly due to the effect of gravity
on the deposition process. For a period of 1000 h, an average
dissolution rate 17 �g/cm2 h and an average deposition rate
of 1.2 �g/cm2 h was obtained.

After draining the liquid metal into the melt tank, adher-
ent Pb–17Li from hot and cold legs were subjected to chemical
analysis and the results are reported in Table 4. The idea was
to find the difference in dissolved species concentration in the
liquid metal at higher and lower temperature. The results indi-
cated a much lower content of Cr, Mo and Fe in the cold leg
sample than in the hot leg.

The P91 samples were subjected to structural and com-
positional analysis before and after cleaning of the adherent
layer of Pb–17Li. Fig. 2a shows a prominent whitish layer of
lead–lithium eutectic on the un-cleaned sample exposed at
773 K in the hot leg. It could be noted from the SEM image
at Fig. 2b that this layer is finely divided into two sublayers.
The composition of the two layers as obtained from EDS is
reported in Table 5. The outer layer indicated the presence of
24% oxygen whereas the inner layer contained small amount
of chromium and iron along with 14% oxygen, indicating that
to limitation in EDS. After cleaning of the hot leg sample, a thin

Table 5 – Composition of outer and inner layer of
lead–lithium alloy on P91 specimen at 773 K.

Element Outer layer of Pb–17Li Inner layer of Pb–17Li

Lead 74.83 81.30
Oxygen 24.56 14.56
Iron 0.61 2.44
Chromium – 1.19
Nickel – 0.61
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Fig. 2 – Cross section of P91 samples placed in the hot leg
at 773 K; (a) uncleaned sample, (b) uncleaned sample with
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Fig. 3 – Profile of Fe and Cr across the P91 surface facing
lead–lithium at 773 K.

Table 6 – Average composition of deposits at 673 K from
EDS analysis.

Element Deposit

Iron 33.34 ± 1.2

scattered over the surface as could be observed from the SEM
image in Fig. 6b. From the average composition taken over a
ouble layer of lead–lithium deposit and (c) cleaned sample.

orroded layer was observed along the boundary as shown in
ig. 2c. When elemental line scans were taken across this layer,
oth Fe and Cr were found to drop down from their matrix
alues near the interface as shown in Fig. 3.

Further analysis of the corroded surface was carried out
n hot leg samples using EPMA. Fig. 4 shows the back scat-
ered image of the P91 sample from hot leg of buoyancy loop.

omposition scans of iron, chromium and lead, as depicted in
ig. 5a–c respectively, were taken along the red line in Fig. 4. It
as observed that Fe and Cr got depleted from a very shallow
Chromium 65.69 ± 1.9
Nickel 0.98 ± 0.08

surface layer. The depth of this layer was not more than 4 �m.
On the other hand, no penetration of lead into the matrix along
this surface layer was observed.

Analysis of the un-cleaned sample kept at 673 K in the
cold leg indicated a much thicker deposit of Pb–17Li as shown
in Fig. 6a. EDS at the interface gave no evidence of dis-
solution since the composition remained similar to matrix
composition. Cleaning of the sample revealed smaller deposits
Fig. 4 – BSE image of hot leg P91 sample. Straight line
across the boundary represents the direction of EPMA
scans.
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number of deposits (Table 6), it could be observed that they
were significantly richer in chromium.

4. Discussion

It was observed that the corrosion rate of 17 �g/cm2 h for
P91 steel was lesser than that of austenitic steels under
similar conditions (i.e. 27 �g/cm h) [7]. The obvious reason
for this is the presence of negligible quantity of nickel in
ferritic–martensitic steels like 9Cr–1Mo. In this context, it has
been already established that nickel has the highest solubility
in Pb–17Li [13] and constitutes the major portion of the dis-
solved species in case of austenitic stainless steel. Deposition
of dissolved species in the cold leg was due to lowering of

solubility limit in lead–lithium eutectic at lower temperature
(673 K) thus leading to weight gain [14]. Since deposition
was much lesser than dissolution, it was evident that large
amounts of dissolved products must have remained in the
ad across the exposed P91 surface at 773 K.

liquid itself. The same was confirmed from the chemical
analysis of the lead–lithium eutectic.

Corrosion of modified 9Cr–1Mo steel in Pb–17Li is initi-
ated by dissolution of the oxide scale present on its surface.
It has been confirmed by Konys et al. that during vacuum
heat treatment, a two layer oxide scale develops on P91 sur-
face, containing an inner layer of (Fe, Cr)2O3 and an outer
layer of MnCr2O4 [15]. They also established that corrosion of
steel matrix begins only after dissolution of these oxides in
the liquid alloy. Thus, interaction of Pb–17Li with this scale
could result in oxidation of lithium and presence of lead-
oxide in the layer adherent to the P91 surface. The inner
layer of this oxide scale containing metallic species like iron
and chromium is expected to contain the reaction products
of the above interaction. On cleaning the P91 samples, the
non-uniformly corroded surface was observed in Fig. 2c. This

predicts that dissolution of the oxide scale had occurred non-
uniformly thus exposing fresh P91 surface to the Pb–17Li alloy.
Similar observations have been also made by Konys et al. [15]
Afterwards, leaching of soluble alloying elements like Fe and
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Fig. 6 – P91 sample placed in the cold leg at 673 K (a)
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Microstructural analysis of candidate steels pre-selected for
ncleaned sample, (b) cleaned sample showing deposits.

r, from the steel surface into the Pb–17Li had started thereby
ausing a weight loss as indicated in Table 1. This led to the
ormation of a 4 �m deep depleted layer on the surface as
bserved in EPMA scans.

From the analysis of P91 samples kept in the cold leg, it
as clear that corrosion by Pb–17Li does not place at 673 K.
he dissolved species in the hot leg were transported to the
old leg through the liquid eutectic and were precipitated out
n the cold leg sample surface. This fact is confirmed from the
hemical analysis of Pb–17Li which has shown higher quanti-
ies of metallic species like Fe, Cr and Mo present in the hot
eg. On an average, such deposits were found to be chromium
ich and this may be due to a significantly lesser solubility
f Cr in Pb–17Li at 673 K [16]. This led to higher precipitation
f chromium as compared to the other elements which can
e additionally confirmed from the adherent Pb–17Li compo-
ition which shows a significant reduction of Cr content at
73 K.

. Conclusions

odified 9Cr–1Mo steel (P91) samples were exposed to Pb–17Li

t 773 K and 673 K in the hot and cold leg of a thermal con-
ection loop, respectively. After 1000 h, a corrosion rate of
7 �g/cm2 h for P91 samples kept at 773 K and a deposition
0 1 3;2(3):206–212 211

rate of 1.2 �g/cm2 h on P91 samples at 673 K were obtained.
Analysis of the test results has revealed that corrosion of
P91 initiates by dissolution of the oxide scale present on its
surface. This dissolution is non-uniform and thus creates a
non-uniformly exposed P91 surface from which corrosion pro-
ceeds mainly by the dissolution of major alloying elements
like Cr and Fe into Pb–17Li. In the present condition dissolu-
tion takes place from a depth of 4 �m from the surface and
no penetration of Pb–17Li occur into the inner matrix of P91.
The dissolved species get deposited in the colder regions of
the loops. Due to the lower solubility of Cr in Pb–17Li at 673 K,
these deposits are found to be richer in chromium.
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