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Density perturbations in warm inflation and COBE normalization
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Abstract

Starting from a gauge invariant treatment of perturbations an analytical expression for the spectrum of long wavelength
density perturbations in warm inflation is derived. The adiabatic and entropy modes are exhibited explicitly. As an application
of the analytical results, we determined the observational constraint for the dissipation term compatible with COBE observation
of the cosmic microwave radiation anisotropy for some specific models. In view of the results the feasibility of warm inflation
is discussed.
 2002 Published by Elsevier Science B.V.

1. Introduction

Inflation [1] is the better description of the early
stages of the Universe, where besides providing a sat-
isfactory solution for the main problems of the stan-
dard Cosmology, also predicts a mechanism to gen-
erate the inhomogeneities for the structure formation.
The advent of more precise observational data given
by COBE [2], MAXIMA [3], etc. has so far confirm-
ing the basic predictions of the inflation. Nonethe-
less, since the first model of inflation was proposed,
we have witnessed a myriad of alternative models, as
for instance, new inflation, chaotic inflation, extended
inflation, hybrid inflation, warm inflation, etc. A di-
rect way of deciding which model must be discarded
is confronting their theoretical predictions with the
appropriate observational data [4,5]. In this context,
I shall discuss the warm inflation [6–13] (WI) whose
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important feature is that thermal fluctuations during
inflation play a dominant role in producing the initial
spectrum of perturbations. In WI radiation is continu-
ously generated through a dissipation mechanism re-
sulting from the interaction of the inflaton with other
fields. Therefore, it is expected that at the end of in-
flation enough radiation for a smooth transition to the
next phase, and the reheating phase is no longer nec-
essary.

Warm inflation can be understood as a two-field in-
flation model. In this case, entropy perturbations arise
from the variation of the effective equation of state re-
lating the total pressure with the total energy density.
As a consequence, contrary to the single-field infla-
tion models, the curvature perturbation [14,15] ζ has
a non-trivial evolution after the perturbation crosses
outside the horizon, and the way in which it evolves
in super-horizon scales depends on the details of the
model itself. We expect that COBE normalization pro-
vides observational limits on the dissipation term Γ

once, as we have already shown [13], the dissipation
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term plays a crucial role in producing the entropy per-
turbations. Recently, de Oliveira and Joras [13] in-
vestigated cosmological perturbations in WI together
with the first determination of the observational lim-
its on the dissipation term.1 Moreover, in this determi-
nation it was assumed a very small dissipation in the
sense of allowing, as a good approximation, the con-
servation of ζ . Under such circumstances, we found
Γ ∼ 10−16mPl for two distinct models, being compat-
ible with other estimations [7,10] which the only cri-
terion was the requirement that at the end of inflation
there is enough radiation for the next phase. On the
other hand, it will very important to determine the ob-
servational limits on Γ with no assumption whether
the dissipation is small or not when compared with the
Hubble parameter. Then, this observational test will
constitute a definitive solution of the theoretical dis-
pute [8,12] concerning the feasibility of WI.

This Letter is divided as follows. In Section 2 the
basic equations that describe WI, and the equation for
the perturbations are presented. Taking into account
the slow-roll conditions, an approximate solution of
these equations is derived where the contribution of
adiabatic and entropy modes are shown explicitly.
In Section 3, we present a procedure to normalize
the amplitude of density perturbations in WI using
the COBE data. A specific application of COBE
normalization is performed in Section 4. Finally, in
Section 5 is devoted to discuss the main results and
conclusions.

2. Adiabatic and entropy modes in warm inflation

The basic equations that describe the homoge-
neous background dynamics of interacting radiation
and scalar fields in flat Friedmann–Robertson–Walker
spacetimes are [6]

(1)H 2 = 8π
3m2

Pl

(
ρr + 1

2
φ̇2 + V (φ)

)
,

(2)φ̈ + (3H + Γ )φ̇ + V ′(φ)= 0,

1 Berera and Fang [6] have established an expression for the
range of Γ in the weak dissipative regime just by considering
Tr >H , Tr being the temperature of the thermal bath, without any
treatment on the evolution of cosmological perturbations.

(3)ρ̇r + 4Hρr = Γ φ̇2.

Here H = ȧ/a is the Hubble parameter, mPl is the
Planck mass, dot and prime denote derivative with
respect to the cosmological time t and the scalar field,
respectively; ρr is the energy density of the radiation
field. The dissipative term Γ is responsible for the
decay of the scalar field into radiation during the
slow-roll phase. In general, Γ can be assumed as
a function of φ of the type Γ = Γmφ

m, reflecting
the types of interactions between the scalar field φ

and other fields [6,7]. In addition, m must be even
and Γm > 0 to guarantee the positiveness of Γ as
demanded by the second law of thermodynamics. We
remark that there is a theoretical controversy about the
introduction of the dissipative term in Eq. (2) during
the slow-roll [8,12], and therefore on the feasibility of
WI. Our approach here will be to assume it as part
of the WI scenario and, from a consistent treatment
of cosmological perturbations, allow that observation
dictates the result of this issue.

Warm inflation is characterized by the accelerated
growth of the scale factor driven by the potential
term V (φ) that dominates over other energy terms in
Eq. (1), or

(4)H 2 � 8π
3m2

Pl
V (φ).

Also, the φ̈ term can be neglected in Eq. (2), yielding

(5)φ̇ � − V ′(φ)
3H + Γ

,

and the radiation density is kept approximately con-
stant given by

(6)ρr � Γ φ̇2

4H
.

Several authors have studied the dynamics of WI in
which the basic issue was to present WI as a viable
description of the early universe. In this context, it was
shown that even for a tiny dissipation, in the sense of
the ratio α ≡ Γ

3H 
 1, enough radiation is found at the
end of inflation for a smooth transition to the radiation
era. In particular, for α of order 10−9 is in agreement
with observational data [13].

We consider inhomogeneous perturbations of the
FRW background described by the metric in the
longitudinal gauge [14,15]

(7)ds2 = (1 + 2Φ)dt2 − a2(t)(1 − 2Ψ)δij dxi dxj ,
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where a(t) is the scale factor, Φ = Φ(t,x) and
Ψ = Ψ (t,x) are the metric perturbations. The spatial
dependence of all perturbed quantities are of the form
of plane waves eik.x, k being the wave number, so that
the perturbed field equations regarding now only their
temporal parts (we omit the subscript k) are

(8)Φ̇ +HΦ = 4π
m2

Pl

(
− 4

3k
ρrav+ φ̇δφ

)
,

(δφ)̈+ (3H + Γ )(δφ)̇+
(
k2

a2 + V ′′ + φ̇Γ ′
)
δφ

(9)= 4φ̇Φ̇ + (
φ̇Γ − 2V ′)Φ,

(δρr)̇+ 4Hδρr + 4
3
kaρrv

(10)= 4ρrΦ̇ + φ̇Γ ′δφ + Γ φ̇
(
2(δφ)̇− 3φ̇Φ

)
,

(11)v̇ + Γ φ̇2

ρr
v + k

a

(
Φ + δρr

4ρr
+ 3Γ φ̇

4ρr
δφ

)
= 0,

where δρ = δρr + φ̇(δφ)̇ − φ̇2Φ + V ′δφ and δp =
1
3δρr + φ̇(δφ)̇ − φ̇2Φ − V ′δφ are the perturbations
of the total energy density and pressure, respectively;
v originates from the decomposition of the velocity
field as δUi = − iaki

k
veik.x (see Bardeen [14]). Also,

due the fact that the perturbation of the total energy-
momentum tensor does not give rise to anisotropic
stress (δT i

j ∝ δij ), Ψ = Φ . Warm inflation can be
considered as a hybrid-like inflationary model since
two basics fields, the inflaton and the radiation fields,
are interacting during the slow-roll phase. Therefore,
isocurvature or entropy perturbations are generated,
besides the adiabatic ones. We have shown [13] that
the entropy perturbations are directly related to the
dissipation term. In what follows, we will obtain an
approximate solution for the long wavelength pertur-
bations valid during the slow-roll phase, in which the
adiabatic and the entropy modes are exhibited explic-
itly.

During the slow-roll phase, it can be assumed that
the perturbed quantities do not vary strongly (see Ap-
pendix A). This means, that in Eq. (8) HΦ � Φ̇; in
Eq. (9), (δφ)̈
 (Γ + 3H)(δφ)̇, and so on. Following
these approximations, together with the slow-roll con-
ditions provided by Eqs. (4), (5) and (6), δρr and v are
expressed as

(12)
δρr

ρr
� Γ ′

Γ
δφ − 3Φ,

(13)v � − k

4aH

(
Φ + δρr

4ρr
+ 3Γ φ̇

4ρr
δφ

)
.

Using these equations, the metric perturbation (Eq. (8))
can be written as

(14)Φ � 4πφ̇
m2

PlH

(
1 + Γ

4H
+ Γ ′φ̇

48H 2

)
δφ.

Note that in the case of null dissipation, we recover
the standard relation between the metric and scalar
field perturbations, Φ � 4πφ̇

m2
PlH

δφ, that describes the
adiabatic mode [16,17].

The equation of motion for δφ reads now as

(15)
(Γ + 3H)(δφ)̇+ (

V ′′ + φ̇Γ ′)δφ � (
φ̇Γ − 2V ′)Φ,

where it will be useful to introduce an auxiliary
function χ by

(16)χ = δφ

V ′ exp
(∫

Γ ′

Γ + 3H
dφ

)
,

that generalizes the procedure due to Starobinski
and Polarski [17] in the realm of double inflationary
models. Substituting Eq. (16) into (15), we obtain the
following equation for χ

χ ′

χ
+ 9

8
(Γ + 2H)

(Γ + 3H)2

(
Γ + 4H − Γ ′V ′

12H(Γ + 3H)

)
V ′

V

(17)� 0.

We separate two situations: Γ = Γ0 = const, and the
variable dissipation term Γ = Γmφ

m, m = 2,4, . . . .
Considering the first case, Eq. (17) can be integrated
exactly, yielding

(18)δφ � C1φ̇

H

(
1 + Γ0

3H

)5/4
exp

[
Γ0

4(Γ0 + 3H)

]
,

where C1 is a constant of integration. It will be
instructive to expand this expression in power series
of Γ0,

(19)δφ � C1φ̇

H

(
1 + Γ0

2H
+ Γ 2

0
36H 2 + · · ·

)
.

Notice that the zeroth order term is the same found
in single field inflationary models [16,17], which
is related the adiabatic mode. The remaining terms
describe the effect of dissipation to the fluctuation of
the scalar field, or in another words, the entropy mode.
The metric perturbation is obtained straightforwardly
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from Eqs. (14) and (18),

Φ � −C1Ḣ

H 2

(
1 + Γ0

4H

)(
1 + Γ0

3H

)1/4

(20)× exp
[

Γ0

4(Γ0 + 3H)

]
.

Again, expanding it power series of Γ0, the role of
the dissipation in producing entropy mode becomes
evident

(21)Φ � −C1Ḣ

H 2

(
1 + 5Γ0

12H
+ Γ 2

0
72H 2 + · · ·

)
.

For the second case, the integration of (17) can be
performed only after specifying the potential V (φ).

An important relation between the density of matter
fluctuations, δρ

ρ
, and the metric perturbation can be

derived in WI after taking into account that, during the
slow-roll phase, δρ

ρ
� V ′

V
δφ, and Eq. (14),

(22)
δρ

ρ
� −8

3
(Γ + 3H)

(Γ + 4H + Γ ′φ̇
12H )

Φ.

In the absence of the dissipation, we recover the usual
relation δρ

ρ
� −2Φ valid for single-field inflationary

models. On the other limit, for instance, high constant
dissipation, Γ0 � H , it follows that δρ

ρ
� − 8

3Φ . The
above relation together with the integration of Eq. (17)
will be of fundamental importance for the COBE
normalization as we are going to show next.

3. COBE normalization

In super-cooled inflation the overall dynamics of
perturbations can be reduced to a single conservation
law for the gauge invariant curvature perturbation on
comoving hypersurfaces, ζ , defined by [14,15]

(23)ζ ≡ 2ρ
3H(ρ + p)

(
HΦ + Φ̇

) +Φ.

During inflation, we have HΦ � Φ̇ such that, to-
gether with Eqs. (18), (20) and (22) and Γ = 0, it fol-
lows that the curvature perturbation can be approxi-
mated as ζ � δρ

ρ+p [16,18]. In order to illustrate the
importance of this quantity, consider a perturbation
corresponding the size of a galaxy, λgal. Accordingly,
it can be shown that this perturbation leaves the hori-
zon about 50 e-folds before the end of inflation. Then,

ζ50 � (
δρ
ρ+p )50, with the subscript 50 indicating that

the curvature perturbation is evaluated at 50 e-folds
before the end of inflation, is frozen until the per-
turbation re-enters the Hubble horizon in the radia-
tion or matter dominated eras. When this happens, it
can be established that ( δρ

ρ+p )50 ∝ (
δρ
ρ
)horizon,λ is the

amplitude of density perturbations on the scale λgal
when the perturbations crosses back inside the hori-
zon during the post-inflation epoch, where the con-
stant of proportionality depends whether ρ + p = nρ,
n = 1,4/3 for matter, radiation era, respectively. For
instance, for single-field inflation models, it can be
show that [4,5] ( δρ

ρ
)horizon,λ � ( V 3/2

m3
PlV

′ )50, where quan-
tum fluctuations are the source of the perturbations
of the scalar field. The Sachs–Wolfe effect [19] es-
tablishes, roughly speaking, that the metric perturba-
tion, which in turn is related to the density pertur-
bations, determines the temperature anisotropy of the
CBR (cosmic microwave background), or

(24)
δT

T
�

(
δρ

ρ

)
horizon,λ

.

The COBE satellite performed reliable measure-
ments of the anisotropies of temperature, and there-
fore, became a powerful tool of testing inflation mod-
els by normalizing the amplitude of perturbations, as
well as determining the spectral index of the spectrum
of perturbations.

Under the influence of entropy perturbations, the
conservation of ζ in super-horizon scales is no longer
valid, and in the specific case of WI, the rate of vari-
ation of ζ is depends directly on the dissipation term
[13]. An important observational test for WI is the de-
termination of the magnitude of the dissipation term
compatible with COBE data, implying that it can be
decided if strong dissipative regime characterized by
Γ �H , weak dissipative regime Γ 
H , or even dis-
sipation of the order of the Hubble parameter is the
most viable model for WI. Indeed, this task was par-
tially accomplished by de Oliveira and Joras [13] by
assuming ab initio weak dissipation such that the ef-
fect of the entropy perturbation could be neglected.
Under this assumption it was possible to determine
a lower bound of the dissipation term taking into ac-
count that thermal fluctuations are mainly responsible
for the production of the inhomogeneities of the in-
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flaton, and the COBE data, where it was found that
Γ ≈ 10−16mPl.

Here, we derive a convenient expression for ζend
necessary for COBE normalization, in which it is as-
sumed that the dissipation is constant and vanishes af-
ter inflation. This last condition is physically reason-
able, since dissipation results from the interaction be-
tween the inflaton and other fields, and at the end of
inflation the inflaton field has transferred the enough
energy to radiation to start a new phase without the
necessity of reheating. The next step is to obtain a
suitable expression for the curvature perturbation ζ in
WI. For this, we may consider that during the slow-roll
phase, Eq. (23) is reduced to

(25)ζ � 2ρ
3(ρ + p)

Φ,

due to the quasi-static evolution of the perturbations in
this phase. This equation together with Eq. (22) yield,

(26)ζ � − (Γ0 + 4H)

4(Γ0 + 3H)

δρ

ρ + p
.

In the limit Γ0 = 0, as well as for Γ0 � H , ζ ∝
δρ
ρ+p , suggesting that the effect of the dissipation
is to change this proportionality. Now, we are in
conditions trace out a procedure to apply the COBE
normalization.

Consider again a perturbation in WI corresponding
to a scale of astrophysical interest that corresponds to
the size of a galaxy. This perturbation will cross out-
side the Hubble radius at approximately 50 e-folds be-
fore the end of inflation [13]. As previously discussed,
the presence of entropy perturbations are responsible
for the variation of ζ in super-horizon scales, and such
a variation takes place until the end of inflation, since
Γ0 = 0 after inflation. The curvature perturbation ζend
associated to this perturbation is kept constant until
the moment when the perturbation re-enters the Hub-
ble horizon during the post-inflation epoch to become
the necessary fluctuations for structure formation. The
amplitude of the resulting spectrum is normalized by
COBE data. As one can see, we need to know ζend
instead of ζ50 due to the variation of curvature pertur-
bation. To determine the former, we calculate the ratio

(27)K ≡ ζend

ζ50
�

(
ρ

ρ + p

)
end

(
ρ

ρ + p

)−1

50

Φend

Φ50
,

where we have taken into account Eq. (25). The
ratio between the metric perturbation follows from

the approximate solution (20), for which it can be
shown that for Γ0 = 0, K = 1, as expected. Then, the
expression for ζend as given by

(28)ζend =Kζ50 � −K
[
(Γ0 + 4H)

4(Γ0 + 3H)

δρ

(ρ + p)

]
50
,

that must be normalized by COBE data. Notice that
δρ � V ′(φ)δφ, with the fluctuations of the scalar field
being due to thermal interactions with the radiation
field [6]. In the next section we apply the COBE
normalization to determine the dissipation term.

4. Worked examples: high dissipation and COBE
data

Let us consider the case of quadratic potential
V (φ)= 1

2m
2φ2. It will be useful to introduce adimen-

sional quantities such as

(29)

γ0 = Γ0

m
, x =

√
4π
mPl

φ, α = Γ0

3H
� γ0√

3x
,

where in the last expression it is assumed that H 2 �
8π

3m2
Pl
V (φ). The regime of high dissipation is charac-

terized by α � 1. The end of WI is achieved when
εwi � m2

Pl
4πα (

H ′
H
)2 = 1 for x = xe, where εwi is the gen-

eralized slow-roll parameter for WI [13]. The begin-
ning of WI at x = x∗ can be determined from the con-
dition of 60 e-folds necessary for a successful infla-
tion. Then, both conditions render

(30)xe �
√

3
γ0

, x∗ � 61
√

3
γ0

.

To guarantee that the regime of high dissipation
holds since the beginning of WI, it is necessary that
γ 2

0 � 183. Also, if x50 corresponds the scalar field
evaluated at 50 e-folds before the end of inflation, it
can be shown that

(31)x50 � 51
√

3
γ0

.

According to the discussion of the last section, we
need to know K , which can be determined from the
approximate solution for Φ given by Eq. (20) together
with the slow-roll conditions (4)–(6). The derived
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expression is found to be

(32)K �
(
αe

α50

)5/4
≈ 1.36 × 102,

where the values of α at the end of inflation and at
50 e-folds before the end of inflation are given by
Eqs. (30) and (31). This value of K is the maximum
reached by considering very high dissipation. The next
step is to consider Eq. (28) assuming δρ � V ′(φ)δφ,
with the fluctuations of the scalar field being generated
by thermal interactions with radiation, instead of
quantum fluctuations. Then, following Berera and
Taylor [11], it is established that

(33)(δφ)2 � (Γ0H)1/2Tr

2π2 ,

where Tr is the temperature of the thermal bath. These
fluctuations are evaluated at 50 e-folds before the end
of inflation. After performing this calculation, together
with Eqs. (29)–(31), and the condition α � 1, we
arrived to a simple expression for ζend

(34)|ζend| � 93.45
(
m

mPl

)3/4
γ

3/4
0 .

COBE normalization tells us that |ζend| � 7.33×10−6,
implying

(35)Γ0 � 3.36 × 10−10mPl,

which, in view of our approximation, this result can
be interpreted as the upper bound of the dissipation
term. In order to assure the regime of high dissipation
during the whole WI, it is necessary that γ0 � 14. This
restriction together with the obtained upper bound of
Γ0 implies that

(36)m
 2.40 × 10−11mPl.

This constraint is a very small bound for the mass of
the inflaton, even if compared with the value obtained
by COBE normalization in super-cooled inflation [4],
which is m∼ 10−6mPl.

We have considered another potential V (φ)= λ4φ4

and variable dissipation term Γ = Γ2φ
2, with Γ2

being a constant of dimension m−1
Pl . In this case, high

dissipation is characterized by

(37)α � mPlΓ2√
24π λ2

� 1.

The scalar field evaluated at the end, the beginning
and at 50 e-folds before the end of WI, correspond,
respectively, to

(38)xe � 2√
α
, x∗ � √

61xe, x50 � √
51xe.

For the sake of completeness, the end of WI occurs for
ε � m2

Pl
πα

1
φ2 , and the remaining values are determined

from N � πα

m2
Pl
(φ2∗ − φN), by setting N = 50,60. We

need to know δx in order to determine the metric
perturbation from Eq. (14), and consequently K (see
Eq. (25) which is valid for any Γ ). After integrating
Eq. (17) imposing α � 1, the perturbation of the scalar
field is given by

(39)δx � 4λ4χ0x
−7/2 exp

(
− 3

4α2x2

)
,

where χ0 is the constant of integration. Taking into
account this result and the corresponding expression
for Φ , we obtain

(40)K �
(

3αx2
e − 1

3αx2
50 − 1

)
x50

xe

(δx)e

(δx)50
≈ 1.24 × 102.

Notice that the maximum value of growth of the
curvature perturbation is approximately the same as
found in the previous case. The final step for the
COBE normalization is to consider Eq. (33) inserted
into

ζend =Kζ50 � −K
[
(Γ + 4H + Γ ′φ̇

12H )

4(Γ + 3H)

V ′δφ
(ρ + p)

]
50
,

together with the value of K given by Eq. (39). Hence,
after a direct calculation

(41)|ζend| � 3.21 × 103λ3/2.

Contrary to the previous case, the dissipation term
does not appear explicitly. COBE normalization im-
poses that

(42)λ4 � 10−24.

5. Discussion

In this Letter, we have integrated the equations for
the metric and scalar field perturbation in WI. The con-
tributions of the adiabatic and entropy modes were ex-
hibited explicitly showing the central role played by
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the dissipation in producing the entropy mode. An-
other very important result was the generalization of
the relation between the total density of matter per-
turbations and metric perturbations given by Eq. (22).
Using the analytical expressions, a general procedure
to apply COBE normalization was proposed, since in
WI a conservation equation for the curvature perturba-
tion, ζ , is no longer valid.

As an application of the COBE normalization,
we have considered two distinct examples, namely,
quadratic potential V (φ)= 1

2m
2φ2 with constant dis-

sipation, and quartic potential V (φ)= λ4φ4 with vari-
able dissipation term. The common aspect shared by
these two examples is the assumption of high dis-
sipative regime guaranteed by Γ

3H � 1. In the first
case, COBE normalization determines directly the up-
per bound of the dissipation term as Γ0 � 3.36 ×
10−10mPl, with the mass of the inflaton given by m

2.40×10−11mPl. Thus, considering the previous result
concerning lower bound of the dissipative term [13],
the following constraint is obtained

(43)Γmin � Γ0 � Γmax,

where Γmin/mPl ≈ 10−16 and Γmax/mPl ≈ 10−10. On
the other hand, for the case of quartic potential, COBE
normalization imposes that λ4 � 10−24, which repre-
sents a stronger fine tuning if compared with 10−14

found in super-cooled inflation. In spite of represent-
ing a drawback for very high dissipative regime in WI
in this specific example, it is necessary further analy-
sis considering other situations in order to give a fi-
nal word about the feasibility of the very high dissi-
pative regime of WI as far as COBE normalization is
concerned. In this way, a possible direction of investi-
gation is to treat other cases characterized by distinct
potentials and by not imposing a priori any kind of
high/low dissipative regime to verify the consequences
of COBE normalization.
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Appendix A

It is well established that the slow-roll phase
Ḣ 
H 2. This condition has a direct consequence on
the evolution of the perturbed quantities as we are
going to illustrate integrating Eq. (8). The general
solution of Eq. (8) can be written as

(A.1)Φ = Φ0

a
+ 1
a

∫
∆a dt,

where Φ0 is the initial value of the metric perturbation
and ∆ = 4π

m2
Pl
(− 4

3k ρrav + φ̇δφ) for convenience. The
non-decreasing mode is given by the integral, that can
be expanded in power series [15,16] like

(A.2)

Φ = ∆

H
−

(
∆

H

).

H−1 +
[(

∆

H

).

H−1
].
H−1 + · · · .

Then, it is acceptable to approximate the above
expression considering only the first term of the series,
since during the slow-roll, Ḣ

H 2 
 1 and ∆̇

H 2 
 1.
As we can see, this approximation is equivalent to
assume HΦ 
 Φ̇ . Applying this procedure to the
other perturbed equations, we arrive to the Eqs. (12)–
(14) and (15).
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