A New Convergence Result for Fixed-Point Iteration in Bounded Interval of \mathbb{R}^n

ZHENYU HUANG
Department of Mathematics
Nanjing University, Nanjing 210093, P.R. China

(Received June 1996; revised and accepted July 1997)

Abstract—A fixed-point theorem in bounded interval of \mathbb{R}^n and a new fixed-point iteration on Mann's iteration scheme are established to compute a fixed-point of real Lipschitz functions. Two numerical examples are presented to show that the method is feasible and that it produces reasonable results.

Keywords—Fixed-point iterations, Mann's iteration scheme, Lipschitz functions.

1. INTRODUCTION

We call $g : I \rightarrow \mathbb{R}^n$ is a Lipschitz function on the n-dimensional rectangle I, if

$$||g(x) - g(y)|| \leq L||x - y||, \quad \forall x, y \in I,$$

(1)

where $||x|| = (\sum_{i=1}^{n} |x_i|^p)^{1/p}$, $0 < p \leq \infty$, and $I = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] \subset \mathbb{R}^n$, $a_i, b_i \in \mathbb{R}$, $i = 1, \ldots, n$. There are various schemes for computing the fixed-point of the mapping g. Assume $L < 1$, then g is a contraction. From the basic theorems of this field [1] (and references therein), if g is also self-mapping, then there exists at least a fixed-point of $g(x)$ in I, and then each of the two well known fixed-point iteration method (the Mann and Ishikawa iteration methods) converges strongly to the fixed-point of g.

However, when $L \geq 1$, what will happen?

As mentioned in [2], one can find a new fixed-point iteration in \mathbb{R}^1 in this case, from which we do not need to prerequire that:

(i) $L < 1$; or
(ii) $g(x)$ self-maps I_1 into I_1 in which $I_1 = [a_1, b_1] \subset \mathbb{R}^1$ in the case of $L \geq 1$.

We need to point out here that I_1 is a special case of n-dimensional rectangle I while $n = 1$. We will prove that more generally for computing the fixed-point of the mapping $g(x) : \mathbb{R}^n \rightarrow \mathbb{R}^n$, in $I \subset \mathbb{R}^n$ there is a new convergent iteration and a convergence theorem which are not based on the basic theory of [2], but based on [3] or Leray-Schauder Theorem of [1].

2. CONVERGENCE THEOREM

The most important theorem of [2] is the following.

The author wishes to thank the referees for their valuable suggestions.
Theorem 1. Let $h : I_1 \rightarrow \mathbb{R}^1$ be a function which satisfies condition $|h(x) - h(y)| \leq L |x - y|, \forall x, y \in I_1$. Let $\{a_n\}$ be a real sequence with the properties

1. $0 < \alpha_n \leq (L + 1)^{-1}$,
2. $\sum_{n=1}^{\infty} \alpha_n = \infty$ and $h(a_1), h(b_1) \in [a_1, b_1]$.

Then, the sequence $\{x_n\}$ defined by $x_1 = a$ or b, $x_{n+1} = (1 - \alpha_n)x_n + \alpha_nh(x_n)$ is convergent and its limit point, say z, satisfies $z = h(z)$.

In the sequel, we will propose a more general iteration and related convergence theorem of \mathbb{R}^n.

Theorem 2. Let g be a function which satisfies condition (1) with partial order definition. Let $\{a_n\}$ be a real sequence with the properties

1. $0 < \alpha_n \leq (L + 1)^{-1}$,
2. $\sum_{n=1}^{\infty} \alpha_n = \infty$,
3. $g((z_1, z_2, \ldots, z_n)^T) \in I$, for any given $j \in \mathbb{N}$, $z_j = a_j$ or b_j, $z = (z_1, z_2, \ldots, z_n)^T \in I \subset \mathbb{R}^n$, $a = (a_1, a_2, \ldots, a_n)^T$, $b = (b_1, b_2, \ldots, b_n)^T$.

Then, the sequence $\{x_n\}$ defined by

$$x_1 = a = (a_1, a_2, \ldots, a_n)^T, \quad x_{n+1} = (1 - \alpha_n)x_n + \alpha_n g(x_n)$$

is convergent and its limit point, say z, satisfies $z = g(z)$.

Proof. Let $b = (b_1, b_2, \ldots, b_n)^T$, and let $f(x) = g(x) - x$, then from Condition III, in I, the following two conditions (α) and (β) occur:

$$(\alpha) \quad f_j(x_1, \ldots, x_{j-1}, a_j, x_{j+1}, \ldots, x_n) \geq 0, \quad \text{for } 1 \leq j \leq n,$$
$$(\beta) \quad f_j(x_1, \ldots, x_{j-1}, b_j, x_{j+1}, \ldots, x_n) \leq 0, \quad \text{for } 1 \leq j \leq n.$$

Therefore, from [3,4], there exists at least one point of I where f_1, \ldots, f_n vanish simultaneously. We define $p \in I$ such that $f(p) = g(p) - p$, that is, $p = g(p)$.

Now we will show that following the Mann scheme [5] as (2), the proceeding iteration is

$$a = x_1 < x_2 < \cdots < x_n < p < b.$$

(Here \leq denotes \leq but not \equiv.)

Without loss of generality, let us assume $x_1 \neq p$, i.e., $x_1 \leq p$ (but $x_1 \neq p$). Assume $x_2 > p$, so $0 \leq p - x_1 < x_2 - x_1 = \alpha_1(g(x_1) - x_1),$

$$0 < \frac{1}{\alpha_1} ||x_1 - p|| < ||g(x_1) - x_1|| = ||g(x_1) - x_1 + g(p) - g(p)|| = ||g(x_1) - x_1 + p - g(p)|| \leq ||g(x_1) - g(p)|| + ||p - x_1||.$$

Hence from Condition I, $||g(x_1) - g(p)|| > (1/\alpha_1 - 1)||p - x_1|| \geq L||p - x_1||$ is a contradiction to assumption (1), so $x_1 < x_2 \leq p$. Similarly with the discussion above for x_n, we have (3). Consequently, $\lim_{n \to \infty} (x_n)_j (\forall j)$ exists, say, $\lim_{n \to \infty} (x_n)_j = z_j (\forall j)$ and so $\lim_{n \to \infty} x_n = z$ in which $z = (z_1, \ldots, z_n)^T$.

Note that $g(x_n) \geq x_n (\forall n = 1, 2, \ldots)$, so $g(z) \geq z$. Assume $g(z) \neq z$, i.e., $g(z) > z$, but $g(z) \neq z$, i.e., there is at least $j \in \{1, \ldots, n\}$, such that $g_j(z) > z_j$. For the given j, let $\varepsilon = (g_j(z)$
Fixed-Point Iteration

\[\frac{-z_j}{2} > 0, \text{ hence there exists a natural number } N, \text{ such that while } n \geq N, \left| g(x_n) - x_n \right| \geq 2\varepsilon > \varepsilon, \text{ consequently,} \]

\[\left[x_{N+m} - x_N \right]_j = \left[\sum_{i=N}^{N+m-1} \alpha_i (g(x_i) - x_i) \right]_j = \sum_{i=N}^{N+m-1} \alpha_i \left[g(x_i) - x_i \right]_j \in \sum_{i=N}^{N+m-1} \alpha_i, \]

yields \(\lim_{m \to \infty} \left[x_{N+m} - x_N \right]_j \geq \varepsilon \sum_{i=N}^{N+m-1} \alpha_i \) contradict to Condition II.

Remark 1. As \(n = 1 \), Condition III will be seen as \(g(a) \in I, g(b) \in I, a, b \in \mathbb{R} \). This shows that reference [2] is a special case of this paper.

From the proof of Theorem 2, if we have known that there exists a fixed-point of \(g(x) \) in \(I \), then Condition III of Theorem 2 is not necessary, and hence, the following corollaries are obvious.

Corollary 3. Let \(g \) be a function which satisfies condition (1) with partial-order definition and assume that there exists a fixed-point \(z = g(z) \) of \(g(x) \) in \(I \). Let \(\{a_n\} \) be a real sequence with the properties

1. \(0 < \alpha_n \leq (L + 1)^{-1} \),
2. \(\sum_{n=1}^{\infty} \alpha_n = \infty \),
3. \(g(a) \in I, \) or \(g(b) \in I, \) \(a = (a_1, a_2, \ldots, a_n)^T, \) and \(b = (b_1, b_2, \ldots, b_n)^T. \)

Then, the sequence \(\{x_n\} \) defined by \(x_1 = a \) or \(b, x_{n+1} = (1 - \alpha_n) x_n + \alpha_n g(x_n) \) is convergent and its limit point, say \(z, z = g(z). \)

Corollary 4. Let \(g \) be a function which satisfies condition (1) with partial-order definition and

\((x - x^0)^T f(x) \geq 0, \forall x \in I, \) and some \(x^0 \in \mathbb{R}^n \), then there exists a fixed-point \(z = g(z) \) in \(I \).

3. Numerical Results

In this section, we will present two examples. We use scheme (2) to compute unless \(\|x_n - g(x_n)\|_2 \) is less than the prerequired tolerance \(\varepsilon > 0 \).

Example 1.

\[x = (x_1, x_2)^T \in \mathbb{R}^2, \quad I = [a_1, b_1] \times [a_2, b_2] = [1.2, 2.2] \times [0.0, 1.0] \subset \mathbb{R}^2, \]

let \(a = (1.2, 0.0)^T \in \mathbb{R}^2, b = (2.2, 1.0)^T \in \mathbb{R}^2. \) Let

\[g(x) = (g_1(x), g_2(x))^T = (0.5x_1^2 - 3\sin(3x_1), 0.5x_2^3 + 0.2x_1)^T \in \mathbb{R}^2. \]

We notice that

\[g(a) = (2.047561, \ldots, 0.6)^T \in I, \quad g(b) = (1.485376, \ldots, 0.94)^T \in I, \]

but \(g((1.8, 0.5)^T) = (3.93829, \ldots, 0.4225)^T \notin I. \) It is easy to check that \(g(x) \) satisfies Condition III of Theorem 2.

Under the meaning of \(\| \cdot \|_2 \),

\[L = \max_{\xi = (x_1, x_2)^T \in I} \rho(A(\xi)^T A(\xi)) \approx 9.27083, \ldots, \]
where
\[A(\xi) = \begin{bmatrix} x_1 - 9 \cos(3x_1) & 0.2 \\ 0 & 1.5x_2^2 \end{bmatrix}. \]

Mann’s iterative scheme is tested by two ways. The first is with \(\alpha_n = 1/(10+n) \), 1309 iterations are required for \(\varepsilon = 10^{-2} \), \(x^* = (2.106911, 4.600806E - 01)^T \). The second is with \(\alpha_n = 1/11 \), 127 iterations are required for \(\varepsilon = 10^{-4} \), \(x^* = (2.106912, 4.748063E - 01)^T \), and 202 iterations for \(\varepsilon = 10^{-6} \), \(x^* = (2.106912, 4.749508E - 01)^T \).

EXAMPLE 2.

\[x = (x_1, x_2)^T \in \mathbb{R}^2, \quad I = [a_1, b_1] \times [a_2, b_2] = [-0.1, 5.0] \times [0.0, 4.0] \subset \mathbb{R}^2, \]

let \(a = (-0.1, 0.0)^T \in \mathbb{R}^2 \), \(b = (5.0, 4.0)^T \in \mathbb{R}^2 \). Let
\[g(x) = (g_1(x), g_2(x))^T = (0.5x_1 - 2x_2, 0.5x_2 - 0.25x_1)^T \in \mathbb{R}^2. \]

It is clear that \((0,0)^T\) is a fixed-point of \(g(x)\) in \(I\). We notice that \(g(a) = (0.005, 0.0)^T \in I\), \(g(b) = (4.5, 3.0)^T \in I\), but \(g((3.0, 4.0)^T) = (-3.5, 5.0)^T \not\in I\).

Under the meaning of \(\| \cdot \|_2\),
\[L = \max_{\xi = (x_1, x_2)^T} \rho (A(\xi)^TA(\xi)) \quad \text{(from [6, p. 62, Hirsch Theorem])} \]
\[\leq \max_{\xi \in I} [2 \max \{|x_1| + 0.25|x_2|, 2 + |x_2 - 0.25x_1|\}] = 2 \max\{5 + 1, 2 + 4\} = 12, \]

where
\[A(\xi) = \begin{bmatrix} x_1 -0.25x_2 \\ -2 & x_2 -0.25x_1 \end{bmatrix}. \]

The Mann’s iterative scheme is tested by two ways. The first is with \(\alpha_n = 1/(12+n) \), 1131 iterations are required for \(\varepsilon = 10^{-3} \), \(x^* = (-9.991390E - 04, 0.000000E + 00)^T \). The second is with \(\alpha_n = 1/13 \), 87 iterations are required for
\[\varepsilon = 10^{-4}, \quad x^* = (-9.716833E - 05, 0.000000E + 00)^T, \]

and 145 iterations for
\[\varepsilon = 10^{-6}, \quad x^* = (-9.360519E - 07, 0.000000E + 00)^T. \]

REMARK 2. Here we present a fixed-point iteration for bounded interval \(I\) of \(\mathbb{R}^n\), which is not necessary to check whether the function \(g\) is mapping \(I\) into \(I\) in practice or not.

REMARK 3. Here we define the Lipschitz condition (1) under the meaning of \(\| \cdot \|_2\), which pre-requires the existence of \(\rho(A(\xi)^TA(\xi))\). Since \(A(\xi)^TA(\xi)\) is a real symmetric matrix, this pre-condition is very obvious. If one defines (1) under other \(\| \cdot \|_p\), there should be other requirements for \(p \neq 2, 0 < p \leq \infty\).

REFERENCES