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Abstract

In this paper. the contragredient equivalence is cxtended to several matrices and a
reduced form of the cyclically multiplicable n-tuples of matrices under this equivalence
is defined and constructed. An invariant set of clementary divisors (the spectrum of
divisors) is found. This set describes completely the reduced form of a given cyclically
multiplicable »#-tuple.  © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

When 4, is an s X n complex matrix and 4, is an # X m complex matrix, we
say that the pair (4,,4>) is doubly multiplicable. Then, we can consider the

matrices
Bl:A]Az and Bg=A3A]. (l)

Flanders [1] found that the matrices (1) are closely related: they have the same
clementary divisors with nonzero root and, if ky =2 ka2 -2 k, (k) 2 k2
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Z - 2k ) e *i*w Jordun block sizes associated with the cigenvilue zero in
B, (Ba) thcn ok, - all i. Furthermore, he found that these conditions
are necessary and buﬂicwnl in order that two square matrices can be repre-
sentcd as Eq. (1) (Flanders Theorem). Johnson and Schreiner [4] presented a
self-contained matrix-theoretic proof of Flanders Theorem. Horn and Merino
[3] defined the contragredient equivalence: two pairs of doubly multiplicable
matrices (4;.4.) and (47.45) are contragrediently equivaient if and only if
lhcrc exist two nonsingular matrices R and S such that 4 =R '4,S and

= §7'4,R. Rubid and Gelonch [5] proved that, given any pair of doubly
mulupllmblc matrices, we can find another pair contragrediently equivalent to
the first pair such that the new pair has a reduced form; that is, both matrices in
the new pair are block diagonal except, maybe, some null rows and/or null
columns. There are only four possibilitics for the diagonal blocks. Further, the
matrices 4145 and 454} are in Jordan form. The same authors constructed a
complete scl of i mvarlanlw under contragredient equivalence. This sct is formed
by the clementary divisors of the polynomial matrices 4/ — A1A4s. 2] — 4-4,.
;.Aj - A]Ag/f] and /A.Ag — A3A|A3.

Gelonch et al. [2] gencralized Flanders Theorem to cyclically multiplicable n-
tuples of matrices. Our goal in this paper is to exlend the contragredient
equivalence to cyclically mutiplicable n-tuples of matrices and to find a ca-
nonical form and a complete set of invariants under this relation, using the
results of Ref. [2] (Section 3 summarizes the main definitions and results of that

paper).

2. Notations and first definitions

We denote by M,,,, the set of m x n complex matrices and write M, = M, .
The m x n null matrix is represented by 0,,,; when there is no pessible con-
fusion, the subindices will be omitted. Following the notation of Ref. 3], J;(x)
denotes the upper triangular Jordan block of order k corresponding to a given
scalar » € C. We also define the (k — 1) x k matrices Hy = {1 Oy} and
Ke = [Oc-1y Iy, Observe that HiK! = JT (0) and KTH, = J[(0).

Given 4 € M,,,.. the linear transformation of C" into C" defined by 4, as
well as its restriction to any subspace, will be represented by A itself.

The empty set is denoted by (. The quotient group of integers modulo n (n>
22) is denoted by Z,: the null element of this group is represented by n. For
language abuse, the same symbol will be used to represent an element in Z,, or its
main representative (between I and n, both inclusively) in Z*, if it is necessary.

Definition 1. We say that a k-tuple (a;.as.. ... ay) € (Z,)*, with k=3, is weakly
cyclic-ordered (WCO) if it satisfies one of the following conditions, where the
elements a; are considered in 7" :
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I, ay<a; << ap <ap +n.

2. fay=zas, thena <ar+n < - La+n<sa +nor

3.1 there exists 1 < j <k such that g, .- a;,,, then a) <a < -<a; <
QG +n < Saptn<a -t

Definition 2. We say that a &-tuple (aj.ax.. ..a ) € (Z,,)k, with £ > 3, is

strongly cyclic-ordered (SCO) if it satisfics one of the following conditions,

where the elements «; are considered in Z *;

LLay<a<--<a <a+n, or

2. il thereexists | < j < ksuch thata; 2 a; . thenay <ax < - <a; < ap+
n< < aptn a4

Note that, within the above definition, a;  a;,; for all j. In fact, il a; = a; ),
then we have a) < a; < a; +n < a) 4+ n, which is not possible.

Lemma 3. With the previous definitions, we have:

Lo If (ay,aa, ... a4) is SCO, then it is also WCO.

2. (i.j, 1) is WCO forall j € Z,; (i.j,i) is SCO for all j € Z, - {i}.

3. If ay # ay. (ay,ax,ay) is WCO if and only if (ay,a>,a3 + 1) is SCO.

4. (ay,as,as,....a;) is WCO if and only if (ax - 1, as,....ac,ay) is WCO.

5. (ay.aa,...,q) is SCO if and only if (a3, ... a;,a) + 1) is SCO.

6. Forry # 1, (i,j,i2)is SCO forall j € Z,, such that (ry = 1,j,12) is SCO, if and
only if (iy,#,r2,02) is WCO.

Fora,hbe Z, | <a<nand | < b < n, we denote by €(a, b) the value

oy Jn+b—a ib<a,
He.b) = {b ~a if h>a.

Definition 4. Given a square matrix, the sizes of Jordan blocks associated with
the eigenvalue zero are called nilpotence indices of the matrix. The non-
increasing sequence of them, made infinite by addition of zeros, is called

nilpotence sequence.

Definition 5. An n-tuple of matrices (A4, 4,,...,4,) is said to be cyclically
multiplicable if the products 4;4;,; make sense for all i € Z,.

Definition 6. An n-tuple of square matrices (B,,B.,...,8,), maybe with
distinct sizes, is said to be associable if there exists a cyclically
multiplicable n-tuple (A;,4,,...,4,) such that B, = A4, - -4y for all
i€,
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Two square matrices with respective nilpotence sequences {4} and {4}
satisfy Flanders condition il both matrices have the same clementary divisors
with nonzero root and [k; ~ &i| < | for all i. Then, we say that an n-tuple of
square matrices (By, B, ..., B,) satisfies Flanders condition pairvise if the ma-
trices A; and B, satisfy Flandcers condition for all 4, j.

3. Flanders theorem for more than two matrices

If (B,.B,....8B,) is associable, then it satisfies Flanders condition pairwise.
That is, Flanders condition pairwise is necessiary o that an s#-tuple of square
matrices is associable. Moreover, we have the follev ing result (Theorem 3.1 of
Ref. [2])

Theorem 7. Let By. By and By be square matrices, mayhe with distinet sizes. The
Jollowing statements are equivalent:

(@) (By, B2, B3) iy associable.

(b) (By, Ba, Bs) satisfies Flanders condition pairwise.

Unfortunately, Flanders condition pairwise is not sufficient for n = 4. Its
generadization is given by the next definition (Definition 4.1 of Ref. [2)).

Definition 8. An n-tuple of square matrices (B8,,8,,...,B,) is said to be F-
related if it satisfics Flanders condition pairwise and there exists an ordering of
the nilpotence indices of the matrices B;, &, kia, ... ki, fori = 1,2, ... nsuch
that cither

(@) kj =k forallie Z,, or

(b) there cxist §y,i» € Z, such that &, ; =k ;- 1= =k, - 1=
kijyij ==k, ; lorall j=12,... pwithp=min_;,_.{p}

Theorems 4.1 and 4.2 of Ref. [2] prove that the F-related condition is a
necessary and sufficient condition in order that an n-tuple of square matrices is
associable. Moreover, the proof of both theorems is constructive.

Note that the F-related condition becomes Flanders condition pairwise
when n=2 or n=3. So, the F-related condition is a good generalization of
Flanders condition pairwise, in the sense that it extends Flanders theorem to
cyclically multiplicable n-tuples of matrices.

4, Contragredient equivalence for n-tuples. The reduced form

The definttion of contragredient equivalence, given in Ref, [3], is easily
generalized for cyclically multiplicable n-tuples of matrices.
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Definition 9. Let (4. 4>... .. Ay)and (A}, 45.....4,) be two cyclically multi-
plicable n-tuples of matrices. We say that they are contragrediently equivalent
if there exist nonsingular matrices 7}, 75.... . T, such that A) = 7' A, 7, For all

i € Z,. Then, we write (4. A>.... . A,) ~ (A As .0 A).

Clearly, we have the next result.

Lemma 10. [/ (4. 4s....04,) ~ (A A5 A, then the matrices B =
Aidiy A and B = A;A:il vl are similar for all i € 7,.

Given a cyclically multiplicable #-tuple of matrices, (A;.45.. ... Ay). with
Ai € Myy iy for i € Z,,, the matrices 8, = 4,4, . ..4; | are square malrices
of order m(i), for all i € Z,,. We can consider cach onc of them as a linear
transformation of C"" into itsell. Let &;;.4,2... ..k, be the nilpotence indices
for ecach matrix B,, ordered according to Definition 8. Let p = min {p;}.
Through the proof of Theorem 4.2 of Ref. [2]. we construct a decomposition of
cach space C™" in direct sum according to the Jordan structure of B;,

c" = [ Grh ) a ( hE
j 1 ', §1

where subspdccs V‘ correspond to the clementary divisors with nonnull root
and subspaces E corru,pond to the clementary divisors with null root, sat-

isfying

Lodia (V) =V for j=1,2,....4,

(i=1)
2. A;. ( ")y C K] "for j=1,2,....p. |
3. din Eﬁ =k for j=1.2..... p and dim Ej-” =1.forj=p+1,....p.
Definition 11. The chain of subspaces (V' V..., V"), for j=1,....q, is
said to be a nonsmguldr chain, Slmlldrly, for J= 1.2 ... p. the (,hdm of

subspaces (E} ),L‘_f,- ... E") is said to be a nilpotent chain.

The construction made in Ref. [2] allows us to affirm that, lf wc take the
ordered union of a determined basis of the subspaces /" and £’ } as basis of
each €™ the matrix of each linear transformation 4, : C""'" — C"¥ s a
block diagonal matrix except, maybe, some null rows and/or null columns,
That is, there exist nonsingular matrices 7; such that the matrices
Ai =T AT, for i =1,2,....n, are block diagonal matrices except, maybe,
some null rows and/or null columns. Moreover, the possible diagonal blocks
arc only J (a), Iy, H; or K. 1t is clear that the cyclically multiplicable n-tuples
of matrices (4,45, ... ,,) and (4),45,...,4)) are contragrediently cquivalent.
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Definition 12. An n-tuple constructed according to the above process is a
reduced form of a given cyclically multiplicable n-tuple of matrices.

Note that if two cyclically multiplicable n-tuples of matrices admit a same
reduced form, then they arc contragrediently ecuivalent.Given a cyclically
multiplicable n-tuple of matrices and a nilpotent Lham ofll (L“’ F' & ....IJ("’)
we constder the linear transformations 4; : E‘”” E, From the comlrucuon
made in Ref. [2], we know that one and only one of these lincar transforma-
tions is not left invertible. Moreover. the dimensions of the subspaces of each
nilpotent chain satisfy the condition of Definition 8, that is, either they are
equal or they have an increase by once and a decrease by one. We assign a (ype
to each nilpotent chain, according to these facts.

Definition 13. Let (L,”,E‘ E}") be a nilpotent chain and let k;; = dim E“’

fori=1.2.....n Then, its lypc is

e T(i) (or, cquwa]cnlly, f( i) il ky; = ky; =+ = k,,; and the linear transfor-
mation A; : E ' E{ 1s not lefl mvcrublc,

o T(i\ i) if A,,, =k~ ==k =l =kp, ==k,

Definition 14. The order of a nonsingular or nilpotent chain is the greatest
dimension of the subspaces which form the chain.

If (V“ V‘ V‘"’) is a nonsingular chain of order &, we can choose a
basis of CdCh subspacc V“ so that the matrix of the linear transformation
Ay V,‘ - /{ ) is J(2) and the remaining lincar transformations have /; as
maltrix. Sumldrly, given a nilpotent chain of type T'(i) and order A, we can find
a basis of each one of its subspaces so that the matrix of the linear transfor-
mation A4; is J; (0) and the matrix of 4, is I;, for all j€ Z,.j # i.

That 1s,

A= o ' ' =J, (0 ¢ - Z,. 2
; {[A it and B, =.J.(0) foralljeZ (2)
If the type of the nilpotent chain is 7'(i), i») with i}y # i>, we can obtain a basis of
its subspaces such that

(H, il j=1i,
_ K ifj=ia,
Y= i) isSco, )
{ lk.-| if (fg,_i,fl) is SCO.
B, = 1"‘(0) if (i1,/.i»+ 1) is SCO, @)
LA 0) i (i iy + 1) is SCO.
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Definition 15. Given a nilpotent chain of order &, the number of the linear
transformations A;, with matrix /; over the chain is said to be the length of the

nilpotent chain.

[t is casy to sce that the length of a nilpotent chain is the value ((i) + 1.4)
when the type of the nilpotent chain is 7(iy. /).

5. Spectrum of divisors of a cyclically multiplicable »-tuple of matrices

Given a cyclically multiplicable n-tuple ol matrices. (A4,.4a. . ... A,), we can
construct the matrices
A(riom) = H A; (5)

(r- 1) is $CO

forall #,ry€ Z,. If - = ry, there is not j such that {r — 1, j.#2) 1s SCO. Then,
A(ry, ) is equal to the identity matnx.

Definition 16. Let (A4,,41,...,4,) be a cyclically multiplicable n-tuple of
matrices. The characteristic matrices of the given n-tuple are the polynomial
matrices defined by £, ,,(4) = (A = B, )A(r.r2), for all i .m € Z,.

Definition 17. The number of matrices which form the product A(#, #,) is said
to be the length of the characteristic matrix P, ., (4).

The length of the characteristic matrix £, ,,(4) coincides with the value
E(I‘;,}‘g).

Let S(P.,, r2) be the set of the elementary divisors of the characteristic matrix
P, ..(%), ordered according to the following criterium, over its root: (a) greatest
modulus, (b) greatest real part, (c¢) greatest imaginary part and (d) greatest
degree of the clementary divisor.

Definition 18. Let (4,,4,,...,4,) be a cyclically multiplicable »-tuple of
matrices. The sel

A(A1, Az, ... A,) = {S(P,,,,) such that vy, m € Z,},

where the sets S(P, ) are non-decreasingly ordered according to the length of
the corresponding characteristic matrix and, if the length is equal, according to
1y, is said to be the spectrum of divisors of the given cyclically multiplicable n-
tuple of matrices.

Proposition 19. Jf (4),4a, ..., 4,) ~ (4}, 45,.. .. A}), then both n-tuples have the
same spectrum of divisors.
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Proof. We know that there exist nonsingular matrices 7. 75... ... T, such that
A =T AT for all i € 7, Let P ,.(4) be the characteristic matrices of the
mst n-tuple and let £ (7) be those ol the second n-tuple. The equality
Pl () =T P (7 )T,, ensures that the matrices P, (7) and P, ,,(2) are

.

equivalent for all 1. € Z, and, then, they have 1hc same clementary
divisors. [

Proposition 19 allyws us to consider any cyclically multiplicable n-tuple of
matrices in reduced form, without loss of generality, when we work with its
spectrum of divisors.

Proposition 20. Given a cvelically mudtiplicable n-tuple of matrices, all of its
characteristic matrices have the same elementary divisors with nonnudl root.

Proof. Let (A4,.45.....4,) be a cyclically maltiplicable n-tuple ol matrices.
Consider the a-tuple in reduced forin. Since the matrices B, = 44, -+ A4
satisly Flanders condition pairwisc, for all i € Z,. we know that they have the
same clementary divisors with nonnull voot. Let (4 — )" be one of these
clementary divisor with nonnull root, Then, the matrix 4, has the diagonal
block /' (2) and the matrices 4,, for j = 2.3..... n. have the diagonal block /.
Morcover, the matrices B, have the diagonal block J(x). Therefore, the
characteristic matrices, 2,,,(2). have the diagonal block [ — J ! (2)}/} ()
(ri = 1.1.m) is SCO. or 2l; —J(2). otherwise. Since J]' (%) is nonsingular, the
clementary divisor which LOllLbDOlldb to both blocks is (4 —2)". [

The rest of this paper is devoted to prove that two cyclically multiplicable »-
tuples of matrices are contragrediently equivalent if and only if their spectra of
divisors are equal. In what follows, the cyclically multiplicable n-tuples of
matrices are considered in reduced form. Then, cach nilpotent chain provides a
diagonal block to each one of the characteristic matrices, £, ,.(4). Over a nil-
potent chain of order £, and usmE (2)-(4), we know that the matrix Al - B, is
equal to A1 = J1(0) or A1 =/, (0) and the matrix A(r,r2), given by Eq. (5), is
equal to f,. K .'.IJA.../A (0).J.' ,(0) or I,_. Hence, we have the following result.

Propesition 21. A nilpotent chain of order k provides to cach characteristic
matrix one of the following diagonal blocks:

(@) iy = JT(0). (b) iHy —JT (0)H,, (c) 2K} —JHOK],
(d) 2diy = J7(0). () AT, (0) = UL, (0, () AT(0) ~ [T (0))".

Notice that each one of those diagonal blocks has, as elementary divisor, A*
Py G P
(case (2)). 271 (cases (b), (¢). (d) and (D) or A2 (case (e)).
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Given two elements of Z,,.ry. . we define the sets
. 2 . . N
Ai(ryorm) = {(i.j) € (Z,) such thut (r — 1. i = 1)is WCO},

Ar(ryom) = {{i.)) € (7/,,,)2 such that (r, — 1.4 /. r)is SCO}.

It is casy to sce the rext lemm,

Lemma 22, For all ry.mog Z,,. Al(r;.l'g) N Aj(f‘]. 1‘3) = ).
We also define the set
As(ryors) = (Z,) = (Dy{rr.m) U Bs(ry.m)).

Proposition 23. For all i\.ix € Z,., a nilpotent chain of tvpe T(iy.ia) and order k
provides to the characteristic matrix Py, () the elementary divisor

o ifand only if (iy.ir) € Ay(r.r).

o 7 if and onlv if (iy.i) € Ds{ry. 1),

o A7V ifand ondy if (iy.ia) € As(ry. ).

Procf. Accmding to Egs. (2) and (3), the clementary divisor ol the matrix
P, () is 2* if and only if B, = J;(0) and 4; =/, for all j such that (1 — 1,
Jyr2) is SCO. We know that B,, = J/(0) for all ¥, il i} = i>. und for all r; such
that (i;,r, i + 1) is SCO. 1l i} # i; llu.sc two conditions can be summarized as
(iy.r,iz) being WCO (recall parts 2 and 3 of Lemma 3). Moreover, A, = L il
and only if (i), j.ir) is SCO. Thus, the elementary divisor of P, ,, is 2* if and
only il (iy,r,i>) 1s WCO and, when ry # m.(i1,/,4-) is SCO lor ull j such that
(r, = 1,j,r2) is SCO. Part 6 of Lemma 3 shows that this last condition is
equivalent to (i1, ry, 7. i) being WCO. Using twice part 4 of Lemma 3, (5 - 1,
Jodyry = 1) is WCQ, that s, (:; i) € A {ry.r).

The clemcnlary divisor /‘ appears only when the corresponding diagonal
block is /], (0) — [JF,(0)]" (case (c) of Proposition 21). This block is obtained
if and only if B, =J! ,(0) and A(r.r») =J} (0). So that these conditions
hold, we need that iy # iy, # 1y and 1y # 1 + 1. We know that B, =J l(())
il and only if (fr.ry, 4 4 1) is SCO; USIIIE part 5 of Lemma 3, this condition is
equivalent to require that (1, — 1,4,.4) 1s SCO. Without 'oss of gencrality, we
can suppose ry = 1. Then, 4(r.1) = A 4>.. . 4,,., and, according to Eq. (3),
this matrix is equal to JT_,(0) if and only if 1<i<i»<ry — 1, that s, if and only
if 0 < i) < iy < r.. These inequalities arc equivalent to (#) — 1./;,4,r2) being
SCO, that is, (i1,i3) & Ag(l‘[,i'g). Ol

For all iy, 1> € Z,, we denote by M, (i}, i,) the number of elementary divisors
A of the matrix P, (4) and by Ni(i),i») the number of nilpotent chains of
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order &k and type T(iy.75). It is clear that if we know the values Ny (iy. i) for all
iy.i» and k&, we can comstruct a reduced form of the given n-tuple
(A| . /’3 ..... A,,).

According to Propoition 23, we have the next relation:

M) = > Nealink)+ Y Noalind)

iy Al )0 Adrepara)
(6)

+ Z NA.(!'|.f3).

(J'| .f_’ ) 1'\] fl'| el

Our aim is to prove that the knowledge of the values M, (i.1) for all k. ry and
2 altows us to compuie the values Ny (i), 7>) for all 4.4, and .. We need the next
result,

Lemma 24. Given a eyclically multiplicable n-tuple of matrices. let C be one of its
nilpotent chains, of order k and type T(ii. i), and let P, .. (2) be one of its
characteristic mairicos. Glso, let Ly be the length of C and let Ly be the lensth of
P . (2). Then
(a) If Ly < La, the elementary divisor of P, ,,() provided by C is not i,
(b) If Ly = La, C provides A as clementary divisor of P, ., (2) if and only if
the type of Cis T(ry - 1.r).

Proof. (a) According to Proposition 23, the clementary divisor is 2 if and only
if (iy.ry.ra.0a) is WCO. We can suppose, without loss of generality, i) = n; that
is, we consider that (n.r.#s.ia) is WCO. Then, n < 1 + n<r + n<ih +n<2n,
which implies that

| <y << (7)

and Li = -+ 1!2) =4 i (Il + l) = [y — | 2 =1 = {(i"_),l’l) = L:.
Thus. if the elementary divisor provided by the nilpoint caain to the char-
acleristic mairix is 4%, then L; = L.. Hence, L, < L» implies thai the elementary
divisor is not 2*.
(b) In order that 2* be the clementary divisor when L) = L, the equalities
| = r and »» = i» in Eq. (7) are necessary. Thatis, iy =~ land b = . [

Now, note that if 4,, is the greatest exponent of the elementary divisors with
null root in the spectrum of divisers, then relation: (6) becomes

L

Mifrir) = Y Nyli.da). (8)
)

{fy .f:]ﬁA; (riaem

Morcover, since A;(» + 1.r) = {(r.r}}, we have
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Ny, (rr) =M (r+ 1.r)

for all r. That is, we easily know the number ol nilpotent chains ol greatest
order (k,) and greatest length (n — 1). Using Eq. (8) and Lemma 24, we can

obtain

MA (!.| -+ l.f:) = NA-,"(Ill.llg) + R, (9)

m

where R represents the rest of the values N (7. ) in Eq. (8). all of them cor-
responding to nilpotent chains of length greater than £(i) -+ 1./} (the length of
the nilpotent chains of type T(i, i,)). Since these values are known for the
greatest length, we can comip-te. from Eq. (9) with i) =1, - 1. the values
Ni, (is + 1.0) (they correspond to the nilpotent chairs of greatest order and
length i — 2). end so on.

Then. relatior (8). with & = £, - 1. can be written as

Z Ne,-1(f i) = My, (rir) z Ny, (11.12).

Uiy 2 )CA [y ) (paa)eAate )

and allows to find the values ./, (i), /), starting again with the values cor-
responding 1o the greatest lenz2th, M, . (r,r). because the values N, (). 1)) are
already known for all /) and /.

This process can be continued to compute all the values Ny(i),i»). With
them, we can construct the reduced forms of the given cyclically multiplicable
n-tuple of matrices.

Moreover, we have proved the next results (the main results of this paper).

Theorem 25. The reduced form of a cyclically multiplicable n-tuple of matrices is
uniquely determined up to the order of the chains.

Theorem 26. Two cyclically multiplicable n-tuples of matrices are  con-
tragrediently equivalent if and only if their spectra of divisors are equal.

Finally, we present an example of the construction of the reduced form for a
cyclically multiplicable #-tuple of matrices.

Exampie 27. Consider the matrices

(-6 -2 2 4 -2 -5 -3
-3 0 2 3 0 -2 =2
y o ! 1 1 2 0 -l
Tl-4 0 2 3 0 -3 =3
302 0 =2 1 2 1
2 1 6 -1 0 1 1
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-

3202 2 -2
I3 -3 0 |

t2

1 1 2]

() () I ] 0O -1 0 ! | 0
AT U PR e T B A
-2 0 1 2 T 0 <2 02 0

-1 0 -1 0 T B A

10 -1 —1]

The n-tuple (4. As. Ax.4y) is cyclically multiplicable. We compute the matrices
3| = ,‘h"!:z‘l]fh. 1)’3 — ."!3.‘13.44;4]. B; = /13.‘14A|<43. B.; = A.;Ap‘]y’l;.

In Table 1. we have the list of the characteristic snatrices, with its clementary
divisors and the values of M {r.r) for k = 1.2 (the greatest exponent of the
clementary divisors with null root s 2).

Using the equalities (6), beginning with & = 2 and i} =i, 4 1, we can com-
pute the values Ny (7). 72): the only nonzero values are N-(2.2) = 1,N>(4,3) =2
and N, (1.2) = 1. Then, there are four milpotent chains: one of order 2 and type
712, 2), two of order 2 and type 7(4, 3) and enz of order 1 and type 7(1, 2). The

Table |

Characteristic matrix Elem. div. Mi(r. 1) My, 1)
P2y =2l B PARPERPEY 3 0
Pasi)=al B, FANPLRPERPL 3 l
Py =al - By FARVERPEH 3 0
,4_.;(/..} o /I BJ :;.:. ).. /: I 2
Pisti)y=iady B FERPLRPEH 3 0
[’1_1(/..) = /13 . B_j.'fg ;a;.:. 1:.". /: 2 I
Pig(i) =iy - By PRI l 2
A=y By, PERVRPY | 2
Pydi)=idyds Byl PAANPY 2 !
P:,.;(t:.) = /...'Igzll Bg .‘f;.'l_; :/ J;.. /: (0 3
Po(ay=ddady  Bidady VAL A ) | 2
Pydy = 2dg Ay Bydyd, VA2, 2 2 | 2
P;_.;(/..) -':/...'h/h,‘h : B; xh.‘l;/h {/. /... /-.I 0 3
Pg.|(l:.):;.."_v,‘l_1."4 : Bng:.‘l_l.‘h i/. ). /} 0 3
Proti) = relydgdy - Baalydsod, (2%, 4 4 1 2
Poe)= sy di el ByddyAdyds Vi Ao b} 0 3
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blocks corresponding to these nilpotent chains, for cach one of the matrices
A1 Ay Az and Ag,are {L.JN0), bbb LKLY L B, K Hy} and {H),
K'.0,0}, respectively. The “matrix” H; adds a null column, without adding
rows, and K udds a null row, without adding columns. Hence, there exist
nonsingular matrices, 7y, 75,73 and 7 such that (in Ref. [2], we can find a
process 1o construct these nonsingular matrices)

10
0 1
, f I 0
Ay =147 = 0| .
1 0 |
i 0 1 UJ
0 0 ]
)
[0
Ay =T, 42Ty = 0 1 ,
1 0
0 1
. 0 -
(1 0 )
0 1
Ay =TTy = ? :
0
. l.l
1 0 ]
_ 0 1
Ay =T AT, = L o
i I 0
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