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a b s t r a c t

We report here the theoretical description and analysis of edge elasticwaves in a semi-infinitemechanical
granular graphene structure. The granular graphene, composed of spherical beads arranged in a single-
layer honeycomb structure, is studied for two types of edge configurations: zigzag and armchair. Due
to the existence of the rotational degrees of freedom of the grains, rotation-associated shear, bending
and torsional couplings between the neighbor beads are activated. The dispersion curves of the edge
waves are theoretically derived and numerically analyzed for various configurations of bead couplings,
as well as the existence of edge states when the torsional or/and bending rigidities are weak/vanishing.
Quasi-flat edge mode dispersion curves with near zero frequency are observed for both the zigzag and
armchair edges. These quasi-flat dispersion curves, supporting the propagation of waves with extremely
slow group velocity, tend to be perfect zero-frequency modes for zero torsional rigidity or vanish for
zero bending rigidity, indicating that weak bending and torsional interbead interactions are critical in the
transformation of zero-frequency modes into extremely slow propagating modes. These results on edge
waves in mechanical granular graphene structures with rotational degrees of freedom are the necessary
preliminary step for the design of granularmeta-grapheneswith artificial symmetry breaking for inducing
topologically protected unidirectional edge states.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Granular crystals are spatially periodic structures of particles,
most often spherical homogeneous elastic beads, arranged in crys-
tal lattices [1–17]. The beads are linked through their contacting
areas or by interconnections, both ofmuch smaller dimensions and
weights than the ones of the beads, and the interactions between
beads take place predominantly via normal and transverse rigidi-
ties of these elastic interconnections. In contrast to most of the
mechanical systems where the interactions of neighboring parti-
cles can be mimicked by spring–mass models with central forces
[18,19], in granular crystals, due to the non-central shear forces,
rotation of individual beads can be initiated, and consequently the
rotational degree of freedom (DOF) of the individual beads, the par-
ticle dimensions and the interactions through non-central forces
cannot be ignored [5–8]. The analytical linear models accounting
for the rotational DOFs have been derived for one-dimensional
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(1D) granular chains [9], two-dimensional (2D) granular mem-
branes [10–13] and three-dimensional (3D) granular phononic
crystals [14,15]. Because of the rotational DOFs of individual beads,
it was theoretically reported [9–15] and experimentally tested
[16,17] that in addition to the classical propagationmodes, coupled
rotational/transverse [16] and pure rotational modes [17] can be
observed in granular crystals. Moreover, the existences of localized
modes [9], zero-frequency modes and zero-group-velocity (ZGV)
modes [11–13], the formation andmanipulation ofDirac cones [13]
have also been demonstrated in granular crystals.

In the last two decades, graphene, a monolayer of carbon
atoms arranged in a 2D honeycomb lattice, has become one of
the most fascinating objects in material sciences and condensed-
matter physics [20–22]. Owing to its specific crystal symmetry,
unusual energy band structure for charge carriers can be formed.
An interesting consequence of a rich electronic spectrum is that
the edge states may exist when boundaries are present. The
existence of boundary, on one hand, breaks the crystal symmetry
on the edges, but on the other hand, preserves some properties
of the bulk, leading to the edge states having distinct propagation
properties from the bulk modes and hence playing important
roles in transport of electronic excitations [23–25]. For example,
the zero modes (zero-frequency edge states) were theoretically
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Fig. 1. Schematic presentation of the mechanical granular graphene and the possible intergrain interactions. (a) Structure of the considered graphene. Beads in blue label
the zigzag edge and beads in orange label the armchair edge. (b) Shear forces activated by relative out-of-plane displacement and in-phase rotation of the adjacent beads. (c)
Torsional forces induced by the resistance of contact to relative rotation of the beads along the axis connecting their centers. (d) Bending forces originated from the resistance
of the contact to rolling of beads. (e) Normal forces providing the resistance to relative motion of the grains in the plane of the membrane. These forces do not contribute to
the out-of-plane motion of the membrane, but their moments in (d) do contribute through initiating the rotations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

and experimentally studied in graphene ribbons [26–33]. Even
more interestingly, the quantum Hall effect (QHE) and quantum
spin Hall effect (QSHE), where the topologically protected gapless
edge states are robust channels for electronic transport, have been
demonstrated [34–37].

Analogous to the above electron systems, the existence of
edge state can emerge in completely different physical systems
[38–50]. In the photonic/phononic analog of graphene, novel phe-
nomena, such as zero-energy mode on the edge [41] and topo-
logical one-way edge states [42–45], have also been reported.
However, in granular crystals, where most of the previous re-
sults addressed the structures of infinite size, only a few studies
have considered the influence of a boundary. For instance, in 1D
semi-infinite monatomic granular chains, the existence of local-
ized modes have been theoretically demonstrated [9]. In 3D cubic
granular crystals, the Rayleigh-type surface acousticwaves (SAWs)
and shear-horizontal-type SAWs have been theoretically analyzed,
and the existence of ZGV SAWs of Rayleigh-type has been pre-
dicted [14]. Recently formechanical systems, the topologically pro-
tected one-way edge states which are unaffected by disorder were
theoretically proposed [46,47] and experimentally observed [51]
by breaking the time-reversal symmetry in the gyroscopic meta-
materials, where the phononic analogue of the electronic quan-
tum Hall effect is realized. Motivated by these recent results, the
study of SAWs (or edge states) in 2D granular graphenes shows an
interest as a necessary step towards their applications for elastic
wave control through the design of artificially modified granular
graphenes (granular meta-graphenes) where chiral or/and topo-
logical edge states become possible by the reduction of the sym-
metry of the membranes.

In this paper, we theoretically study the existence of edge
states at the free boundaries of a semi-infinite mechanical gran-
ular graphene, which is a 2D homogeneous monolayer of elastic
beads packed into a honeycomb lattice of lattice constant a =

2
√
3R as shown in Fig. 1(a). An out-of-plane motion is imposed

to the considered granular graphene with the zigzag and arm-
chair boundaries. Consequently, each individual bead possesses
one out-of-plane translational and two in-plane rotational DOFs
and the mechanical contacts among them are provided by linear
shear, bending and torsional rigidities, respectively, as depicted
in Fig. 1(b)–(d). The dispersion curves of edge modes for vary-
ing bending/torsional rigidities are studied. Similar to the previ-
ous conclusions for the bulk mode [5,13], due to the rotational
DOFs, the dispersion branches of edge modes can be modified by
tuning the bending and torsional rigidities. On the other hand,
we demonstrate that near zero-frequency modes may appear on

both the zigzag and armchair edgeswhen bending/torsional rigidi-
ties are weak. This result is different from the cases in elec-
tronic/photonic systems where zero-frequency modes do not ex-
ist on the armchair edge when the sublattices A and B are the
same [26,31,41]. The physical origin of zero-frequency modes in
the 2D granular monolayer honeycomb crystals has been inter-
preted in Ref. [13], where the zero-frequency mode results from
the zero bending/torsional rigidities. In this work, we show that
the existence of zero-frequency edge modes is also intimately re-
lated to the weakness of bending/torsional intergrain couplings.

It should be reminded here, that the possible existence of
extremely slow waves in granular crystals relates to the fact
that the interaction between the grains through the bending and
torsional moments can be orders of magnitudes weaker than
their interaction through the normal and shear forces. In non-
consolidated granular crystals, the interactions between beads
take place via local contacts, which are much smaller in size than
the dimensions of the individual grains and effectivelymuch softer
than the beads’ material [11–17]. Even when granular crystals are
consolidated by curing, like opals, or by grain-connecting ligands,
like in nanocrystal superlattices, the elastic links between the
particles are still significantly smaller and softer than the grains
themselves. This induces propagation of elastic waves in granular
structures at significantly slower velocities than in the individual
grains [4] even if the rotational DOFs of the individual beads
are not strongly involved. Thus, in general granular crystals are
much softer than the materials composing the individual grains.
The granular crystals without rotational DOFs are theoretically
modeled as spring–mass systems, where the spherical masses
interact through forces transmitted by shear and normal springs
with rigidities ξs and ξn respectively (see Fig. 1(b) and (e)). As the
characteristic spatial scale in the granular crystal is of the order
of grain radius, R, the characteristic frequencies of the vibrations
can be estimated as being an order of ∼


ξs,n/M , respectively,

whereM is themass of the grain, and the velocities of bulk acoustic
waves are of the order, ∼R


ξs,n/M , respectively. As it has been

explained above, because of the weakness of contact rigidities ξs
and ξn, those bulk waves are much slower than the shear and
longitudinal waves in the material composing the beads. When
the rotational DOFs are taken into account, the rotations should
be predominantly induced by shear springs, Fig. 1(b), which have
themaximal possible arm equal to R for creating the grain-rotating
moment. However, this is not always the case because under
some circumstances simultaneous displacements and rotations
of the grains could keep the shear springs unstrained [13]. In
these situations, the interactions between the beads through the
bending and torsional moments, which are much weaker than the
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characteristic shear moments, could play an important role. As it
is qualitatively illustrated in Fig. 1(c) and (d), the existence of both
those moments is due to non-vanishing lateral size, δ ≠ 0, of the
contacts/links between the grains. The shear and normal forces
distributed in the cross-section of the contact/link provide the
resistance to rotation of the beads in opposite directions relative
to the axis connecting their centers (Fig. 1(c)) and relative to the
axis normal to the centers connecting axis (Fig. 1(d)), respectively.
However, both shear and normal forces distributed across the
contact have very small arms, ∼δ ≪ R, for creating bead-rotating
moments. The torsional and bending moments induced by the
distributions of shear and normal forces, respectively, appear to
be much smaller than the nominal moment that could be created
by the shear spring in Fig. 1(b). For the estimates, the interactions
through torsional and bendingmoments could be characterized by
the corresponding characteristic torsional and bending rigidities,
ξt ∼ ξs(δ/R)2 and ξb ∼ ξn(δ/R)2, respectively. Thus the waves
which propagation is due to torsional/bending moment-type
interaction between the neighbor grains will have the velocities
∼δ


ξs,n/M ≪ R


ξs,n/M that are much slower than the velocities

of classical acoustic waves in granular crystals which propagation
is due to shear/normal force-type interactions. Correspondingly,
these waves caused by torsional/bending interactions between the
grains, could be considered as extremely slow in comparison with
the acoustic waves propagating in the material composing the
grains. Note that, commonly normal rigidity is comparable with
shear rigidity, i.e., ξn ≥ ξs, thus bending rigidity is comparablewith
torsional rigidity, ξb ≥ ξt .

As it follows from the discussion above, for the realization of
extremely slow waves in mechanical graphene the dimensions
of the contacts between the spheres should be much smaller
than the dimensions of the spheres. In non-cohesive granular
crystals this conditions could be achieved in the regime of weak
pre-compression [52–55]. For example recently the opportunity
to modify the contact interaction between spheres by varying
magnetic forces has been reported [52,53] and bending rigidities
much smaller than the shear ones have been revealed. Otherwise
the granular graphene could be potentially prepared by three-
dimensional printing. If rod-type connections between the spheres
are printed with dimensions much smaller than the sphere
dimensions, then the effective torsional and bending rigidities
of these artificially created contacts will be in general much
weaker than their shear (normal) rigidities. It has been revealed
that the weak bending and torsional forces/moments could be
crucial in activating the propagation of some phonon modes
[12,13]. Thus it is important and necessary to evaluate the role
of the weak bending and torsional moments in granular crystals
when their boundaries are investigated. Recently, in the studies of
mechanical kagome network systems without the rotational DOFs
of individual particles, it has been reported that the zero-frequency
modes (topological soft modes) could exist [56–58]. Those modes
are robust against a wide range of structural deformations or
changes in material parameters, leading to potential applications
for design/fabrication of soft materials [58,59]. The prediction of
zero-frequency edge modes in granular crystals in the research
work presented below can stimulate the exploration of zero-
frequency mode in other mechanical system and pave the way
towards engineering nanomechanical soft structures supporting
propagation of extremely slow waves. In addition, we believe that
our theoretical analysis of the elastic edge modes in mechanical
granular graphenes with free boundary would be useful also in the
studies of SAWs in the cases where the layers of microspheres are
adhered to the elastic substrates [60,61].

The organization of this paper is as follows. In Section 2 the
mechanical granular graphene is presented and the analytical
model is described. The boundary conditions on the zigzag edge

are introduced in Section 3, where the spectra of edge states and
the zero-frequencymodes are evaluated, presented and discussed.
For the armchair type of boundary, the boundary conditions,
the existence of edge states and zero-frequency edge modes are
systematically examined in Section 4. Finally, we present the
conclusions of this work in Section 5.

2. Model

The mechanical granular graphene presented in Fig. 1(a)
exhibits two type of edges, zigzag and armchair, indicated in
Fig. 1(a) by beads labeled in blue and orange, respectively.
Considering the out-of-plane motion in the granular graphene,
each individual bead exhibits the out-of-plane displacement (u)
along z-axis and the in-plane rotational angles ϕ and φ (ϕ-rotation
with the axis in the x-direction and φ-rotation with the axis in the
y-direction). The dynamics and the couplings of these mechanical
motions are controlled by the following forces and/or moments:
(1) Shear forces, which are characterized by an effective shear
rigidity ξs (Fig. 1(b)). These forces are activated in the graphene
due to a resistance of the contact to relative displacement of the
beads in the direction orthogonal to the axis connecting their
centers and due to in-phase rotation of the beads relative to
the direction orthogonal to the axis connecting their centers.
(2) Torsional forces, which are characterized by an effective
torsional (spin) rigidity ξt (Fig. 1(c)). The resistance of the contact
to relative rotation of the beads along the axis connecting their
centers can initiate these forces. (3) Bending forces, which are
characterized by an effective bending rigidity ξb (Fig. 1(d)). They
originate from the resistance of the beads contact to rolling.

We label the sublattice A (B) in the normalized coordinate
(m, n) by Am,n (Bm,n), as shown in Fig. 1(a), where m and n are
both integers. According to the analysis in Ref. [13], the dynamical
equations on site (m, n) are given by,

Sout(qx, qy)v⃗out =


Q U
N Q

 
vA
vB


=0, (1)

where vA = (uA, ΦA, Ψ A)T and vB = (uB, ΦB, Ψ B)T with Φ =

Rϕ, Ψ = Rφ and the superscript T represents the transposed vec-
tor. Q , U and N are 3 × 3 matrices (see the details in Appendix A).
For non-trivial solutions, the following condition should be satis-
fied,

det|Sout(qx, qy)| = 0. (2)

Solution of the eigenvalue problem in Eqs. (1) gives the disper-
sion curves of the bulk modes described in Ref. [13], which are
not shown in this work as our main goal is the description of edge
modes.

3. Zigzag edge

In this section, the boundary conditions of themechanically free
zigzag edge of the granular graphene, as highlighted by blue beads
in Fig. 1(a), are derived. Assuming the granular graphene is semi-
infinite and the zigzag edge is introduced on site (0, n)by removing
the beads A0,n and those with m < 0, the boundary conditions
are derived from the cancellation of the interactions between the
removed grains A0,n and the edge grains B0,n. For example, on site
(0, 0) the interplays between sublattice A0,0 and B0,0 should be
zero, thus the boundary conditions are written as,

uA
0,0 − uB

0,0 + (Ψ A
0,0 + Ψ B

0,0) = 0, (3a)

ηt(Φ
A
0,0 − ΦB

0,0) = 0, (3b)

ηb(Ψ
A
0,0 − Ψ B

0,0) = 0, (3c)
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Fig. 2. The projected band structures along qy direction of the graphene for ηt = 0.1 and ηb = 0.1 (a), ηb = 0.15 (b) and ηb = 0.2 (c). The black dot areas represent the
projected bulk bands along y-direction, and the red curves represent the edge states. The amplitudes of three components u, Φ and Ψ of the edge state at point qy = π/3
(labeled by blue circles in (a)–(c)) as a function of bead position along x-direction are shown for ηt = 0.1 and ηb = 0.1 (d), ηb = 0.15 (e) and ηb = 0.2 (f). The blue curves
correspond to sublattice A and the red dash curves to sublattice B. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

where ηb = ξb/ξs (ηt = ξt/ξs) denotes the ratio of bending
(torsional) to shear rigidity. For waves associated with the free
boundarym = 0, we are looking for the solution of the form [14],

(uA, ΦA, Ψ A)zig =

3
j=1

(αA
j , β

A
j , γ

A
j )Kjeiωt−mqxj−nqy , (4a)

(uB, ΦB, Ψ B)zig =

3
j=1

(αB
j , β

B
j , γ

B
j )Kjeiωt−mqxj−nqy , (4b)

where αj, βj and γj (see Appendix B for more details) are
three factors determining the composition of bulk eigenmodes,
Kj are constants. Substituting Eqs. (4) into Eqs. (3), the boundary
conditions can be rewritten in the matrix form,

Szig(qxj, qy)K⃗zig = 0, (5)

where Szig(qxj, qy) is the boundary condition matrix of zigzag edge
and K⃗zig is the eigenvector of the boundarymatrix. Thedetails of the
derivation of the boundarymatrix are presented in Appendix B. For
nontrivial solutions, the determinant of the boundary matrix must
be zero,

det|Szig(qxj, qy)| = 0. (6)

Combining Eqs. (2) and (6), the solutions of the zigzag edge are
obtained.

3.1. Edge modes

In this section, the Ω − k dispersion curves of the edge
modes for different values of the ratios ηb and ηt are derived.
Without loss of generality, in Fig. 2 we present the projected band
structures, where the bulk modes of the first Brillouin zone have
been projected into the qy direction in the reciprocal space, for
the case of a fixed ηt = 0.1 and a varying ηb. As shown in
Fig. 2, the bulk modes are concentrated mainly in two separated

areas. The low frequency area, containing three lowest bulk bands,
is defined as lower-frequency phonon area (LPA) and the high
frequency area, composed of three highest bulk bands, is noted as
higher-frequency phonon area (HPA). There exists a large band gap
between the LPA and HPA due to the fact that bending/torsional
rigidities are much smaller than shear rigidities. For increasing
bending/torsional rigidities, this band gap is squeezed. Dirac cones
are observed at qy = ±π/3 in the LPA and HPA as shown in
Fig. 2(a)–(c). In general, four branches of edge modes are obtained,
labeled as red lines in Fig. 2(a)–(c), three of which are located
in the LPA and another one in the HPA. Tuning the bending and
torsional rigidities of contact is possible to control the propagation
properties of the edge modes. For example, in the case of ηb =

0.1 and ηt = 0.1, the edge band below the first propagative
bulk band is located very close to the bulk band, leading to edge
modes possessing properties similar to those of the bulk modes.
The amplitudes of the three components u, Φ and Ψ for wave
vector qy = π/3 highlighted in Fig. 2(a) are shown as a function of
bead position along the bulk direction, as shown in Fig. 2(d), where
the blue curves correspond to beads A and the red dash curves
to beads B. It implies that the edge mode exhibits weak in-depth
localization as the oscillations of the beads spread into the bulk
for a rather long distance. When increasing ηb to 0.15, as shown
in Fig. 2(b), the edge mode of the wave vector qy = π/3 is easier
to distinguish from the bulk modes than that of ηb = 0.1 in the
projected diagram, thus the edge state becomesmore localized and
its penetration depth into the bulk is shorter (Fig. 2(e)). For ηb =

0.2 in Fig. 2(c), the edge mode with qy = π/3 has very distinct
properties from the bulk mode, leading to the motion of beads
localized only on a few layers near the free boundary as shown in
Fig. 2(f). These controllable properties of edge state suggest that
the bending/torsional couplings are crucial in the propagation of
elastic edge waves belonging to the LPA.

In the following, we discuss the influence of weak torsional
or/and bending couplings on the in-depth localized modes
propagating along the free zigzag edge.



L.-Y. Zheng et al. / Extreme Mechanics Letters ( ) – 5

Fig. 3. (a) Dispersion curves of edge states for ηb = 0.1 and ηt = 10−5 in LPA. A quasi-flat band with near zero frequency can be observed. (b) Movement of beads of
the near-zero-frequency mode at point qy = π/3 highlighted in (a) by a blue circle. The insert shows the relation between the normalized group velocity of near-zero-
frequency modes for a fixed wave vector qy = π/3 and normalized torsional rigidity ηt . The amplitude of the out-of-plane displacement of each bead is normalized. Thus
the color marked on each bead represents the amplitude of displacement which can be read from the color bar. The orientation of arrows represents the rotating directions
of beads. The length of arrows, which is normalized to the longest arrows whose amplitudes are shown in the arrow bar, represents the amplitude of rotations of beads. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The projected band structure of granular graphene along the qy direction for ηb = 2 × 10−5 and ηt = 10−5 . (a) One band of edge state exists in the HPA, while the
bands of bulk modes in the LPA collapse into a narrow frequency zone. (b) The zoomed view of the LPA. Three bands of edge state can be observed in this area.

3.2. Zero-frequency modes

In this section, we first discuss the case of weak torsional rigid-
ity only, and later we turn to the influence of both weak bend-
ing and weak torsional rigidities under the condition that ξb ≥

ξt . When torsional moments are weak, for example ηt = 10−5

while ηb = 0.1, the dispersion curves of edge state represented
by red curves in LPA are shown in Fig. 3(a). It is clearly seen
that the edge branch below the first propagating bulk area is a
quasi-flat band with near zero frequency. We choose the point
of qy = π/3 (labeled by blue circle in Fig. 3(a)) to analyze the
near-zero-frequency mode. The movements of beads are shown
in Fig. 3(b), where different colors of beads represent the different
out-of-plane, i.e. along the z-axis, displacement of beads and the
amplitude of displacement of beads is presented by the color bar.
The rotational axis of each bead are presented by the arrowmarked
onbeads and the amplitudes of rotation are normalized to themax-
imum value in the arrow bar, thus the length of arrows marked on
the beads represent the amplitude of rotations. It is clearly shown
that the oscillation of beads are localized mainly on the first three
layers near the edge. The existence of zero-frequency mode has
been reported in many systems and a criterion to determine the
existence of zero-frequency edge modes has also been established
in terms of bulk properties and the chiral symmetry [29,41,53]. In
granular crystals, the existence of zero-frequency mode and their
transitions into slow mode strongly rely on the rotational interac-
tions of beads [13]. For example, the insert in Fig. 3(b) reveals the
relation between the torsional rigidity and the normalized group
velocity of the near-zero-frequency modes (Vg = vg · 2/(3ω0R),
where vg is the group velocity and ω0 =

√
ξs/M is the character-

istic frequency provided by the magnitude of shear rigidity) when

the wave vector is fixed at qy = π/3. It suggests that the group
velocity of edge states is extremely slow when torsional rigidity
is weak. The results presented in the insert in Fig. 3 confirm that
acousticwaves supported by theweak torsional rigidity could be of
several orders of magnitude slower than such acoustic waves sup-
ported by the shear rigidity of the contacts as, for example, longitu-
dinal and transverse bulk acoustic modes evaluated in the granu-
lar crystals neglecting rotational degrees of freedom. The smaller
the torsional rigidity is, the closer to zero the group velocity of
the near-zero-frequency modes is. As torsional rigidity is closer
and closer to zero, this quasi-flat band tends to become a perfectly
non-propagative flat band at zero frequency. For non-zero finite
torsional rigidity, zero-frequency non-propagating edgemodes are
transformed into slow modes with low group velocity.

When both bending and torsional rigidities are small, near-
zero-frequency edge modes can be also obtained. For example, for
ηb = 2×10−5 and ηt = 10−5, the dispersion diagram of edge state
is depicted in Fig. 4(a), where three low frequency bulk bands are
collapsed into the narrow zone with near zero frequency. This is
due to the simultaneously small values of bending and torsional
rigidity [13]. Nevertheless, the existence of edge state in the LPA
can be still evaluated. The zoom-in of the low frequency bulk
bands is shown in Fig. 4(b), where three branches of edge state
are observed. The edge states inside this extremely low frequency
zone behave as the ones in the quasi-flat bands with near zero
frequency. As predicted in Ref. [13], when the bending rigidity is
zero, the bulk bands in the LPA collapse into three degenerated
zero-frequency bands. One could expect that the associated edge
states, which in Fig. 4(b) are confined either between the bulk
bands or between the lowest bulk band and the zero frequency,
would eventually vanish for zero bending rigidity. For weak but
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non-zero bending/torsional rigidities, the three degenerated zero-
frequency bulk branches are transformed into three slow wave
bands, resulting in the existence of near-zero-frequency edge
modes with extremely slow group velocity, Fig. 4(b).

4. Armchair edge

The mechanical granular graphene with the free armchair edge
is illustrated in Fig. 1(a) highlighted in orange beads. Assuming
the armchair edge is on site (m, 0) by removing all the beads with
n < 0, the boundary conditions are derived from the absence of the
interbead interactions between the cut layer (m, −1) and the edge
layer (m, 0). For example, on site (0, 0), the interactions between
the beads A0,0 (B0,0) and B−1,−1 (A1,−1) should be zero, thus the
boundary conditions are obtained,

2(uB
−1,−1 − uA

0,0) −
√
3(ΦB

−1,−1 + ΦA
0,0) + (Ψ B

−1,−1 + Ψ A
0,0) = 0,

(7a)

ηt(Φ
B
−1,−1 − ΦA

0,0) +
√
3ηt(Ψ

B
−1,−1 − Ψ A

0,0) = 0,
(7b)

−
√
3ηb(Φ

B
−1,−1 − ΦA

0,0) + ηb(Ψ
B
−1,−1 − Ψ A

0,0) = 0,
(7c)

2(uA
1,−1 − uB

0,0) −
√
3(ΦA

1,−1 + ΦB
0,0) − (Ψ A

1,−1 + Ψ B
0,0) = 0,

(7d)

ηt(Φ
A
1,−1 − ΦB

0,0) −
√
3ηt(Ψ

A
1,−1 − Ψ B

0,0) = 0,
(7e)

√
3ηb(Φ

A
1,−1 − ΦB

0,0) + ηb(Ψ
A
1,−1 − Ψ B

0,0) = 0.
(7f)

For the wave propagating along the armchair edge, we seek a
solution of the form,

(uA, ΦA, Ψ A)arm =

6
j=1

(αA
j , β

A
j , γ

A
j )Kjeiωt−mqx−nqyj , (8a)

(uB, ΦB, Ψ B)arm =

6
j=1

(αB
j , β

B
j , γ

B
j )Kjeiωt−mqx−nqyj . (8b)

Substituting Eqs. (8) into Eqs. (7), the boundary conditions can be
rewritten in the matrix form,

Sarm(qx, qyj)K⃗arm = 0, (9)

where Sarm(qx, qyj) is the boundary condition matrix of armchair
edge and K⃗arm is the eigenvector of the boundary matrix. More
information about the calculation of the boundary matrix can be
found in Appendix C. For nontrivial solutions, the determinant of
the boundary matrix must satisfy the following relation,

det|Sarm(qx, qyj)| = 0. (10)

The solutions for the edgemode of armchair edge are computed by
combining Eqs. (2) and (10).

4.1. Edge modes

In this section, theΩ −k projected band structures for different
values of the parameters ηb and ηt are derived. It is shown that
it is possible to modify the dispersion diagram by a fine tuning
of the contact rigidities. For example, the dispersion curves of the
edge states for a fixed ηb = 0.4 but a changing ηt are depicted
in Fig. 5, where edge modes are labeled as red curves and the
black dot areas represent the bulk modes. The particular number
of existing edge bands depends on the value of ηt . Explicitly, for

Fig. 5. Dispersion diagrams for the armchair boundary for a fixed ηb = 0.4 but
ηt = 0.1 (a), ηt = 0.05 (b), ηt = 0.03 (c) and ηt = 0.01 (d). Red curves correspond
to the edge states and the black dot areas represent projected bulk modes. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

modes in the LPA, Fig. 5(a) shows thedispersion curves forηb = 0.4
and ηt = 0.1. Two edge bands appear between the second and
third bulk bands. When the value of ηt decreases to 0.05, one of
these edge bands disappears, as shown in Fig. 5(b). Continuing
to decrease ηt to 0.03, one new edge band appears in each of
the regions below the first bulk band as presented in Fig. 5(c).
Reducing ηt to 0.01, Fig. 5(d), one of the edge bands which existed
between the first and second bulk bands vanishes. We can predict
that, in the LPA, in the regions between the third and second bulk
bands, between the second and the first bulk bands, and below
the first bulk band there always exists at least one edge band in
each region, while one additional edge band may appear in each
of these regions depending on the bending and torsional rigidities.
Similar phenomena of variation of the number of edge bands have
also been found in the HPA of the dispersion diagram. For example,
when ηt changes from 0.1 to 0.01, the edge band in HPA would
disappear and reappear. Those controllable features of edge states
by tuning bending and torsional rigidities provide extra flexibilities
in the design of functional devices for elastic wave transport based
on granular crystals.

4.2. Zero-frequency modes

In this section, we first investigate the case of weak torsional
coupling only, and later we discuss the influence of both weak
bending and torsional couplings under the condition that ξb ≥ ξt .

For very small value of ηt , the quasi-flat bands of edge modes
at near zero frequency may appear in the projected dispersion
diagram. Fig. 6 shows the dispersion curves of edge state for ηb =

0.2 and ηt = 10−5. These exists a near-zero-frequency band and a
quasi-flat band of non-zero frequency just above it. We study the
edge modes of qx ≈ π/4 (labeled by blue circles in Fig. 6(a)). The
corresponding movements of beads are demonstrated in Fig. 6(b)
and (c). It is clearly seen that the edge waves are propagating
along x-axis being in-depth localized mostly on just a few layers
near the edge. The insert in Fig. 6(a) shows the normalized group
velocity (Vg = vg ·2/(3ω0R)) of the first (near-zero-frequency) and
the second (non-zero-frequency) quasi-flat modes as a function of
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Fig. 6. (a) The dispersion curves of edge modes with slow velocity for ηb = 0.2 and ηt = 10−5 . Two quasi-flat bands appear when torsional rigidity is weak. The
corresponding movements of beads for the wave vector qx ≈ π/4 noted by the blue circles are shown in (b) and (c). (b) The oscillation of beads on the edge for the
second quasi-flat band. (c) The corresponding oscillation of edge state for the first quasi-flat band. The insert scheme in (a) illustrates the variations of group velocity of the
quasi-flat bands as a function of ηt . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. The dispersion curves of edge modes in the LPA for ηb = ηt = 10−5 and the correspondingmovements of the beads with vector qx ≈ π/4 highlighted by blue circles
in (a). (a) Dispersion curves of edge states. Three branches, presented as red curves, are found in the LPA. The oscillation for qx ≈ π/4 of the first (b), second (c) and third
(d) edge bands are depicted. These edge states can penetrate into the bulk for a rather long distance. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

ηt . Note that the normalized group velocity in the first band has
opposite sign to the one in the second branch. Principally, both
bands have very slow velocity when the torsional rigidity is weak.
For the extreme case when torsional rigidity tends to zero, both
bands have the tendency to be perfect flat bands at zero frequency
supporting non-propagative edge modes. Similar to the results on
zigzag edge, weak torsional rigidity can initiate the propagation of
zero-frequency modes by transforming them into slow modes.

When both bending and torsional rigidity are weak, near-zero-
frequency modes also can be found as shown in Fig. 7(a), where
the dispersion curves of the LPA for ηb = ηt = 10−5 are ex-
hibited. Similar to the case of the zigzag edge, the small value of
bending rigidity can lead to collapse of projected bulk bands into
the region close to zero frequency, thus the associated edge states
are confined to a very narrow low frequency zone. In this case, the
dispersion curves of edge modes are very close to the bulk bands,

resulting in edge states exhibiting weak in-depth localization. For
example, we analyzed the edge waves with wave vector qx ≈ π/4
marked by the blue circles in Fig. 7(a). The corresponding move-
ments of beads in those three bands are shown in Fig. 7(b)–(d).
As explained in Section 3.1, the closer the position of edge band
is located to the bulk band, the weaker in-depth localization of the
edge modes is. This prediction is valid in Fig. 7(b)–(d) where those
three edge states of qx ≈ π/4 are weakly localized in-depth along
the bulk. Similar to the results on the zigzag edge, for zero bending
rigidity, slow edge modes in the LPA disappear.

5. Conclusion

In this work, we theoretically studied the existence of edge
states with out-of-plane motion on the free zigzag and armchair
boundaries of 2D semi-infinite mechanical granular graphenes.
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Due to the additional rotational DOFs, the bending and torsional
moments can be initiated between adjacent beads. By modify-
ing the bending and torsional rigidities of contact, one could ma-
nipulate the dispersion of the edge states. Although the bend-
ing/torsional rigidities are weak in granular crystals, we demon-
strate that they are crucial for the existence of slow propagating
near zero-frequency modes on both zigzag and armchair edges.
When torsional rigidity is weak, the extremely slow near-zero-
frequency edge modes, whose group velocity depends on the tor-
sional rigidity, exist on both zigzag and armchair edges. When
bending rigidity also becomes weak in addition to torsional one,
edge states in the LPA of the dispersion diagram are localized very
close to zero frequency. Due to the fact that they are very close
to the bulk modes in the dispersion diagram, edge modes in this
case can be weakly localized in depth. For weak torsional rigid-
ity, the quasi-flat bands at near zero frequency transform into the
perfect zero-frequency edge modes when torsional rigidity tends
to zero, while for weak bending rigidity, those edge modes show
the tendency of vanishing as bending rigidity is further reduced.
The granular graphene membrane could be, in principle, prepared
by three-dimensional printing. In accordance with the theoreti-
cal estimations [13,14], intersphere connections, where bending
and torsional rigidities are much weaker than shear one, could be
prepared if the dimensions of the contacts are much smaller than
the radius of the sphere. There are also possibilities to assemble
a granular graphene supporting the propagation of slow elastic
edge waves manually. The elastic spheres discussed in this arti-
cle could be in macro scale, which means that the particles can
be displaced manually and the structure can be practically assem-
bled nearly perfectly with almost zero disorder and missing con-
tacts [52,53]. For example, in Ref. [53], when the external force
(pre-compression) achieved through the magnetic interaction be-
tween the spheres is around 4N , the wave dynamics is linear and
the magnitude of bending rigidity is around 5 orders of magni-
tude smaller than the shear rigidity, which is exactly the same or-
der of magnitude that was assumed for some of the estimates in
ourwork. Therefore, assemblingmagnetic beads nearly perfectly in
the geometry of the granular graphene and achieving weak bend-
ing and torsional interactions is potentially possible. An adapted
shaker attached to beads on the edge can be used as the source in
the view to initiate the different motions of the beads. Particle ac-
celeration can be recorded by using small accelerometers glued to
the side of several beads or by laser vibrometermeasurements. The
physical realizations of the described granular graphene are of in-
terest in devices of signal processing using acoustic waves and in
the design of acoustic delay lines. In this article, the investigation of
edgemodes inmechanical granular graphene could in turn provide
considerable insights into their optical/acoustic graphene ana-
logues. The study of the near-zero-frequency modes caused by the
existence of weak rotational interactions is useful for the potential
realistic design of granular crystals supporting controllable propa-
gation of extremely slow edge waves. In addition, it paves the way
for the analysis of a variety of possible modifications of the above
presented granular graphene with the goal of designing granular
metamaterials supporting one-way propagating edge states.

Acknowledgments

Thisworkwas supported by the fellowship of China Scholarship
Council for L.-Y. Zheng and carried out in the frame of the project
⟨Pari scientifique PROPASYM⟩ funded by Region Pays-de-la-Loire.
We also acknowledge fruitful discussions with Dr. Hélène Pichard
from ESPCI ParisTech, and Professors Ming-Hui Lu and Yan-Feng
Chen from College of Engineering and Applied Sciences, Nanjing
University, Nanjing, Jiangsu, China.

Appendix A. Dynamical equations for the bulk modes

According to Ref. [13], one can obtain the dynamical equations
for the bulk modes,

Sout(qx, qy)v⃗out =


Q U
N Q

 
vA
vB


=0, (A.1)

where Q , U and N are 3 × 3 matrices of the forms in Eqs. (A.2)–
(A.4) as given in Box I. P = MR2/I is the ratio of mass to inertia of
beads and qx = 3kxa/4, qy =

√
3kya/4 are the normalized wave

vectors for kx, ky, respectively. Ω = ω/ω0 is the normalized fre-
quency with ω0 =

√
ξs/M . ηb = ξb/ξs (ηt = ξt/ξs) denotes the

ratio of bending (torsional) to shear rigidity.

Appendix B. Boundary condition matrix of zigzag edge

According to Appendix A, the dynamical equation lead to the
relations,

vA = Q−1(−U)vB = SAvB, (B.1a)

(NSA + Q )vB = SBvB =0, (B.1b)

where SA and SB are 3 × 3 matrices. Assuming the solution to the
dynamical equations has the form of a plane wave, thus,

vA = (uA, ΦA, Ψ A)T = (αA, βA, γ A)TKeiωt−mqx−nqy , (B.2a)

vB = (uB, ΦB, Ψ B)T = (αB, βB, γ B)TKeiωt−mqx−nqy , (B.2b)

with the relations,

αB
= S(3,3)

B S(2,2)
B − S(3,2)

B S(2,3)
B , (B.3a)

βB
= S(3,1)

B S(2,3)
B − S(3,3)

B S(2,1)
B , (B.3b)

γ B
= S(3,2)

B S(2,1)
B − S(3,1)

B S(2,2)
B . (B.3c)

Considering the edge states on the free zigzag boundary, we are
looking for the solutions of the form in Eqs. (4). Substituting Eqs.
(4) into the boundary conditions Eqs. (3), one could directly obtain
the relations,

3
j=1


αA
j − αB

j + γ A
j + γ B

j


Kj = 0, (B.4a)

3
j=1


βA
j − βB

j


Kj = 0, (B.4b)

3
j=1


γ A
j − γ B

j


Kj = 0, (B.4c)

which can be rewritten in the following form,

Szig(qxj, qy)K⃗zig = 0. (B.5)

In Eq. (B.5) K⃗zig = (K1, K2, K3)
T is the eigenvector of the boundary

matrix, and Szig(qxj, qy) is the boundary condition matrix of zigzag
edge, which is of the form, see Box II.

For the existence of the nontrivial solutions, the following
equation must be satisfied,

det|Szig(qxj, qy)| = 0. (B.7)

The dispersion relations of edge waves can be obtained.
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Q =


3 − Ω2 0 0

0
3(1 + ηb + ηt)

2
−

Ω2

P
0

0 0
3(1 + ηb + ηt)

2
−

Ω2

P

 (A.2)

U =


−1 − 2eiqx cos qy

√
3ieiqx sin qy 1 − eiqx cos qy

−
√
3ieiqx sin qy

3 − 3ηb − ηt

2
eiqx cos qy − ηt −

√
3(1 − ηb + ηt)

2
ieiqx sin qy

eiqx cos qy − 1 −

√
3(1 − ηb + ηt)

2
ieiqx sin qy

1 − ηb − 3ηt

2
eiqx cos qy + 1 − ηb

 (A.3)

N =


−1 − 2e−iqx cos qy

√
3ie−iqx sin qy e−iqx cos qy − 1

−
√
3ie−iqx sin qy

3 − 3ηb − ηt

2
e−iqx cos qy − ηt

√
3(1 − ηb + ηt)

2
ie−iqx sin qy

1 − e−iqx cos qy

√
3(1 − ηb + ηt)

2
ie−iqx sin qy

1 − ηb − 3ηt

2
e−iqx cos qy + 1 − ηb

 . (A.4)

Box I.

Szig(qxj, qy) =

αA
1 − αB

1 + γ A
1 + γ B

1 αA
2 − αB

2 + γ A
2 + γ B

2 αA
3 − αB

3 + γ A
3 + γ B

3

βA
1 − βB

1 βA
2 − βB

2 βA
3 − βB

3

γ A
1 − γ B

1 γ A
2 − γ B

2 γ A
3 − γ B

3

 . (B.6)

Box II.

Appendix C. Boundary condition matrix of armchair edge

Considering the edge states on the free armchair boundary, the
solutions of edge states have the form in Eqs. (8). Substituting
Eqs. (8) into the boundary conditions Eqs. (7), one could directly
obtain the boundary condition matrix,

Sarm(qx, qyj)K⃗arm = 0, (C.1)

where K⃗arm = (K1, K2, K3, K4, K5, K6)
T and Sarm is a 6 × 6 matrix

composed of the following elements,

S(1,j)
arm = −2αA

j −
√
3βA

j + γ A
j c

+ (2α2
j −

√
3βB

j + γ B
j )ei(qx+qyj), (C.2a)

S(2,j)
arm = −βA

j −
√
3γ A

j + (βB
j +

√
3γ B

j )ei(qx+qyj), (C.2b)

S(3,j)
arm =

√
3βA

j − γ A
j − (

√
3βB

j − γ B
j )ei(qx+qyj), (C.2c)

S(4,j)
arm = (2αA

j −
√
3βA

j − γ A
j )ei(−qx+qyj)

− 2α2
j −

√
3βB

j − γ B
j , (C.2d)

S(5,j)
arm = (βA

j −
√
3γ A

j )ei(−qx+qyj) − βB
j +

√
3γ B

j , (C.2e)

S(6,j)
arm = (

√
3βA

j + γ A
j )ei(−qx+qyj) −

√
3βB

j − γ B
j , (C.2f)

where j = 1, . . . , 6.
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