
 Energy Procedia 17 (2012) 319 – 325

1876-6102 © 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Hainan University.
doi: 10.1016/j.egypro.2012.02.101

2012 International Conference on Future Electrical Power and Energy Systems

Application of an Improved Ant Colony Optimization on
Generalized Traveling Salesman Problem

Kan Jun-man,Zhang Yi

 Department of Computer Science,Jilin Business and Technology College,Changchun 130062, China

Abstract

In this paper, we present an improved ant colony optimization (ACO) and we use it to solve the generalized traveling
salesman problem (GTSP). We design a novel optimized implementation approach to reduce the processing costs
involved with routing of ants in the conventional ACO, and we also improved the performance of the ACO by using
individual variation strategy. Simulation results show the speed and convergence of the ACO can be enhanced greatly,
and we also get the best results in some instance of GTSP.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

Keywords: ant colony optimazation; Generalized Traveling Salesman Problem; route optimazation

1.Introduction

The generalized traveling salesman problem (GTSP) is an extension of the well-known traveling
salesman problem. GTSP is a very important combinatorial optimization problem and is known to be NP-
hard. In the GTSP, the set of nodes is divided into clusters; the objective is to find a minimum-cost tour
passing through one node from each cluster. Many applications of the GTSP exist in many fields. But
researches still did not pay enough attention to GTSP specific local search and mostly use simple TSP
heuristics with basic adaptations for GTSP [1].

M. Dorige presented the Ant Colony Optimization (ACO) in 1991[2], some important strategies such
as positive feedback and hidden parallel were proposed. By using positive feedback strategy, the ACO can

nd the better result through parallel pheromone exchanging between ants. And by using hidden parallel
strategy, jumping into the optimal solution can be prevented and the ACO is also very e�cient. The
researches and applications on ACO algorithm have made great progresses in the past years. Many
scholars presented some efficient methods to solve these problems [3-13]. However, it still has some basic
problems that have only been partially solved, such as searching time is too long and it may easily jump
into local optimal solution [10]

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Hainan University.
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82731771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

320 Kan Jun-man and Zhang Yi / Energy Procedia 17 (2012) 319 – 325

In this paper, two improvements on Ant Colony Optimization (ACO) algorithm are presented. We
design an individual variation strategy to improve the convergence of the ACO.

In the proposed algorithm, the ants use different strategies to get the better results; and we also design a
novel optimized implementation approach to reduce the processing costs involved with routing of ants in
the conventional ACO. The results of the simulated experiments show that the improved algorithm not
only reduces the number of routing in the ACO but also surpasses existing algorithms in performance.
More precisely, the simulations show that the stability and the speed of convergence of the improved ACO
algorithm can be enhanced greatly. All the instances used in experiments are from TSPLIB
(ftp://ftp.iwr.uni-heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html). Fischetti et al. [14] provided a
partition algorithm to convert the instances use in TSP to those which could be used in the GTSP.
Simulation results show that our results are always better than the results provided in ref. [15] [16].

The rest of the paper is organized as follows. Section 2 introduces the GTSP problem and ant colony
optimization. In Section 3, the improvements of the ant colony algorithm are presented, and we provided
the codes of the improved algorithm. Some simulation results are provided in Section 5. The paper
conclusion and future research are presented in Section 6.

2.The Ant Colony Optimization for GTSP

2.1.Ant Colony Optimization (ACO)

Ant colony algorithm can be described briefly as follow. As the typical case, traveling salesman
problem (TSP) is to be used to show the ACO algrothm generally. Let V = {1, ... , n} be a set of cities, A =
{ (i,j) : i,j V} be the edge set, and d(i,j) = d(j,i) be a cost measure associated with edge(i,j) A . The
TSP is the problem of finding a minimal cost closed tour that visits each city once.

The object function of the traveling salesman problem is:
1

1
)1,()1,(

n

i
ndiidDMin

where d(i,j) (i,j=1,2,…,n) is the tour length form city i to city j.
Initially put m ants into n cities randomly and each edge has an initial pheromone ij 0 between

two cities. The first element of tabu table of each ant is initialized with the initial city of each ant, and then
each ant begins to select a tour to be next city. According to the following probability function, ants select
the next city.

.,0 other

allowedj
t

t

p
t

allowedt
itit

ijij

k
ij

t

 (1)

where pkij is the probability with which ant k chooses to move from city i to city j, ij is the
pheromone, ij=1/dij is the inverse of the distance, and are the parameters which determine the relative
importance of pheromone versus distance (, >0). In this way we favor the choice of edges which are
shorter and have a greater amount of pheromone. After n times circles, all ants’ tabu have been filled, at
this time, we compute every ant’s tour length to find the shortest one and save and record it in order to
change pheromones. Repeat this until the stop condition is reached.

In ant system, the global updating rule is implemented as follows. Once all ants have built their tours,
pheromone is updated on all edges according to

 ijijij tnt
 (2)

 Kan Jun-man and Zhang Yi / Energy Procedia 17 (2012) 319 – 325 321

m

k

k
ijij

1 . (3)
Where ij is the sum of new increased pheromones at this edge is degree of dissipate for

pheromones kij is the amount of pheromones of the kth ant at its edge between t and t+n. Calculate

ij
k using the following equation

.otherwise0

n) t and t ime(between t tour itsin j) (i, edge usesant th -k if,
K

k
ij L

Q (4)

Where Q is a const Lk is the length of the tour performed by ant k.
Because the ACO algorithm is a typical random search algorithm, variables of ACO are often set by

trial and error [11]. The chief variables are and which are related to pheromones and distance
respectively. Both variables have effects on the quality of solutions. Variable involves in the speed of
dissipating of pheromones. The parameter ij is also a key value. The way of changing pheromones in
ACO has some influences on efficiencies and the ability of getting results of algorithm. Dorigo gave three
models: ant-cycle system, ant-quantity system and ant-density system [11]. The difference of the three
models is the function (4). In this paper, we use ant-cycle system model because it changes pheromones
using whole information and it has the best result on TSP program. The complexity of this algorithm is
O(NC•n2), where NC is the maximum cycle times.

2.2.ACO for the GTSP

The GTSP is a variation of the well-known TSP in which the set of nodes is divided into clusters; the
objective is to find a minimum-cost tour passing through one node from each cluster. In GTSP, we are
given n cities into m groups and we are required to find a minimum length tour that includes exactly one
city from each group. Generally, we can mostly use simple TSP heuristics with basic adaptations for GTSP,
but these convertions lead to the increasing of dimensions of the instance.

We use ACO to solve the GTSP without converting the instance.First, we introuduce the GTSP with
the mathmatic model [15]: Let G= (V, E, W) be a completely weighted graph, in which

V= {v1, v2... vn} (n 3), E= {eij vi, vj V}, and)}(,,00{ nNjiwandwW iiij are vertex set,
edge set and cost set, respectively. The vertex set V is partitioned into m possibly intersecting groups V1,
V2…, Vm with j

m
jj VVandV 1 .The special Hamiltonian cycle is required to pass through all of

the groups, but not all of the vertices. At present, there are two kinds of GTSP [15]: (1) the cycle passes
exactly one vertex in each group and (2) the cycle passes at least one vertex in each group.

In this paper, we add the parameter allowedt in the algorithm. The parameter allowedt denote the city
in the group has not been visited by ant t. By using allowedt, the algorithm avoids visiting the cities in the
same group.

},{ tt tabuGGcandVccallowed (5)

3.The Improved ACO and Its Implement

3.1.Individual Variation & Routing Strategies IVRS

Two improvements on Ant Colony Optimization (ACO) algorithm are presented in this paper [7], we
named it IVRS algorithm. The first is a novel optimized implementing approach which is designed to

322 Kan Jun-man and Zhang Yi / Energy Procedia 17 (2012) 319 – 325

reduce the processing costs involved with routing of ants in the ACO. In this approach, only the ant who
firstly finds the shortest route will travel all the cities, while others will stop when this ant finished
travelling; Second, the individual variation is introduced to the ACO, which enables the ants have different
route strategies. In this model, we adjust the routing strategy of the ant who worked better, that is to
enhance the impact of pheromones in the route of this ant. As a result, the quality of solutions of ACO
algorithm has also been enhanced. Simulation results demonstrate that our results are always better than or
equal to the solutions in the TSPLIB.

In ACO, the parameters and set in (1) are static and all ants share the same value in the running of
ACO. Dorigo [11] suggested that = 1 and = 5 is a proper setting for many situations. For and are
static, the relative importance of pheromone and distance on routinghold fixed according to (1). But it is
not proper to use the same parameters in different phases of ACO. Initially, the distance has stronger
impact on routing, because ants have little knowledge about the better path. After the algorithm runs for a
long time, the impact of pheromone must be reinforced, because more information about the better path is
stored in pheromone. From this observation, we introduce the Individual Variation to ACO. In this
approach, each ant has different parameters which may change in the running of algorithm, which means
that different ant has different routing bias. In the real world, individual variation makes the colony more
robust. In IVRS, solutions worked out by ant colonies with different routing strategies are better than those
of single strategy colonies. In experiments, we used an experiential rule of adjusting parameters, under
which the algorithm finds the best solution faster in average: Increase the value of and at the same time
decrease the value of until =5 and =1, when an ant becomes the winner at the first time in some cycle.
In experiment, we find, for large-scale maps in which the number of cities is huge, the modified ACO
converges not very fast. Therefore, the 2-opt [12] is employed in the end of each cycle of ACO to perform
local optimization, and both the convergence speed and the quality of solution are enhanced.

In IVRS, we also optimized the ACO by reducing both the executing frequency and time complexity
of routing algorithm. The improvements are given as follows.First, we design an approach in order to
reduce the time complexity of routing: In contrast to select the next city from all the cities not visited, the
set of candidates is limited to the nearest c cities. By this optimization, the time complexity is reduced
greatly. The experiment results show that this improvement performed faster in large-scale TSP.Second,
we introduce a method to reduce the routing frequency in each cycle of ACO. In one cycle of the algorithm,
the ant that turns back to the source rst wins and other ants stop routing and this cycle is stopped. In each
step of a cycle, the ant whose path length is the shortest is chosen to route and moves to the next city and
increases its path length. This procedure repeats until an ant turns back to the city where it started. Finally,
a variable Lmin is employed to record the current minimum solution.

3.2.Pseudo-code of IVRS

 In the pseudo-code, NC is the counter of cycles. Lmin is the current best solution. For ant k,
ANT[k].start denote the starting city, ANT[k].current denote the current city ant i is in, ANT [i].tour
denote the length of current tour, ANT [k].tabu denote the tabu table in which the cities had been visited,
ANT [k].allowed denote the allowed table in which the cities in the groups haven’t be visited. ANT[k].
and ANT[k]. denote the parameters and of ant k.

Step1.

NC 0; Lmin
for each edge (i, j) do

 i,j c; i,j 0; 1, 5,
end for

Step2.
if NC < NCM AX and no stagnation behavior then

 Kan Jun-man and Zhang Yi / Energy Procedia 17 (2012) 319 – 325 323

for k 1 to m do
ANT[k].tabu ANT [k].start
ANT[k].tour 0

end for
else

Print shortest tour
Stop.

end if
Step3.

Search for ant min whose tour is the minimum.
if ANT [min].tour Lmin then

GOTO step 2
end if
if antmin returns to the city where it started then

GOTO step 5
end if
j Route(min)
ANT[min].tour
ANT [min].tour + distance(ANT[min].current, j)
ANT[min].current j
ANT[min].tabu ANT [min].tabu j
Compute ANT[min].allowed according to Eq.(5)

Step4.
if ant min had visited all the cities then

ANT [min].tour
ANT [min].tour + distance(j,ANT [min].start)`
GOTO step 3

end if
Step5.

if ANT [min].tour < Lmin then
Lmin ANT [min].tour

Update the pheromone of the path of ant min according to Eq. (3)
if ANT[min]. 5 and ANT[min]. 1 then

ANT[min]. + +; ANT [min]. --
end if
end if

Step6.
for each edge (i, j) do
Compute i,j(t + n) according to Eq.(2)

 i,j 0.
end for
t t + n; NC NC + 1
GOTO step 2

4.Experiments and Computational Results

In order to testify our conclusion, we do a series of experiments. First, we compare the performance
of the ACO algorithm and the IVRS algorithm in terms of performance, speed of convergence and quality
of solution by several experiments.In this approch, we modify the algorithm (IVRS) for some instance in

324 Kan Jun-man and Zhang Yi / Energy Procedia 17 (2012) 319 – 325

TSPLIB. We also compare the solutions in GTSP of IVRS and other existing algorithms’result.
Experiments are conducted on a 2.1GHz Celeron PC with 1G bytes memory under Windows 2003 using
the VC6.0 compiler. All the maps used in experiments are from TSPLIB (ftp://ftp.iwr.uni-
heidelberg.de/iwr/comopt/soft/TSPLIB95/TSPLIB.html).

First, we compare the solutions and the running time of basic ACO and improved algorithm IRVS,
results show in Table 1.

In order to testify our improved algorithm in GTSP, we use the partition algorithm to convert the
instances used in TSP to those which could be used in the GTSP [14]. All of the instances are computed by
IRVA Simulation results show that our results are always better than or equal to the results provided in ref.
[15], results show in Table 2.

5.Conclusion

Two improvements on Ant Colony Optimization (ACO) algorithm are presented in this paper. The
first is a novel optimized implementing approach which is designed to reduce the processing costs
involved with routing of ants in the ACO; second, the individual variation is introduced to the ACO, which
enables the ants have different route strategies. In this model, we adjust the routing strategy of the ant who
worked better, that is to enhance the impact of pheromones in the route of this ant. As a result, the quality
of solutions of ACO algorithm has also been enhanced. Simulation results demonstrate that our results are
always better than or equal to the solutions in the TSPLIB. We also apply the improved algorithm to GTSP,
and get the better results.

References

[1] Lien, Y., Ma, E., Wah, B.W.S.: Transformation of the generalized traveling salesman problem into the standard traveling
salesman problem, Information Science. 74 (1993) 177–189

[2] Dorigo M, Gambardella LM. A study of some properties of ant-Q. In: Voigt H-M, Ebeling W, Rechenberg I, Schwefel H-S,
eds. Proceedings of the PPSN 44th International Conference on Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 1996.
656~665.

[3] Gambardella LM, Dorigo M. An ant colony system hybridized with a new local search for the sequential ordering problem.
INFORMS Journal on Computing, 2000, 12 (3): 237~255.

[4] Parpinelli RS, Lopes HS, Freitas AA. Data mining with an ant colony optimization algorithm. IEEE Trans. on
Evolutionary Computation, 2002,6(4): 321~328.

[5] Wu QH, Zhang JH, Xu XH. An ant colony algorithm with mutation features. Journal of Computer Research &
Development, 1999, 36 (10): 1240~1245 .

[6] Chen L, Shen J, Qin L. An adaptive ant colony algorithm based on equilibrium of distribution. Journal of Software, 2003,
14 (8): 1379~1387 (in Chinese).

[7] Yi Zhang, Zhi-Li Pei, Jinhui Yang, Yanchun Liang: An Improved Ant Colony Optimization Algorithm Based on Route
Optimization and Its Applications in Traveling Salesman Problem. BIBE 2007: 693-698

[8] Wu B, Shi ZZ. An ant colony algorithm based partition algorithm for TSP. Chinese Journal of Computers, 2001, 24 (12):
1328~1333 (in Chinese).

[9] Zhang JH, GAO QS, Xu XH. A self-adaptive ant colony algorithm. Control Theory and Applications, 2000, 17 (1): 1~3 (in
Chinese).

[10] Colorni A, Dorigo M. Heuristics from nature for hard combinatorial optimization problems. International Trans
Operational Research, 1996, 3 (1): 1~21.

[11] Dorigo M, Vittorio Maniezzo, Alberto Colorni. The Ant System: optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 1~13

 Kan Jun-man and Zhang Yi / Energy Procedia 17 (2012) 319 – 325 325

[12] Huang L, Zhou CG, Wang KP Hybrid ant colony algorithm for traveling salesman problem, Progress in Natural Science,
2003, 13 (4): 295~299.

[13] Chengming Qi An Ant Colony System Hybridized with Randomized Algorithm for TSP Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2007. SNPD2007. Eighth ACIS International Conference on Volume 3,
Issue , July 30 2007-Aug. 1 2007 Page(s):461 - 465

[14] Fischetti, M., Salazar, J.J., Toth, P. Branch-and-cut algorithm for the symmetric generalized traveling salesman problem,
Operations Research. 45(3) (1997) 378-394

[15] Han Huang, Xiaowei Yang, et. Hybrid chromosome genetic algorithm for generalized traveling salesman problems. 1st
International Conference on Natural Computation (ICNC 2005), Changsha, China, 2005. Lecture Notes in Computer Science, 2005,
Vol. 3612: 137–140.

[16] 16. Chunguo Wu, ET. A generalized chromosome genetic algorithm for generalized traveling salesman problems and its
applications for machining. Physical Review E, 2004, (70): 1-13.

TABLE 1. COMPARISON OF THE RUNNING TIME (S) AND SOLUTION OF ACO AND IRVS IN SOLVING DIFFERENT TSP MAPS

Instance TSPLIB

solution

 IRVS+2opt ACO+2opt

Best

solution

Average

solution

Run

time/s

Best

solution

Average

solution

Run time/s

Eil51 429.9833 429.1179 431.1054 11.32 431.2568 439.2571 18.35

Berlin52 7544.3659 7544.3659 7547.2365 8.23 7549.5264 7556.5897 14.69

KroA100 21285.4432 21309.429 21498.6153 17.83 22006.3968 23441.804 23.06

Eil101 629 631.2879 648.6725 9.45 654.4980 672.3756 13.58

D198 15780 15842.523 15972.473 21.47 16054.4731 16252.928 28.38

TABLE 2. COMPARISON OF SOLUTIONS FOR BENCHMARK TEST PROBLEM

Instance

IRVS+2opt HCGA GCGA

Best

solution

Run

time/s

Best

solution

Run

time/s

Best solution Run time/s

31Pr152 51573 1.89 51573 0.89 51586 4.31

40KroB20

0

13009 5.97 13113 8.00 13120 6.78

64Lin318 20719 14.12 20788 18.34 20977 16.81

88Pr439 60184 7.24 60184 10.87 61373 6.89

