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Abstract 

In this paper, we present an improved ant colony optimization (ACO) and we use it to solve the generalized traveling 
salesman problem (GTSP). We design a novel optimized implementation approach to reduce the processing costs 
involved with routing of ants in the conventional ACO, and we also improved the performance of the ACO by using 
individual variation strategy. Simulation results show the speed and convergence of the ACO can be enhanced greatly, 
and we also get the best results in some instance of GTSP.  
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1.Introduction 

The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling 
salesman problem. GTSP is a very important combinatorial optimization problem and is known to be NP-
hard. In the GTSP, the set of nodes is divided into clusters; the objective is to find a minimum-cost tour 
passing through one node from each cluster. Many applications of the GTSP exist in many fields. But 
researches still did not pay enough attention to GTSP specific local search and mostly use simple TSP 
heuristics with basic adaptations for GTSP [1]. 

M. Dorige presented the Ant Colony Optimization (ACO) in 1991[2], some important strategies such 
as positive feedback and hidden parallel were proposed. By using positive feedback strategy, the ACO can 

nd the better result through parallel pheromone exchanging between ants. And by using hidden parallel 
strategy, jumping into the optimal solution can be prevented and the ACO is also very e�cient. The 
researches and applications on ACO algorithm have made great progresses in the past years. Many 
scholars presented some efficient methods to solve these problems [3-13]. However, it still has some basic 
problems that have only been partially solved, such as searching time is too long and it may easily jump 
into local optimal solution [10] 
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In this paper, two improvements on Ant Colony Optimization (ACO) algorithm are presented. We 
design an individual variation strategy to improve the convergence of the ACO. 

In the proposed algorithm, the ants use different strategies to get the better results; and we also design a 
novel optimized implementation approach to reduce the processing costs involved with routing of ants in 
the conventional ACO. The results of the simulated experiments show that the improved algorithm not 
only reduces the number of routing in the ACO but also surpasses existing algorithms in performance. 
More precisely, the simulations show that the stability and the speed of convergence of the improved ACO 
algorithm can be enhanced greatly. All the instances used in experiments are from TSPLIB 
(ftp://ftp.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html). Fischetti et al. [14] provided a 
partition algorithm to convert the instances use in TSP to those which could be used in the GTSP. 
Simulation results show that our results are always better than the results provided in ref. [15] [16]. 

The rest of the paper is organized as follows. Section 2 introduces the GTSP problem and ant colony 
optimization. In Section 3, the improvements of the ant colony algorithm are presented, and we provided 
the codes of the improved algorithm. Some simulation results are provided in Section 5. The paper 
conclusion and future research are presented in Section 6.

2.The Ant Colony Optimization for GTSP 

2.1.Ant Colony Optimization (ACO) 

Ant colony algorithm can be described briefly as follow. As the typical case, traveling salesman 
problem (TSP) is to be used to show the ACO algrothm generally. Let V = {1, ... , n} be a set of cities, A = 
{ (i,j) : i,j V} be the edge set, and d(i,j) = d(j,i) be a cost measure associated with edge(i,j) A . The 
TSP is the problem of finding a minimal cost closed tour that visits each city once. 

The object function of the traveling salesman problem is:  
1
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where d(i,j)  (i,j=1,2,…,n) is the tour length form city i to city j. 
Initially put m ants into n cities randomly and each edge has an initial pheromone ij 0 between 

two cities. The first element of tabu table of each ant is initialized with the initial city of each ant, and then 
each ant begins to select a tour to be next city. According to the following probability function, ants select 
the next city. 
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where pkij is the probability with which ant k chooses to move from city i to city j, ij  is the 
pheromone, ij=1/dij is the inverse of the distance,  and  are the parameters which determine the relative 
importance of pheromone versus distance ( , >0). In this way we favor the choice of edges which are 
shorter and have a greater amount of pheromone. After n times circles, all ants’ tabu have been filled, at 
this time, we compute every ant’s tour length to find the shortest one and save and record it in order to 
change pheromones. Repeat this until the stop condition is reached. 

In ant system, the global updating rule is implemented as follows. Once all ants have built their tours, 
pheromone is updated on all edges according to 
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Where ij is the sum of new increased pheromones at this edge is degree of dissipate for 

pheromones kij is the amount of pheromones of the kth ant at its edge between t and t+n. Calculate 

ij
k  using the following equation  
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Where Q is a const Lk is the length of the tour performed by ant k. 
Because the ACO algorithm is a typical random search algorithm, variables of ACO are often set by 

trial and error [11]. The chief variables are  and  which are related to pheromones and distance 
respectively. Both variables have effects on the quality of solutions. Variable  involves in the speed of 
dissipating of pheromones. The parameter ij is also a key value. The way of changing pheromones in 
ACO has some influences on efficiencies and the ability of getting results of algorithm. Dorigo gave three 
models: ant-cycle system, ant-quantity system and ant-density system [11]. The difference of the three 
models is the function (4). In this paper, we use ant-cycle system model because it changes pheromones 
using whole information and it has the best result on TSP program. The complexity of this algorithm is 
O(NC•n2), where NC is the maximum cycle times.  

2.2.ACO for the GTSP 

The GTSP is a variation of the well-known TSP in which the set of nodes is divided into clusters; the 
objective is to find a minimum-cost tour passing through one node from each cluster. In GTSP, we are 
given n cities into m groups and we are required to find a minimum length tour that includes exactly one 
city from each group. Generally, we can mostly use simple TSP heuristics with basic adaptations for GTSP, 
but these convertions lead to the increasing of dimensions of the instance. 

We use ACO to solve the GTSP without converting the instance.First, we introuduce the GTSP with 
the mathmatic model [15]: Let G= (V, E, W)   be a completely weighted graph, in which  

V= {v1, v2... vn} (n 3), E= {eij vi, vj V}, and )}(,,00{ nNjiwandwW iiij  are vertex set, 
edge set and cost set, respectively. The vertex set V is partitioned into m possibly intersecting groups V1, 
V2…, Vm with j

m
jj VVandV 1 .The special Hamiltonian cycle is required to pass through all of 

the groups, but not all of the vertices. At present, there are two kinds of GTSP [15]: (1) the cycle passes 
exactly one vertex in each group and (2) the cycle passes at least one vertex in each group.  

In this paper, we add the parameter allowedt in the algorithm. The parameter allowedt denote the city 
in the group has not been visited by ant t. By using allowedt, the algorithm avoids visiting the cities in the 
same group. 

},{ tt tabuGGcandVccallowed                         (5)  

3.The Improved ACO and Its Implement 

3.1.Individual Variation & Routing Strategies IVRS  

Two improvements on Ant Colony Optimization (ACO) algorithm are presented in this paper [7], we 
named it IVRS algorithm. The first is a novel optimized implementing approach which is designed to 
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reduce the processing costs involved with routing of ants in the ACO. In this approach, only the ant who 
firstly finds the shortest route will travel all the cities, while others will stop when this ant finished 
travelling; Second, the individual variation is introduced to the ACO, which enables the ants have different 
route strategies. In this model, we adjust the routing strategy of the ant who worked better, that is to 
enhance the impact of pheromones in the route of this ant. As a result, the quality of solutions of ACO 
algorithm has also been enhanced. Simulation results demonstrate that our results are always better than or 
equal to the solutions in the TSPLIB. 

In ACO, the parameters  and  set in (1) are static and all ants share the same value in the running of 
ACO. Dorigo [11] suggested that  = 1 and = 5 is a proper setting for many situations. For  and  are 
static, the relative importance of pheromone and distance on routinghold fixed according to (1). But it is 
not proper to use the same parameters in different phases of ACO. Initially, the distance has stronger 
impact on routing, because ants have little knowledge about the better path. After the algorithm runs for a 
long time, the impact of pheromone must be reinforced, because more information about the better path is 
stored in pheromone. From this observation, we introduce the Individual Variation to ACO. In this 
approach, each ant has different parameters which may change in the running of algorithm, which means 
that different ant has different routing bias. In the real world, individual variation makes the colony more 
robust. In IVRS, solutions worked out by ant colonies with different routing strategies are better than those 
of single strategy colonies. In experiments, we used an experiential rule of adjusting parameters, under 
which the algorithm finds the best solution faster in average: Increase the value of  and  at the same time 
decrease the value of until =5 and  =1, when an ant becomes the winner at the first time in some cycle. 
In experiment, we find, for large-scale maps in which the number of cities is huge, the modified ACO 
converges not very fast. Therefore, the 2-opt [12] is employed in the end of each cycle of ACO to perform 
local optimization, and both the convergence speed and the quality of solution are enhanced. 

In IVRS, we also optimized the ACO by reducing both the executing frequency and time complexity 
of routing algorithm. The improvements are given as follows.First, we design an approach in order to 
reduce the time complexity of routing: In contrast to select the next city from all the cities not visited, the 
set of candidates is limited to the nearest c cities. By this optimization, the time complexity is reduced 
greatly. The experiment results show that this improvement performed faster in large-scale TSP.Second, 
we introduce a method to reduce the routing frequency in each cycle of ACO. In one cycle of the algorithm, 
the ant that turns back to the source rst wins and other ants stop routing and this cycle is stopped. In each 
step of a cycle, the ant whose path length is the shortest is chosen to route and moves to the next city and 
increases its path length. This procedure repeats until an ant turns back to the city where it started. Finally, 
a variable Lmin is employed to record the current minimum solution.  

3.2.Pseudo-code of IVRS  

 In the pseudo-code, NC is the counter of cycles. Lmin is the current best solution. For ant k, 
ANT[k].start denote the starting city, ANT[k].current denote the current city ant i is in, ANT [i].tour 
denote the length of current tour, ANT [k].tabu denote the tabu table in which the cities had been visited, 
ANT [k].allowed denote the allowed table in which the cities in the groups haven’t be visited. ANT[k].  
and ANT[k].  denote the parameters  and  of ant k. 

 
Step1.  

NC  0; Lmin   
for each edge (i, j) do 

 i,j  c; i,j  0; 1, 5, 
end for 

Step2. 
if NC < NCM AX  and no stagnation behavior then 
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for k  1 to m do 
ANT[k].tabu  ANT [k].start  
ANT[k].tour  0 

end for 
else 

Print shortest tour 
Stop. 

end if 
Step3. 

Search for ant min whose tour is the minimum. 
if ANT [min].tour  Lmin then 

GOTO step 2 
end if 
if antmin returns to the city where it started then 

GOTO step 5 
end if 
j  Route(min) 
ANT[min].tour   
ANT [min].tour + distance(ANT[min].current, j) 
ANT[min].current  j 
ANT[min].tabu  ANT [min].tabu j 
Compute ANT[min].allowed according to Eq.(5) 

Step4. 
if ant min had visited all the cities then 

ANT [min].tour   
ANT [min].tour + distance(j,ANT [min].start)` 
GOTO step 3 

end if 
Step5. 

if ANT [min].tour < Lmin then 
Lmin  ANT [min].tour 

Update the pheromone of the path of ant min according to Eq. (3) 
if ANT[min]. 5 and ANT[min]. 1 then 

ANT[min]. + +; ANT [min]. -- 
end if 
end if 

Step6. 
for each edge (i, j) do  
Compute i,j(t + n) according to Eq.(2)     

 i,j  0. 
end for 
t  t + n; NC  NC + 1 
GOTO step 2

4.Experiments and Computational Results 

In order to testify our conclusion, we do a series of experiments. First, we compare the performance 
of the ACO algorithm and the IVRS algorithm in terms of performance, speed of convergence and quality 
of solution by several experiments.In this approch, we modify the algorithm (IVRS) for some instance in 
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TSPLIB. We also compare the solutions in GTSP of IVRS and other existing algorithms’result. 
Experiments are conducted on a 2.1GHz Celeron PC with 1G bytes memory under Windows 2003 using 
the VC6.0 compiler. All the maps used in experiments are from TSPLIB (ftp://ftp.iwr.uni-
heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html). 

First, we compare the solutions and the running time of basic ACO and improved algorithm IRVS, 
results show in Table 1. 

In order to testify our improved algorithm in GTSP, we use the partition algorithm to convert the 
instances used in TSP to those which could be used in the GTSP [14]. All of the instances are computed by 
IRVA Simulation results show that our results are always better than or equal to the results provided in ref. 
[15], results show in Table 2. 

5.Conclusion 

Two improvements on Ant Colony Optimization (ACO) algorithm are presented in this paper. The 
first is a novel optimized implementing approach which is designed to reduce the processing costs 
involved with routing of ants in the ACO; second, the individual variation is introduced to the ACO, which 
enables the ants have different route strategies. In this model, we adjust the routing strategy of the ant who 
worked better, that is to enhance the impact of pheromones in the route of this ant. As a result, the quality 
of solutions of ACO algorithm has also been enhanced. Simulation results demonstrate that our results are 
always better than or equal to the solutions in the TSPLIB. We also apply the improved algorithm to GTSP, 
and get the better results. 

References 

[1] Lien, Y., Ma, E., Wah, B.W.S.: Transformation of the generalized traveling salesman problem into the standard traveling 
salesman problem, Information Science. 74 (1993) 177–189   

[2] Dorigo M, Gambardella LM. A study of some properties of ant-Q. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel H-S, 
eds. Proceedings of the PPSN 44th International Conference on Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 1996. 
656~665.  

[3] Gambardella LM, Dorigo M. An ant colony system hybridized with a new local search for the sequential ordering problem. 
INFORMS Journal on Computing, 2000, 12 (3): 237~255. 

[4] Parpinelli RS, Lopes HS, Freitas AA. Data mining with an ant colony optimization algorithm. IEEE Trans. on 
Evolutionary Computation, 2002,6(4): 321~328. 

[5] Wu QH, Zhang JH, Xu XH. An ant colony algorithm with mutation features. Journal of Computer Research & 
Development, 1999, 36 (10): 1240~1245 .  

[6] Chen L, Shen J, Qin L. An adaptive ant colony algorithm based on equilibrium of distribution. Journal of Software, 2003, 
14 (8): 1379~1387 (in Chinese). 

[7] Yi Zhang, Zhi-Li Pei, Jinhui Yang, Yanchun Liang: An Improved Ant Colony Optimization Algorithm Based on Route 
Optimization and Its Applications in Traveling Salesman Problem. BIBE 2007: 693-698 

[8] Wu B, Shi ZZ. An ant colony algorithm based partition algorithm for TSP. Chinese Journal of Computers, 2001, 24 (12): 
1328~1333 (in Chinese).  

[9] Zhang JH, GAO QS, Xu XH. A self-adaptive ant colony algorithm. Control Theory and Applications, 2000, 17 (1): 1~3 (in 
Chinese). 

[10] Colorni A, Dorigo M. Heuristics from nature for hard combinatorial optimization problems. International Trans 
Operational Research, 1996, 3 (1): 1~21.  

[11] Dorigo M, Vittorio Maniezzo, Alberto Colorni. The Ant System: optimization by a colony of cooperating agents. IEEE 
Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 1~13 



 Kan Jun-man and Zhang Yi  /  Energy Procedia   17  ( 2012 )  319 – 325 325

 

[12] Huang L, Zhou CG, Wang KP Hybrid ant colony algorithm for traveling salesman problem, Progress in Natural Science, 
2003, 13 (4): 295~299.  

[13] Chengming Qi An Ant Colony System Hybridized with Randomized Algorithm for TSP Software Engineering, Artificial 
Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD2007. Eighth ACIS International Conference on Volume 3, 
Issue , July 30 2007-Aug. 1 2007 Page(s):461 - 465 

[14] Fischetti, M., Salazar, J.J., Toth, P. Branch-and-cut algorithm for the symmetric generalized traveling salesman problem, 
Operations Research. 45(3) (1997) 378-394  

[15] Han Huang, Xiaowei Yang, et. Hybrid chromosome genetic algorithm for generalized traveling salesman problems. 1st 
International Conference on Natural Computation (ICNC 2005), Changsha, China, 2005. Lecture Notes in Computer Science, 2005, 
Vol. 3612: 137–140. 

[16] 16. Chunguo Wu, ET. A generalized chromosome genetic algorithm for generalized traveling salesman problems and its 
applications for machining. Physical Review E, 2004, (70): 1-13. 

 
 

TABLE 1. COMPARISON OF THE RUNNING TIME (S) AND SOLUTION OF ACO AND IRVS IN SOLVING DIFFERENT TSP MAPS 

    
Instance TSPLIB

solution

   IRVS+2opt ACO+2opt 

Best  

solution 

Average 

solution 

Run 

time/s 

Best 

solution 

Average 

solution 

Run time/s

Eil51 429.9833 429.1179 431.1054 11.32 431.2568 439.2571 18.35 

Berlin52 7544.3659 7544.3659 7547.2365 8.23 7549.5264 7556.5897 14.69 

KroA100 21285.4432 21309.429 21498.6153 17.83 22006.3968 23441.804 23.06 

Eil101 629 631.2879 648.6725 9.45 654.4980 672.3756 13.58 

D198 15780 15842.523 15972.473 21.47 16054.4731 16252.928 28.38 

 
TABLE 2. COMPARISON OF SOLUTIONS FOR BENCHMARK TEST PROBLEM 

 
Instance

IRVS+2opt HCGA GCGA 

Best 

solution 

Run 

time/s 

Best 

solution 

Run 

time/s 

Best solution Run time/s 

31Pr152 51573 1.89 51573 0.89 51586 4.31 

40KroB20

0 

13009 5.97 13113 8.00 13120 6.78 

64Lin318 20719 14.12 20788 18.34 20977 16.81 

88Pr439 60184 7.24 60184 10.87 61373 6.89 

 
 


