Aztreonam for inhalation solution, challenges to drug approval and integration into CF care

Many new therapies are emerging for the treatment of CF. In the last 2 years, six agents have been approved by the Food and Drug Administration (FDA) and four agents have given an opinion in favor of granting a marketing authorization by the European Medicines Agency (EMA) representing dramatic results from decades of investment in basic and clinical science. In this month’s journal, Assael and colleagues [13] present data from a phase 3 open-label, randomized, parallel-group, active-comparator non-inferiority trial comparing aztreonam for inhalation solution (AZLI) and inhaled tobramycin nebulizer solution (TNS). They concluded that AZLI demonstrated statistical superiority in lung function and reduced acute pulmonary exacerbations compared to TNS. This trial raises some key issues in CF drug development. First, the role of non-inferiority design strategies pose unique limitations. Second, major regulatory bodies (FDA and EMA) are not necessarily in alignment about non-inferiority trials. Third, these new agents are very costly, adding considerably to treatment costs.

Using an interesting design element this study included co-primary endpoints: non-inferiority of AZLI for relative change from baseline in FEV1% predicted at Day 28 and superiority of AZLI for actual change from baseline in FEV1% predicted compared to TNS across 3 treatment cycles [13]. Non-inferiority trial design is an increasingly common study design allowing comparison of a new therapy to an existing standard therapy (active comparator studies). Another option is to conduct an equivalence study — equivalence is established when clinically important differences favoring standard care are ruled out [1]. These two study formats are often employed when one has two agents (same indication), with the newer agent having reduced toxicity profile or easier administration. Of these designs, non-inferiority studies have become the dominant design. A non-inferiority study is essentially a one sided test of equivalence; the design will determine if new treatment is worse by less than the non-inferiority margin which is pre-specified [2]. A key challenge is deciding a priori the non-inferiority margin. Assael and colleagues [13], set the non-inferiority margin (non-inferiority primary aim) at 4%, meaning if the 95% confidence interval lower boundary for the treatment difference (AZLI–TNS) was $\geq -4\%$, AZLI would be deemed non-inferior to TNS. This margin should be determined on clinical grounds and published literature and will profoundly affect sample size. Publication bias (not publishing negative trials) can complicate the establishment of appropriate non-inferior margins. The other significant challenge to non-inferiority and equivalence studies [2,3], is investigators cannot confirm that active control is still effective (the constancy assumption). The literature notes examples of waning of efficacy of approved medications over time; an example includes antidepressants (nomifensine vs imipramine) [4,5]. “Biocreep” occurs when non-inferiority sequential comparisons are done in the setting of waning efficacy of older medications [2,3]. Thus if TNS efficacy has diminished, stating that the new therapy is no more than 4% FEV1% predicted worse could mean that the new agent is ineffective and even potentially harmful. This study and one prior study provide data to suggest the efficacy of TNS has diminished; FEV1% predicted changed by only +0.55% after 28 days of TNS [13] in the current study and only +1% (95% CI: –1.2 to 3.7) in another recent study [6]. This is one reason why non-inferiority studies may concern some regulatory bodies. The current study was fortunate to not only show non-inferiority of AZLI over TNS, but also demonstrated superiority over TNS at study completion with a treatment difference (AZLI–TNS) of 3.4% (p=0.02).

There are clear challenges to drug development for CF. The EMA requests the following for drug development: randomized active-controlled trials are mandatory with the requirement of superiority with active control for mucolytic agents [7]. Blinding is desired when feasible [7]. The FDA prefers two superiority blinded placebo-controlled randomized trials. While the FDA accepts equivalence and non-inferiority, they can have no more than 10% inferiority margin and should demonstrate that ‘test’ treatment is effective or efficacious (would have beaten placebo) [4,5,8,9]. These differences between study design recommendations can complicate and add to the expense of drug development in orphan diseases like CF; the AZLI program conducted three phase 3 clinical trials towards regulatory approval.

After agency approval, will health care systems be able to deliver new drugs? The FDA and EMA approve new therapies in the USA and in the European Union (EU) and influence decisions by other independent national agencies. The
Editorial

Funding for or access to health care is limited [10]. As many Eastern Europe and those living in parts of the world and are likely to be a factor in poorer outcomes in patients from contributions to considerable variability in health care outcomes paid by the government. In some Canadian provinces but in others IV solution continues to be used, as it is in New Zealand.

AZLI has been approved by the FDA and EMA and is currently available and funded in ~50% of EU countries and a decision pending in others. Given its likely cost, its availability is likely to be delayed in many parts of the world. In most western European countries (including non-EU) out of pocket expenses for CF therapies are relative small. For example, in Italy all CF therapies are provided free of charge to the patient with the Italian government paying the full cost. Similar, systems operate in Scandinavia and Spain. In The Netherlands, costs are paid by health insurance companies and membership is compulsory, though if one is not working the premium is paid by the government.

Funding models for CF care including drug therapy may contribute to considerable variability in health care outcomes and are likely to be a factor in poorer outcomes in patients from Eastern Europe and those living in parts of the world where funding for or access to health care is limited [10]. As many new therapies are undergoing intense investigation, the drug cost component of CF care is likely to increase in the coming years and may contribute to further differences between outcomes internationally. The current cost of ivacaftor is very likely to be prohibitive in many other parts of the world. Similar challenges and some early solutions have been seen in other diseases states (e.g. antiretroviral treatment for HIV infection) which are expensive and affect large populations in the developed and developing worlds [11,12]. Learning from other disease experiences will be important, as many new CF therapies are likely to be submitted from approval in the coming years.

Conflict of interest disclosures

Dr. Goss received grants from Transave Inc., Vertex Pharmaceuticals, the National Institutes of Health, the US Food and Drug Administration, and the Cystic Fibrosis Foundation and lecture fees from Roche and Johns Hopkins University and participating in advisory board activities for Transave Inc. and KaloBios Pharmaceuticals. He is an investigator for clinical trials sponsored by Vertex, Rempex, Pharmaxis and Boehringer Ingelheim.

Funding/support

Dr. Goss was supported by the National Institutes of Health grants R01HL103965, R41HL098985, P30DK089507, and P30ES007033, the US Food and Drug Administration grant R01FD003704, and a Cystic Fibrosis Foundation grant.

Dr. Bell was supported by a Health Research Fellowship funded by the Queensland Government and received grant support from the National Health and Medical Research Council (Australia). The supporting agencies played no role in the preparation or approval of this manuscript.

Acknowledgments

We are grateful to all of our colleagues who provided information about current drug availability and funding models nationally.

References

Editorial

Christopher H. Goss
Division of Pulmonary and Critical Care Medicine, Department of Medicine,
University of Washington, Seattle, WA, USA
Division of Pulmonary Medicine, Department of Pediatrics,
Seattle Children’s Hospital, Seattle, WA, USA
Corresponding author at: Adjunct Associate Professor of Pediatrics, University
of Washington Medical Center, Campus Box 356522, 1959 N.E. Pacific,
Seattle, WA 98195, USA. Tel.: +1 206 543 3166; fax: +1 206 685 8673.
E-mail addresses: goss@u.washington.edu.

Scott C. Bell
Adult Cystic Fibrosis Centre, Department of Thoracic Medicine, The Prince
Charles Hospital, Chermside, 4032, Australia
Queensland Children’s Medical Research Institute, Royal Children’s Hospital,
Herston, 4006, Australia
School of Medicine, University of Queensland, The Prince Charles Hospital,
Chermside, 4032, Australia

3 August 2012