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Abstract 

In this paper multilayered cellular automata are formally defined as a generalization of mufti- 
layered automata networks. They are hierarchically organized on the basis of nested graphs, 
and can show different kinds of dynamics, which allow to use them to model, e.g., complex 
biological systems comprised of different entities organized in a hierarchical framework. Finally, 
the simulation of the dynamic regulation of calcium-ion distribution in the subcompartments of a 
living cell by means of Multilayered Cellular Automata is presented, as an example that allows 
to show their modeling power. @ 1999-Elsevier Science B.V. All rights reserved 

Keywork Cellular automata; Reaction-&fision 

1. Introduction 

In this paper a formal definition of multilayered automata networks and a derived 
definition of multilayered cellular automata and the related dynamics are presented in 

order to give a formal basis for those models which have been successfully developed 

and implemented adopting the general computational features of cellular automata, but 

introducing explicit notions and strnctures in order to represent hierarchical features. 

Some examples refer to complex biological processes produced by the interaction of 

several subsystems: the simulation of cellular interaction [ 1,4], of HIV infection in the 
immune system [lo], and of ~alci~-ion ~stribution in the living cell [2]. 

Multilayered automata networks are here defined as a generalization of the definition 
in terms of graphs of automata networks given in [8]. Like in [S] for cellular automata, 

the definition of multilayered cellular automata is then derived as a particular case of 

multilayered automata networks by introducing the notion of cellular space (a regular 

grid on the highest level of the hierarchy). 
The main feature of the proposed definitions consists of the explicit introduction 

of a hierarchical structure based on nested graphs, which are graphs composed by 
vertices and arcs where each vertex can be in turn a nested graph of lower level. 
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By introducing states and transition functions, a multilayered automata network is di- 
rectly obtained from the nested graph structure. Fu~he~ore, the different possibilities 
for the dynamical evolution of a multilayered automata network, i.e. sg~~e~~~~~, ~yn- 
chronous or combined, are defined. 

A non formal notion of nested graph has been previously introduced in [lo] for 
the computational treatment of hierarchical cellular automata in an object oriented pro- 
gramming paradigm. A cellular automaton model representing a multilayered structure 
(called hoer-cellular automaton) and adopting a combined dynamics for ~presenting 
and simulating biological phenomena as a reaction-diIl&ion model was described in 

[l, 21. 
In the first part of this paper, the formal definitions of multilayered automata net- 

works, multilayered cellular automata and the related dynamics are given. In the second 
part, a description of the simuIation of the dynamic regulation of calcium-ion distribu- 
tion in the subcompartments of a living cell by means of multilayered cellular automata 
is given, as an example that allows to show their modeling power. 

2. Nested graphs 

Let us recall first of all some fundamental definitions about graphs. 

Definition 1. A graph is a pair 

G= (KI) 

where 
l V is a finite or countable set of elements called vertexes or nodes; 

l I : V -+ p(V) is the neighborhood function, which determines for each node v E V 
the set of adjacent nodes. 

The set of graphs will be denoted by 9; given G = (V, 1) E B, v f Y, for sake of 
simplicity, we will use the notation I, instead of Z(u) when no ambiguity arises. 

Definition 2. A graph G = (V, 1) E 9 is locally finite if and only if Vu E V (1 I, 1 <co). 

In the following, we will consider only locally finite graphs. Now, we can formalize 
the hierarchical structure, through the recursive definition of the set &‘9 of nested 

graphs. 

Definition 3. 
l The set of nested graphs of level 0 is the set of graphs: 

l The set of nested graphs of level i + 1 is the set of pairs: 

Z’C$+i =((G,~)~G=(V,Z)E~ and 4”: V+P$i}, 
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where G is a graph called the support graph of the pair (G,cp) and q is a map 

which associates with every node of G a nested graph of level i; 

l The set %“3? of nested graphs is the union of all the sets &9~ for i EN. 

Notation. In the following, a nested graph of level i will be denoted by HG’ = ((Vi, 1' ), 
‘pi ), and each node of HG’ will be identified by a pair (i, v) where i denotes the level 

and v is the name of the node in the graph of level i. 

Definition 4. A nested graph HG’ E c%?$?i is locally finite if and only if 

l i = 0, HG’ is a locally finite graph; 

l i > 0, HG’ = (G, cp), G is a locally finite graph and Im(cp) C S’?%i_i is a set of locally 

finite nested graphs. 

We must now redefine the notion of neighbourhood of a node, taking into account 

the hierarchical structure, too. 

Definition 5. Let HG’ E c%f%i, with i > 0. The neighbourhood of a node (i, v) is defined 

by the neighbourhood function I’ related to the graph of that level. Furthermore, we 

define the nesting neighborhood function 6, which associates to the node (i, v) the set 

6(v) = c-l of nodes of the graph 

cpi(v)=HG~-‘=((V,‘-‘,~~-*),cp~-‘) 

at the level i - 1 (or if i - 1 = 0, q’(v) = HG:-’ = (c-l, Ii-’ )). 

As an example, let us consider the nested graph of level 2 illustrated in Fig. 1. 

Both the level 0 and the level 1 are constituted by a family of graphs, each one 

corresponding to a node at the preceding level, and the level 2 is composed by one 

connected graph consisting of two vertexes. If we take two vertexes of two distinct 

Fig. 1. A nested graph of level 2. 
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subgraphs of level 1, there is no path from one to the other given by arcs of level 1, 
but if the two subgraphs correspond to adjacent vertexes of level 2, then a path which 
connects them exists. It is given by the arc of level 2 which links the two co~te~mages 
of the given subgraphs. The same considerations hold for the vertexes of the subgraphs 
of level 0, among which, although a path of arcs of level 0 that connects them does 
not exist, a path composed by arcs of level 1 or 2 may exist. 

3. Multiiayered automata networks aud multilayered ceIhdar automata 

In this section we will give the definition of an extension of the automata network 
introduced in [S] called multilayered automata network. 

3.1. The structure 

Our definition will be based on the above introduced nested graphs: if we have a 
graph of level 0, then each node will be a finite state automaton, while for a graph of 
level k # 0, every node will correspond to an automat network of level k - 1. In the 
particular case in which k = 0 the multilayered automata network has only one level, 
giving an automata network in the sense of [8]. 

The state of a node u at any level i can be modified as a function of the states of 
nodes in its “horizontal” neighbo~ho~ {i.e., 1:) or as a function of the states of the 
nodes belonging to its associated automaton at level i - 1. 

De~ition 6. (a) A multilayered automata network (MAN) of level 0 is a triple 

A0 - {Go, Q”, F’), 

where 
a Go = (V”, lo> E Q is the strpport graph of A”; 
l Q” is the finite set of stutes which the nodes of the graph can assume; 
l F” = {f,” 1 VE V”} is a set of transition functions, where f,” : fQ”)‘c --+ Q”. 

(b) For i>O, let divl = {A;-‘,A:-’ ,. . .} be a finite or countable set of MAN’s of 
level i - 1, such that different MAN’s in the set have different support graphs. 
A multilayered automata network of level i is a fourtuple 

where 
l HG’ = (G’, cp’) E SYiy G’ =( Vi, li) ~59 is the support graph of A’; 

l Im(cp”)= {HG’-’ E~EP$~-~ I34~-’ ES?‘-’ such that HG’-’ is the support graph of 
A;-‘}; 

l Qi is a finite set of states the elements of V’ can assume; 

l F’ = { f,i / GE Vi} is a set of transition functions such that 
., 

f,‘:(Q’)‘v x Q-Q’; 
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l g’ = {gi ) VE I”} is a set of indexed functions such that 

g; : (Qt-‘)“‘u’ + Qi 

where Qf-’ is the set of the states of the network having cp’(v) as its support graph. 

The elements of do-’ are called nodes of level i - 1 of A’ : recursively, for i - 1 >O: 

&i-Z = (Ai- 1 ZJA;-I Edi-l such that A’_2 is a node of level i - 2 of AL-‘}. 

We say that the elements of ._ccZ-~ are the nodes of level i - 2 of A’, until the nodes 
of level 0 are defined. A’ is the node of level i of d’. 

3.2. The dynamics 

Let us now introduce for the multilayered automata networks the equations which 
describe the network dynamics, i.e. the sequence of the states depending on time. 
We will consider a totally ordered discrete set of temporal steps T = {to, tl, . . .}, where 
to is the minimum element. Such a set represents the time steps for observing the 
evolution of the states. Since the “next state” of each node in the network depends 
on the “current state” of the node and of its (horizontal or vertical) neighbours, 
the evolution of the networks depends also from the updating policy we choose. 
As for the automata networks [8], it is possible to give different types of dynam- 
ics also for the multilayered automata networks, depending on the fact that the state 
transition occurs in parallel in all the nodes of the network or that only a node is 
updated at every time step, in a sequential way. 

Notation. Given a multilayered automata network A’ = (HGi,Qi,Fi,gi) of level i (in 
the case of i=O it is A0 = (G”,QO,Fo)) let 

Y = {v I34h node of level i of Ak such that v is a node of the support graph of Ah}; 

Q={q134; d fl 1 no e o eve i of Ak such that q belongs to the set of states of Ah}. 

q(t) : V -+ Q (with t EN) the state of the nodes at the instant t. 

3.2.1. Synchronous iteration 
In this case, all the nodes are updated in parallel, with the following rules: 

(a) Let u be a node of the support graph of a network A = ((V’, Z’), Q”, {f,” ( VE V”}) 

of level 0. Then 

where with q(t) ] ,; we denote the restriction of q(t) to 1:. 
(b) LetvbeanodeofagraphofanetworkA=(((V’,1’),cp’),Q’,{f~~~~~~},{g~~v~ 

Vi}) f level i>O. Then: 

qgt + 1) = f;(q(t)ll:Y 9~w)ls(v9)* 
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3.2.2. Sequential iteration 

In the sequential iteration the states of the nodes are updated one at a time, by levels 

from k to 0 and, at every level, following a given schedule. More precisely, within 

each c, set of the nodes of the support graph of a network Ai, a total order relation 

< is defined such that < c, < ) is a well ordered set. Hence, we have the rules: 

(a) For the level 0 (with the same notation of the synchronous iteration): 

4% + 1) = .LYuB) 

with yf : 1: + Q” such that 

YXP) = 
qj(t+ 1) for p<v, 

q!(t) otherwise. 

(b) For a level i> 0: 

q;(t + 1) = f,xvl&7t(4(t)ls(“))) 

with yf : 1: --f Q’ such that 

qi(t+ 1) for p<v, 

q;(t) otherwise. 

3.2.3. Combined interaction 
In the case of the multilayered automata networks, it is possible to have a dynamics 

where the levels are updated in a sequential way, while at each level the updating is 

synchronous, with the following rules: 

(a) for the level i = 0: 

qf(t + l)=f~(q~) for pEZ,O. 

(b) for the levels i with i>O: 

Vi= l,... ,K, VVE V’ qi(t + l)=fi(qL,qh(t)) for pelf, 

where qz = g’(v)~ Qi. 

3.3. Multilayered cellular automata 

We can now define multilayered cellular automata as a special case of multilayered 

automata networks. 

Definition 7. A graph G = (V, 1) is a cellular space of dimension d iff 

1. v=zd; 

2. ‘v’kEZd, Vi,jE V Jo Z(i) -j + keZ(i + k). 
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Definition 8. A multilayered cellular automaton is a multilayered automata network 

A’ = (HG', Qi,Fi,gi) 

whose support graph G is a cellular space, equipped with a synchronous dynamics. 

4. Modeling complex biological systems with multilayered cellular automata 

The general properties of biological systems arise from complex interactions of lower 

level subsystems, which can in turn be decomposed, down to the stochastic interactions 

among single molecules. The first task in modeling biological systems is therefore to 

define granularity and viewpoint, i.e. the degree of detail required for an adequate 

description of the system. 

In particular, if modeling is aimed at gathering some insight into the mechanisms 

which underlie the process of interest - rather than merely reproducing the observed 

behaviour - the viewpoint will often have to be multiple, i.e. it will be necessary 

to simulate various aspects and subsystems at different degrees of detail and with 

different temporal and/or spatial resolution. Further problems often arise in defining 

the simulation space, as the topological features of biological systems are in many 

cases complex and heterogeneous. 

These observations suggest that multilayered cellular automata, as previously de- 

fined, endowed with the properties of parallel and local processing of information by 

means of mutual interactions between neighboring elements at different levels, may con- 

stitute an appropriate framework to build efficient and accurate models of biological 

systems. 

Cellular automata are the best characterized local and parallel computational mod- 

els. However, cellular automata in their classical form were not designed to cope with 

topological heterogeneity and with the coexistence of multiple subsystems and differ- 

ent “particle” populations. In classical applications of cellular automata, such as fluid 

dynamics, the cellular space [8, 1 l] is homogeneous, one or a few types of particles ex- 

ist, interactions among particles are mostly limited to collision, and neighborhood rules 

govern the movement of particles. Modeling biological systems will require introduc- 

ing the representation of several different types of elements and the specific reactions 

among such elements, as well as the differential diffusion of the mobile species. To this 

purpose, it can be convenient to split the two aspects of reaction and d@ision, moving 

to more complex computational models (an example within the classical framework of 

standard cellular automata can be found in [5]). 

Two-layers multilayered cellular automata (hyper-cellular automata) have been de- 

veloped and employed to model biological systems [l]: the first level constitutes a 

bidimensional cellular space (difuusion space), while at the second level a totally con- 

nected graph corresponds to each cell, so as to generate an intrinsically parallel and 

local reaction space. For the biological systems faced so far, a combined dynamics 

appeared the most convenient, i.e. updating by the alternate synchronous application of 
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reaction rules or of diffusion rules. Reaction rules dictate status changes. The status of 
each entity (here named as actor) is the set of values denoting specific attributes asso- 
ciated to it in order to determine its properties and behaviour; such status is changed 
(reaction) based on the status of all the other entities momentarily present in the same 
cell; thus, these rules apply to the totally connected graphs which correspond, at the 
other level of the nested graph, to single sites. DifSusion rules determine the diffusion 
of entities on the cellular space. They operate on the higher-level cellular space to 
possibly displace the entities from the site where they are momentarily located to one 
of the neighboring sites. 

Modeling a complex biological system entails a series of further complications, such 
as heterogeneous topological domains (compartments), differential constraints to dif- 
fusion, delays in the response of specific actors or subsystems to specific stimuli, and 
the need to simulate different aspects (or subsystems) with different temporal/spatial 
resolution. 

The purpose of this example is to describe the development of a two-levels multi- 
layered cellular automaton, which has evolved from hyper-cellular automata models 
of reactiondifFusion systems, to model the distribution of calcium ions (Ca2+) in the 
subcompartments of a living cell. 

4.1. Modeling calcium-ion distribution in the living cell 

Many biochemical processes in living cells are regulated by the concentration of 
free calcium ions (Ca2+), from contraction of muscle fibres to secretion, proliferation 
and cellular death. Such processes are activated by widely different concentrations of 
Ca2+ from fractions to hundreds of micromoles per litre (PM). Thus, living cells 
have ‘developed powerful and sophisticated means to maintain very low basal calcium 
concentrations (about 0.1 PM, versus a more than lo4 higher concentration in extracel- 
lular fluids) and to carefully regulate elevations in Ca2+ concentration in response to 
intracellular as well as extracellular stimuli. 

Regulatory systems range from proteins which “pump” out calcium ions by coupling 
this process to energy consumption or other ion fluxes, to proteic pores or “channels” - 
finely regulated by several possible mechanisms - in the plasmamembrane surrounding 
the cell; proteins are present which can bind huge amounts of Ca2+, and specific 
subcellular organelles are designed to actively store (by means of other “pumps”) 
and release Ca2+ on demand (by means of other “channels”) [9]. Such a multifarious 
and complex regulation, over more than 3 decades of Ca2+ concentration, raises some 
modeling problems: 
l a classical representation of calcium ions as single particles would require up to about 

lo6 particles per pm3 of simulated cell volume (the size of an average cell is about 
500 um3), and a lattice-gas-type automaton [7] would require about as many nodes 
(over 10 million for a two-dimension thin section of an average cell); furthermore, 
to obtain a reasonable diffusion speed for particles the simulation time step should 
be in the order of microseconds; on the other hand, molecular simulation of calcium 
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ions is somehow required to reproduce stochastic fluctuations in calcium-regulated 

processes; 

l the Ca2+ regulation system, like most biological systems, is comprized of multiple 

biochemical subsystems where many different elements interact in various ways; 

therefore, the model must be able to host several different species of “particles”, and 

each such element must “play its role as an actor on stage” [3]; 

l for many sub-systems, rates and modulatory mechanisms are reasonably well char- 

acterized; therefore, although this is in contradiction with the need for low-level 

molecular simulation, it would be very convenient to directly introduce such knowl- 

edge as high-level rules in the simulation system. 

Multilayered cellular automata offer an effective approach to the question. Once 

appropriate time and space scales are set, then molecules present in low concentration 

will be allowed to move around according to standard rules of simulated diffusion; all 

molecules - proteins, channels, pumps as well as electrolytes - located in the same 

cell of the automaton will appropriately react. 

However, at least two problems call for specific solutions: 

l species which are present at high concentrations (many particles per node) should 

be looked at in terms of local concentration, rather than single particles; this entails 

defining specific approaches to simulate diffusion of such species as well as their 

molecular interaction with other elements, preserving the stochastic aspects of such 

phenomena; 

l several different compartments must be defined in the simulation area (cellular space); 

diffusion across boundaries must be prevented, or differentially regulated by trans- 
port mechanisms; this again requires a specific approach to diffusion; furthermore, in 

a bidimensional cellular space, where two compartments cross each other a disconti- 

nuity arises in at least one of them, which makes bidimensional mapping inadequate 

for multicompartmental models. 

4.2. The multiluyered cellular automaton 

In order to tackle these challenges, a multilayered cellular automaton has been im- 

plemented by introducing three main features in addition to the properties described 

above for two-layered reaction+Wfusion one. 

a. Collecfioe actors. The multilayered cellular automaton is based on a cellular 

space simulating the living cell; objects endowed with status attributes simulate chemi- 

cal substances present in the living cell, and will be called “actors”; actors can move to 

neighboring cells according to diffusion rules and can react with other actors momentar- 

ily present in the same cell according to reaction rules (which change status attributes). 

Calcium ions, which may be present at high concentrations (up to > 100 per cell), are 

not considered singularly. Rather, collective actors are introduced in the automaton; 

such collective actors have a fixed location, are present in all cells where Ca2+ can 

occur, and have a status attribute dedicated to represent the number of Ca ions momen- 

tarily present in the cell. Single Ca ions are represented as bits in a fixed-length string 
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[4,6], the concentration attribute, which is randomly scrambled at each step in the life 

of the system; Ca*+ concentration will intervene in any reaction which is influenced by 

Ca2+, by means of string-matching operations on the concentration string. This ensures 

that Ca2+-dependence of any process is modeled even in its stochastic aspects. Thus, the 

function of collective actors is to increase the resolution of the model down to the mole- 

cular level, without concurrently requiring shorter time steps and a finer spatial grid; 

they constitute the “underground” portion of the model, working like lower-level au- 

tomata. 

b. Cellular space and compartments. The existence of different compartments is 

handled by assigning each element in the cellular space to a specific compartment 

(e.g. extracellular, cytoplasm, intracellular organelles, endoplasmic reticulum). Specific 

status fields will determine which compartments each actor can reside in. In general, 

barriers to diffusion will exist at boundaries between cells belonging to different com- 

partments; however, specific status attributes may endow actors with the capability, or 

possibly the duty, of crossing such boundaries. Conversely, diffusion will generally be 

free among cells belonging to the same compartment. 

All this profoundly affects the fundamental properties of the cellular space, which 

becomes a graph where different kinds of vertices and arcs are allowed (i.e. different 

compartments and direct connection or different boundaries between cells). 

A further generalization with respect to classical cellular space is introduced in 

the automaton to cope with the limitations arising from a bidimensional simulation 

area: the cellular space is created as a graph where each vertex (cell) is connected 

to at least four other vertices, by means of arcs of possibly different kinds (depend- 

ing on the compartments the two connected cells belong to). A subpopulation of the 

vertices and arcs map, respectively, to cells in a bidimensional simulation area and 

to the neighborhood relations among such cells; this makes it possible to display 

a representation of the simulation area. The other vertices map to cells outside the 

bidimensional simulation area and provide - together with the arcs originating from 

them - (i) the continuity when two compartments cross each other and (ii) a vir- 

tual prolongation of the bidimensional simulation area where this has to be arbitrarily 

truncated. 

c. The rules. In addition to the main sets of rules mentioned above, i.e. reaction 

and diffusion rules, which we may more appropriately call molecular reaction/diffusion 

rules, the automaton contains two further sets of rules, which govern collective reaction 

and diffusion. 

l Molecular difS&ion rules apply to all mobile actors; they govern the movement 

from a site to one of the neighboring sites (be they inside or outside the displayable 

bidimensional area). For each actor in each location, the applicable rules are directly 

determined by the status attributes of the actors, by the type of the cell and by its 

neighborhood relations (i.e. by the type of the corresponding vertex and of the arcs 

originating from it): in other words, the diffusion rule A-C-C’ determines how an 

actor with diffusion attribute A which is located in a cell of a specific compartment 

C can move to a neighboring cell, belonging to compartment C’. 
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l Reaction rules apply to all actors, simple as well as collective ones; reactions occur 

according to a totally-connected-graph scheme, i.e. they involve, for each cell, all 

actors momentarily present in that particular cell. However, reaction fields in the 

structure of each actor determine, by means of string-matching rules, the other actors 

they can significantly interact with. Object oriented programming makes it easy to 

create methods for each actor which produce the desired changes in status attributes 

following recognition of a matching actor. Self reaction is also allowed to reproduce 

delays (countdown in a specific field) and complex responses (stepping through a 

series of states). 

l Collective reaction rules are just a subclass of reaction rules, with the exception that 

they do not apply to the totally connected graph of actors simultaneously present 

in the same cell, but rather on a reduced graph where each collective actor is 

connected to all other actors in the cell which possess the appropriate matching 

string. These rules are generally more complex than molecular reaction rules in that 

string matching of the concentration attribute to appropriate strings presented by 

the counterpart can determine graded changes in specific status attributes, thereby 

simulating graded activation/inactivation of proteins and mechanisms as functions of 

Ca2+ concentration, preserving in the mean time the stochastic aspects of molec- 

ular interactions. Reactions between collective actors are allowed to simulate, for 

example, the binding/unbinding of calcium-ions to Ca2+-buffering proteins, through 

the comparison of the concentration strings of collective actors which respectively 

represent the populations of free and bound calcium ions in the cell. This simulates 

2+ slowing down of Ca diffusion by the buffering proteins. 

a Collective difSusion rules apply to collective actors only, and in particular to col- 

lective actors located in adjacent cells. Adjacency between two cells for collective 

diffusion is determined by the existence of permissive arcs between the two vertices 

that represent the two cells, in the graph which defines the simulation space. These 

rules consist in the swapping of variable length substrings between the concentra- 

tion attributes of the two involved collective actors, and simulate the movement 

(diffusion) of particles present at high concentration, by means of changes in status 

attributes, rather than location, of specific actors. Thus, as we shall shortly see, these 

rules must be formally distinguished from both reaction and molecular diffusion rules. 

Let us indicate by DM and DC the procedures to update the system by applying 

the molecular dzjfusion rules and the collective diffusion rules, respectively, and by RM 

and Rc the procedure to update the system by applying the molecular and collective 

reaction rules, respectively. Let us also indicate by GI the graph where each vertex 

corresponds to a cell in the simulation space and the arcs define the neighborhood 

relation, and by Gi (i = l,N) - where N is the total number of vertices of G1 - 

the totally connected graph dynamically generated at each step by the set of actors 

currently present in the cell mapped by vertex i of G1. 

We can observe that RM and Rc are formally similar, in that they apply to Gi 

(i= l,N) and work independently for each cell, i.e. the execution of these procedures 

on the whole system is exactly equivalent to the parallel execution of the same rules 
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on each single cell of the automaton. Furthermore, the execution of RM and Rc do not 
produce any displacement of actors in the simulation space but only changes in the 
status attributes. 

Conversely, execution of the DM procedure is exactly equivalent to the parallel 
application of molecular diffusion rules to each single mobile actor. This procedure 
brings about changes in the location of actors in the simulation space but does not 
affect any status attribute. 

This reproduces the two-step updating procedure of a reactionditfusion hyper cellular 
automaton, where the two steps apply to two different domains - i.e. the cohort of actors 
for the diffusion step and the set of cells for the reaction step. 

Execution of the DC procedure, finally, applies to a third, different domain, because 
it is equivalent to the parallel application of the corresponding rules to each arc in Gt. 
Furthermore, it simulates the diffusion of elements, present at high concentration in 
the system, by affecting the status of collective actors, i.e. it simulates diffusion but is 
formally equivalent to a reaction step (albeit the reacting actors are present in adjacent 
cells rather than in the same one). 

5. Notes on the implementation 

5.1. The user interface 

The model is set up by the user who defines Gt starting from a graphical representa- 
tion of the bidimensional displayable space (possibly mapped on a digitized micrograph 
obtained experimentally from a living cell) and adding “external” cells where needed 
to grant the continuity of intersecting compartments. 

The initial population of actors is generated and their initial location and set of status 
attributes are defined. This procedure can be performed, at will, either on the whole 
simulation area (independently for each compartment) or on selected regions or single 
cells. The parameters of most reactions can be set to default values or tuned at will. 

When the simulation starts, a window displays the simulation area: a color code 
represents local calcium concentrations and the location of selected actors can be dis- 
played. A second window yields full information on the actors momentarily present in 
a chosen cell, and lets the user modify their attributes. A control window lets the user 
suspend/restart the execution, select the monitored area and cell, change the number of 
actors and define the mode for data saving: time courses of relevant status attributes 
of specific actors, time courses of average Ca2+ concentration and transcompartmental 
fluxes, in the selected area, can be saved; images of local Ca2+ concentration can be 
saved at the desired time intervals. 

5.2. The actors 

Actors are present in the model to represent each relevant biological aspect. An actor 
does not necessarily correspond to a biological entity (see, below, collective actors and 
shuttles). 
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Each actor is a software object containing (i) a series of status attributes, (ii) a 

binary string which determines, by means of boolean operations, which other actors it 

can interact with, and (iii) all the procedures aimed at changing its status attributes as 

a consequence of the interaction with other actors (reaction rules). Most status fields 

regard the “functional state” of the actor, its and its behavior in reaction procedures. 

Diffusive behavior is affected by an access field which defines the compartments the 

actor can reside in and move to, and by a direction fields which determines whether 

the actor is fixed or, in case it is mobile, whether diffusion is random or along an 

assigned direction (this allows deterministic translocation of actors). 

The main classes of actors are collective actors, carrier actors and mobile actors. 

Collective actors - called Free and Bound - are fixed and represent calcium con- 

centrations in the cell they are located in, by means of a binary string - the concen- 

tration string - where each set bit represents a fixed number of calcium atoms (1 in 

the cytoplasm, about 100 in compartments where calcium concentrations are higher). 

Ca2+ difision within each cell is simulated by shuffling Free’s binary string, Ca2+ 

binding/unbinding is simulated by transferring bits from suitable length substrings in 

Free to Bound and viceversa, and diffusion to neighboring cells is simulated by swap- 

ping fixed length substrings with Free actors in the neighboring cells. The occupancy 

of Ca2+ receptors and the degree of activation of Ca2+-dependent processes are easily 

defined by reaction rules which look up the number of set bits in substrings from the 

concentration string of either Free or Bound. 
Carrier actors simulate Ca2+ channels and pumps. They are located in cytoplasmic 

cells confining with other compartments, and they are in particular associated with a 

single arc in Gr which connects two vertices of different kind. These actors simulate 

the opening of a pore or the active transport of calcium ions in a graded fashion, 

depending on their status. This allows for any kind of complex regulation of such 

mechanisms. The actual translocation of calcium ions is performed by shuttle actors, 

which are generated with the appropriate capacity and released into the cell; shuttles are 
loaded with Ca2+ by reacting with Free and mandatorily migrate along the appropriate 

arc of Gr for a defined number of steps (usually 1 or 2, i.e. back and forth). 

Mobile actors simulate any diffusible biological entity of interest - mostly regulatory 

molecules - which can be generated by specific reactions and in turn react with specific 

actors. They usually have a life field in their status which limits in time their persistence 

in the automaton. They may exhibit access restrictions to the different compartments 

and may diffuse either at random or along obligatory directions (see the description of 

the shuttles above). 

5.3. Algorithms and boolean operations on status strings 

A series of algorithms have been developed to appropriately simulate diffusion 

and complex dependence on Ca2+ concentration. Based on experimentally determined 

chemical-physical parameters and on theoretical computations, the probability of a par- 

ticle leaving a fixed-volume cell during a fixed-duration time step in any direction is 
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computed, thereby fixing the probability for a mobile actor to be displaced from its 

current location and the extent of the substring in Free’s concentration attribute to be 

swapped with neighboring Frees. Based on the knowledge of the affinity for Ca*+ of 

the binding proteins and of other Ca*+ receptors, the momentary occupancy of the latter 

is determined by boolean operations on substrings of Bound’s concentration attribute. 

Boolean operations on substrings of Free’s concentration attribute also reproduce poly- 

nomial approximations to high-order functions that describe the dependence of specific 

functions on Ca*+ concentration. 

6. Conclusions 

In this paper a formal definition of multilayered automata network and a derived 

definition of multilayered cellular space is given. Moreover, an example of modeling a 

complex biological process and simulating the dynamic regulation of Ca*+ distribution 

in the subcompartments of a living cell by means of multilayered cellular automata is 

described. 

The multilayered cellular automaton, where diffusion rules operate on the vertices of 

lower-level graph (cells) and reaction rules operate on the corresponding set of second- 

level graphs, is further extended by introducing (i) the existence of different kinds of 

cells and restricted diffusion in the first-level graph, (ii) a set of updating rules that 

operate on the arcs of the first-level graph and (iii) particles that are defacto automata 

themselves. The latter makes it possible to reproduce underlying molecular processes 

whose simulation would require a finer spatial/temporal resolution. 

The general features of this model permit to tackle the simulation of the particularly 

complex regulation of Ca *+ distribution in the living cell. Most problems here discussed 

also occur in their general features in other complex biological systems, where many 

different agents are present, several compartments must be considered, different degrees 

of detail are required in the simulation of different aspects, and high order functions 

describe the dependence of certain functions on regulatory factors. It appears therefore 

that the composite automaton here presented offers a general scheme which should make 

many apparently untractable biological processes amenable to computer simulation. 
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