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Arcs and Ovals in the Hermitian and Ree Unitals 

E. F. ASSMUS, JR AND J. D. KEy 

The hermitian unitals Cf.t(q) and the Ree unitals ~Cf.t(q) are examined for the existence of 
ovals and arcs. It is shown that Cf.t(q) does not have ovals for q > 2 and that ~Cf.t(q), like Cf.t(q), 
is embedded in a much larger design with block intersections of cardinality ~2. Arcs of size 
3q + 1 are constructed for the Ree unitals ~Cf.t(q); they are ovals only in the case q = 3. In this 
case, Cf.t(3) and ~Cf.t(3) are embedded in the same design and its automorphism group, the 
symplectic group Sp(6, 2), contains the automorphism groups of both the unitals ; the 
coding-theoretic aspects are elucidated . 

1. INTRODUCTION 

For a 2-design !?lJ, an arc, or s-arc, is a set Y of s points of !?lJ which is such that no 
block of !?lJ meets 9' more than twice. The parameters of r!lJ determine an upper bound 
on the cardinality s of the arc, and when this bound is attained the arc is called an oval 
(see [1] or [2]). The existence of ovals in an even-order design can give useful 
information on the binary code generated by an incidence matrix of the design and, in 
certain cases, may determine the minimum weight of the code and its dual. 

With the above connection in mind, we examine here the question of the existence 
of ovals in the hermitian and Ree unitals. For the hermitian unital OU(q) with q odd, 
the non-existence of ovals has been proved by Andriamanalimanana [1]. Here we show 
that when q is even, only OU(2) has ovals. For the Ree unital, [!ItOU(q), where q = 32n+ 1

, 

the smallest, with q = 3, was previously shown to have ovals by determining the weight 
enumerator of the dual binary code (see Brouwer [3]) . We show here how the ovals 
can be defined through the structure of the smallest Ree group, R(3), and how this 
construction generalizes to the existence of (3q + I)-arcs in [!It OU( q) for all q = 32n+ 1 • 

We were, however, unable to settle the general question of the existence of ovals in the 
Ree unitals for q > 3. For q = 27, computation showed that our (3q + I)-arcs in gftOU(q) 
were complete, and thus not contained in ovals . 

In the course of the construction of the (3q + I)-arcs for [!ItOU(q), we obtain, as a 
byproduct, (q + I)-arcs that form the blocks of a 2-design defined on the points of 
gftOU(q). This is analogous to a construction of HOlz [11], who showed that for the 
hermitian unital OU(q) , for q odd, a 2_(q3 + 1, q + 1, q + 1) design of arcs can be found, 
its union with the unital yielding a 2 - (q3 + 1, q + 1, q + 2) design with the property 
that distinct blocks meet in at most two points. We show that designs with the same 
parameters and the same properties can be constructed for the Ree unitals. 

These designs further highlight the special case q = 3: here the 2-(28,4, 5) designs 
from the hermitian and Ree unitals are isomorphic, and can be taken to be identical by 
taking for the blocks all the 4-sets in an orbit of the symplectic group Sp(6, 2) acting on 
subsets of size 4 of a set of points of size 28. There is a unique orbit of size 315 in this 
action, and the unitary group Pru(3, 3) and Ree group R(3) (=prL(2,8», acting 
inside Sp(6, 2), each split this orbit into two orbits, one of size 63 and one of size 252. 
These orbits correspond to the blocks of the unital and the blocks of the design with 
). = 4, respectively. The binary code for the design with), = 5 is the same as the code 
for the hermitian unital, and its dual has the property of having only words of weight 0, 
12, 16 and 28. We note here that Brouwer [3] discusses this code, and that Dillon [6] 
has pointed out an error in this discussion. 

297 
0195-6698/89/040297 + 12 $02.00/0 © 1989 Academic Press Limited 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82731514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


298 E. F. Assmus, Jr. and J. D. Key 

The arrangement of the paper is as follows: some basic notation and background 
material are given in Section 2; Section 3 deals with ovals in the hermitian unitals 
(Theorem A) and there, with the permission of the author, we reproduce the proof in 
[1] of the non-existence of ovals for odd-order unitals. In Section 4 we show how the 
(3q + I)-arcs are constructed in the Ree unitals (Theorem B) and how the (q + I)-arcs 
arise (Proposition 4.13): this section is rather long and somewhat complicated by our 
desire to give the proofs in terms both of the group-theoretical description of the Ree 
groups and unitals, and in terms of the geometric description of Tits [24]. In Section 5 
we show how the related designs are defined (Theorem C) and in Section 6 we discuss 
the interesting case of q = 3. 

2. PRELIMINARIES 

We use standard notation: for geometries and designs as in [5] or [12]; for 
permutation groups as in [27]; and for coding theory as in [17]. 

For a 2-design 0J with parameters (v, k, A), if r is the number of blocks through a 
point, then r - A is the order of the design. For r - A even and A I r, the size of an oval 
is (r + A)/A; for r - A odd or r - A even and A I (r - 1), the size of an oval is 
(r + A -1)/A (see [1] or [2]). 

An incidence matrix A for 0J is a b x v matrix of zeros and ones, such that ai.j = 1 if 
the ith block is incident with the jth point, and ai.j = 0 otherwise. Then for a non-trivial 
2-design, A has rank v over the rational field, but A might possibly have smaller rank 
over a finite field GF(p) when pi (r - A) (see [2] or [22]). We refer to the rank of A 
over GF(p) as the p-rank of 0J, and write rkp(0J). This is also the dimension of C, the 
vector space spanned by the rows of A over GF(p), so that C is a (v, rkp(0J» linear 
code. We write Cl. for the orthogonal to C with respect to the standard inner product. 
It is shown in [1] and [2] that if 0J is of even order, then the minimum weight of Cl. is 
at least (r + A)/ A, with equality if 0J has ovals. 

A unital or unitary design is a 2-design with parameters 2_(q3 + 1, q + 1, 1). It was 
shown by Kantor [15] that the only unitary designs with doubly-transitive automorph
ism groups are OU(q), the design of absolute points and non-absolute lines of a unitary 
polarity of the projective plane PG(2, q2), where q is any prime power, and {!JlOU(q), 
the Ree unitals defined by Liineburg [16] from the Ree groups R(q) for q = 32n+l. 

Unitals have r = q2 and order (r - A) = (q2 - 1) = (q + 1)(q - 1). Mortimer [18] 
showed that for 0J = OU(q) or {!JlOU(q), rkp(0J) < q3 only for pi (q + 1). 

3. THE HERMmAN UNITALS OU(q) 

The hermitian unital OU(q) is the design of absolute points and non-absolute lines of 
a unitary polarity of the projective plane PG(2, q2), where q is any prime power (see 
[12] or [19] for further background). The order of the design OU(q) is q2 -1, so for q 
odd the oval size is q2 + 1, and for q even the oval size is q2. Notice that in the ambient 
projective plane the oval size is q2 + 1 for q odd, and q2 + 2 for q even. 

Andriamanalimanana [1] examined the question of the existence of ovals for 
even-order hermitian unitals, i.e. OU(q) for q odd. For q = 3 he obtained the weight 
enumerators for the codes C and Cl. over GF(2) and showed that there are no words 
of weight 10 in Cl.. This shows that there are no ovals in OU(3). We give here his 
general proof of the non-existence of ovals in OU(q) for q > 3 and q odd. 

The following classical result is used in the proof: 

LEMMA 3.1 ([23]). For n ~ 2 let t(Xl> ... ,xn ) and g(Xl> ... ,xn ) be polynomials 
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over GF(q) of degrees k and m having no common factor. Then the number of common 
roots in GF(qt is at most qn-2k m min{k, m}. 

PROPOSITION 3.1 ([1; Prop. 2.6, p. 37]). If q is odd, 6fL(q) has no ovals. 

PROOF. Firstly, for q = 3, the weight enumerator of C.L proves the result, as 
discussed above, but the result follows also from the observation that the existence of 
an oval would imply the simultaneous solutions in ten distinct points of PG(2, 9) of a 
quartic and a quadratic, which is not possible (see [3]) . 

Let q ~ 5. The oval size for q odd is q2 + 1, so an oval Yin 6fL(q) is also an oval for 
PG(2, q2). Hence, by Segre's theorem (see [5; §1.4, p. 49]), Y is a conic and, taking 
homogeneous co-ordinates, the points of Y satisfy an irreducible equation of degree 2. 
These points are also absolute points of a unitary polarity, and hence satisfy an 
equation of degree q + 1. Using Lemma 3.1, the number of common solutions is at 
most 4q2( q + 1). Thus the number of points of 6fL( q) on the conic is at most 
(4q2(q + 1) _1)/(q2 - 1). For q ~ 5 this number is less than q2 + 1. Hence ovals do not 
exist in 6fL(q) for q odd. 0 

Segre's result does not hold for even q and we must replace it by a geometric 
argument that turns on the completion of q2-arcs in PG(2, q2). 

PROPOSITION 3.2. If q is even, 6fL(q) has ovals only when q = 2. 

PROOF. For q even, q2 - 1 is odd, so the oval size is q2. For q = 2, 6fL(2) is a 
2-(9,3,1) design and is thus the unique design with these parameters, AG(2, 3). In this 
affine plane quadrangles exist and are ovals for the design. 

Now take q ~ 4, and suppose that 6fL(q) has an oval S, i.e. a q2-arc. Then Y is 
a q2-arc in PG(2, q2) and hence is contained in an oval, d, of PG(2, q2), [10; §8. 7. 2, 
p. 197J. Thus d = YU {P, Q}, where P and Q are points of PG(2, q2) that are not 
in 6fL(q), and hence are non-absolute points with respect to the unitary polarity, a. 

Since d is a (q2 + 2)-arc in PG(2, q2) it can have no tangents. For R E Y, RO is an 
absolute line, and contains R and no other absolute point. As it must meet d again, it 
can only meet it at P or Q. Thus P E RO or Q E RO, so that R E po or R E QO. Now po 
and Q a are non-absolute lines since P and Q are non-absolute points, and hence they 
are blocks of the unital. Every point R of Y is on one of po or QO, and thus if there 
are more than four points on Y, we must have at least three of them together on a 
block, contradicting the assumption that Y is an oval. Thus 6fL(q) has no ovals for 
q~4. 0 

Propositions 3.1 and 3.2 yield, in summary, the following result: 

THEOREM A. The hermitian unital consisting of the absolute points and non-absolute 
lines of a unitary polarity of PG(2, q2) has no ovals for q > 2. 

REMARKS. (1) Theorem A states that, given any unitary polarity and any set of 
(q2 + 1) absolute points of PG(2, q2) when q is odd, or q2 absolute points when q is 
even, then at least three of the points of the set are collinear. 
(2) Proposition 3.2 also follows from results of Fisher, Hirschfeld and Thas [9J. 
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4. THE REE UNITALS :JiOU(q), q = 32n+I, n ~ ° 
The Ree unitals :JiOU(q) were defined by Ltineburg [16] via the Ree groups R(q) 

from the basic properties of these groups as given in Ree [20] or Tits [24). We give here 
the geometric construction of the groups R(q) as given in Tits [24], and use this, and 
the basic properties of these groups as derived by Ward [25] or Ree [21], to construct 
the Ree unital :JiOU(q), and to obtain the properties we require for the construction of 
the arcs. 

Firstly, we present the construction of Tits [24]. Let F = GF(q), where q = 32n+t, 
n ~ 0, and let s = 3n + 1

• Then S2 = 3q. Let G denote the Ree group R(q), simple for 
n >0, and isomorphic to prL(2,8) for n = 0. Then G is represented as a doubly 
transitive permutation group of degree q3 + 1. The point set on which G acts will be 
denoted by 1l, where 1l = {oo} U F3, 00 is a symbol, and F3 denotes the cartesian 
product of three copies of F, i.e. F x F x F. We write N = Gao, the stabilizer of the 
point 00, and construct N as follows: N is a semi-direct product of groups P and F X

, 

where P is a 3-group defined below via a binary operation '+' on the set F 3
, and F X is 

the multiplicative group of F, cyclic of order q - 1. Thus 

N = {(x, y, z; k) I x, y, Z E F, k E FX} 

with multiplication given by 

(x, y, z; k)(x', y', z'; k') 

= (x + kx', y + k S +1y' +xskx', z + k S+2z' _xkS+1y ' + ykx' _xs+1kx'; kk'). 

In particular, the binary operation '+' in P is given by 

(x, y, z) + (x', y', z') = (x +x', Y + y' +xsx', z + z' -xy' + yx' -XS+1x') 

and the action of F X on P by 

k(x, y, z) = (kx, k'+ly , k S+2z). 

Then N simply acts on the points of 1l via this action keeping 00 fixed: for 
x, y, z, a, b, e E F, k E F X

, (x, y, z; k)(a, b, e) = (x, y, z) + (ka, k S+1b, k s+2e), where 
we write the action on the left to be consistent with the notation in [24]. 

Thus far we have a transitive action of N on F3
, with P acting regularly. The 

members of F3 and the elements of P are identified and we may also identify the 
elements (x, y, z; 1) of N with (x, y, z) of F3 or P. In order to obtain G we need to 
move the point 00, and for this a new element, w, is adjoined. This element is defined 
to interchange 00 and (0,0,0) and to act on any other point (a, b, e) =1= (0,0,0) of F3 as 
follows: 

« b » 
= (u(a, b, e) v(a, b, e) e ) 

W a, ,e ( , , , 
w a, b, e) w(a, b, e) w(a, b, e) 

where the functions u, v, ware defined by 

u(a, b, e) = (aby - eS + ab2 + be - a2s+3
, 

v(a b e) = a2b - ac + b S 
- as+3 , , , 

w(a, b, e) = aeS - a(ab y + as+3b + (ab)2 - bs+1 
- c2 + a2s+4. 

Then w is an involution. On adjoining w to N, we obtain G = (N, w) = R(q), and G 
has the property that every g EGis either in N, and hence uniquely given in the form 
(x, y, z; k), or is uniquely of the form 

(x, y, z; 1)w(x', y', z'; k). 
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Note that all the above is described in [24], but there are some small errors in that 
paper that have been corrected by Tits, and communicated in the survey article of 
Enguehard [8]. We have also changed the notation slightly in the definition of (0. 

Ward [25] derives important properties of R(q), some of which we will need here. 
We note these properties below as Propositions 4.1-4.5, giving them also in the 
co-ordinate form of the geometric construction defined above. 

The following notation will be used throughout this section: 

G = R(q), the Ree group of order (q3 + l)q3(q - 1); 

P E Sy13( G), the set of Sylow 3-subgroups of G; 

Z = Z(P), the centre of P; 

N = NG(P), the normalizer of P in G; 

T= {t I t an involution in N}. 

PROPOSITION 4.1. The group P is nilpotent of class 3 and IPI = q3. The derived group 
of P, [P, P] = P', is elementary abelian. If q > 3. Then IP'I = q2 and P' > Z, which is 
also elementary abelian, of order q. In this case every element g of P\P' has order 9, 
and Z = {g31 g E P}. Further, N = PW, where W == Cq - V the cyclic group of order 
q - 1. If q = 3, P' = Z == C3 and N' is cyclic of order 9. 

In terms of co-ordinates, P = {(x, y, z; 1) I x, y, Z E F} == {(x, y, z) I x, y, Z E F} 
under '+'; g E P has order 9 if g = (x, y, z) where x=#: 0; for q > 3, P' = 
{(O, y, z) I y, Z E F}; Z = Z(P) = {O, 0, z) I z E F}; N = {(x, y, z; k) I x, y, Z E F, 
kEF}. 

PROPOSITION 4.2. If t is an involution in G, then CG(t) == PSL(2, q) X (t). If t E T 
then Cp(t) n Z = 1 and for q > 3, Cp(t) = Cp'(t), P' = UtETCp(t) U Z. 

In terms of co-ordinates, T={(x,-xs+t,z;-I)lx,zEF}. Setting tx,z=(x, 
-xs+t, z' -1), Cp(tx,z) = {(O, b, -xb) I b E F} = Cp(tx,z') for any z' E F; Cp(tx,z) n Z = 
{(O, 0, O)}. 

PROPOSITION 4.3. The group G has only one conjugacy class of involutions, each 
involution fixing precisely (q + 1) points, and the Sylow 2-subgroups of G are 
elementary abelian of order 8. 

In terms of co-ordinates, Fix(tx,z) = {oo} U {(-x, b, xb - Z _xs+2
) I b E F}. 

With these properties of G we can now define the Ree unital, following Liineburg 
[16]. For the points of the unital we take the set of all Sylow 3-subgroups of G, with G 
acting by conjugation. This is equivalent to the action on the set 1r as described 
above, where N = Goo = NG(P) == Gp, the stabilizer of P E Syh(G) under G by 
conjugation. Thus 00 takes the role of P in this description. For the blocks of the unital 
we take the involutions of G, where the points incident with a block t will be the set of 
(q + 1) fixed points of the involution or, equivalently, the set of (q + 1) Sylow 
3-subgroups that t normalizes. Thus P is on t if pt = P, i.e. t E NG(P) = Gp. By 
conjugation, G is doubly transitive on points and transitive on blocks, with a block 
stabilizer equal to the centralizer of the corresponding involution. 

PROPOSITION 4.4. Let g E G, g =#: 1, and suppose IFix(g)1 ~ 3. Then g is an involution 
and Fix(g) is the set of points of a block. 

In terms of co-ordinates, let g E G fix 00 and Q = (0, 0, 0). Then g E Goo,Q = NQ = 
{(O,O,O;k)lkEF X

}, and Fix«O,O,O;k»={Q,oo} if k=#:-I, and Fix«O,O,O; 
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-1» = Fix(to•o). Write Fix(tx.z) = lx.z = {( -x, b, xb - z - xs+2) I b E F} U {oo} for the 
block through 00 and the point ( -x, 0, - Z - X

S +2). 

PRoposmoN 4.5 The group P acts regularly on n\{P}. 

NOTES. (1) It is, of course, usual to write the action of a group by conjugation on the 
right, whereas, to be consistent with the notation in [24], we have written the 
co-ordinate action on the left. We will use the action of G on the right when speaking 
of G acting by conjugation on the set of Sylow 3-subgroups as points and the set of 
involutions as blocks, and we will use the action on the left whtm using the co-ordinate 
form. This should not cause confusion, as the two notations will never be mixed. 
(2) The Ree unital PliOlL(q) is the 2_(q3 + 1, q + 1, 1) design of point set n and block set 
00, where Inl = q3 + 1, 1001 = q2(q2 - q + 1), and r, the number of blocks per point, is 
q2. The point set n will be taken to be the set Syh(G) when not using the co-ordinate 
notation, and {oo} U F3 when using co-ordinates. The block set 00 corresponds to the 
set of all involutions, each involution identified by its set of fixed points. 
(3) By restricting the field to GF(3), we see that the smallest Ree unital @lOU(3) is 
embedded in @lOU(q) for any q > 3, with each block of @lOU(3) a subset of some block 
of @lOU(q). 

We show now how the (3q + I)-arcs are constructed, leading to ovals in the case 
q = 3. Where appropriate we illustrate the construction in terms of co-ordinates, taking 
P to be 00, and using the notation as developed in this section. We will write (x, y, z), 
or (x, y, z; 1) whenever convenient for the points of n\{oo}, corresponding to the 
elements of P. The construction will follow from Propositions 4.6-4.18 below. 

We continue to use the notation already defined, with the following addition needed 
to define the arcs for each Pen: 

A(P) = {s I s an orbit of Z on n\{P}}. 

In co-ordinates, S = {(x, y, z) I z E F} = s(x, y), and we can index the q2 members 
of A(P) in this way, for x, y E F. Thus A(P) = {s(x, y) I x, Y E F}, IA(P)I = q2, and 
Is(x, y)1 = q. 

PRoposmoN 4.6. For distinct Ph P2 ESe A(P), P, Ph P2 are not together on a block. 

PROOF. Suppose the block t E T contains P, Ph P2 • Then as an involution of G, t 
fixes P, PI and P2 • Let g E Z be such that Pf = P2 • Then tK fixes P, Pf = P2 , and hence 
tK = t, since there is only one block through any two points. Thus g E Cp(t), 
contradicting (4.2). 

In terms of co-ordinates, any two points of S = s(x, y) have the form (x, y, Zl) and 
(x, y, Z2). By (4.4), the blocks fx.z through 00 are indexed by the first and last 
co-ordinate, and hence cannot pass through two distinct points of the above form. 0 

PROPOSITION 4.7. Let f be a block not containing the point P. Then there is a unique 
involution in T that fixes f (and has no fixed points on f). 

PROOF. Let t E T be any involution in N. Then t has (q + 1) fixed points, one of 
which is P, and !q(q2 - 1) transpositions. Each transposition corresponds to a block 
fixed by t, and such a block must consist entirely of transpositions occurring in t, since 
if an involution fixes a block, it fixes all or no points of that block. Each block fixed in 
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this way consists of !(q + 1) transpositions in t, and so t fixes Hq3 - q)/!(q + 1) = 
q(q - 1) blocks in this way. These are the only blocks it fixes, apart from the block 
through P, all of whose points are fixed. 

The number of blocks of the unital is q2(q2 - q + 1), so that the number not through 
Pis q3(q -1). We show now that no two involutions in T can fix the same block not 
through P. For let gENt. Then g fixes the set of q + 1 points of f. If g fixed a point Q 
of f, then g E NQ = Cq - b and g fixes also the remaining q -1 points of the block 
through P and Q. Clearly, g cannot fix another point of f, for no non-trivial element of 
G fixes a triangle pointwise. But Igil (q -1), and g acts semi-regularly on f\{Q}, so 
that Igil q. This is impossible, so g cannot fix any point Q of f. Thus g acts 
semi-regularly on f, and Igil (q + 1). Also IglllNI = q3(q - 1), and hence Igl = 1 or 2. 
Thus INti = 1 or 2. If INti = 1 for some f, then IfNI = q3(q -1) = INI, and hence all 
blocks not through P are in the orbit of f under N. Thus no block is fixed by any 
non-trivial element of Nt> which contradicts the conclusion that every involution fixes 
some blocks. Thus INti = 2, f is fixed by a unique involution, and the q2 involutions in 
T fix q3(q -1) blocks not through P, i.e. every block not through P is fixed by a 
unique involution in T. 

Further, since IfNI = !q3(q - 1), N partitions the blocks not through P into two 
orbits of equal length. Similarly, Gt has two orbits of equal length on points not on 
f. 0 

PROPOSITION 4.8. If z E Z, and t E T, then zt = Z-1 and zt, tz E T. 

PROOF. Z is characteristic in P, hence normal in N, so that t E T induces an 
automorphism of Z, by conjugation. Since zt =1= z for any z =1= 1 in Z, by (4.2), t is a 
fixed-point-free automorphism of Z, and hence by Zassenhaus (see [13]), zt = Z-I. 

Thus (zt)2 = (tzf = 1. 0 

PROPOSITION 4.9. Let Q ESE A(P). If 8(s) = UtET st and QT = {Qt I t E T}, then 
8(s) = QT and 18(s)1 = q2. 

PROOF. Clearly, QT ~ 8(s). Let R E 8(s). Then RESt for some t E T, so that 
R = Qzt for some z E Z. By (4.8), zt E T, so R E QT, and QT = 8(s). 

To show that IQTI = q2: suppose QtJ = Qt2 = Ql for distinct tv t2 E T. Then the 
transposition (Q, Ql) occurs in both tl and t2, and hence the block through Q and Ql is 
fixed by two distinct involutions in N, in contradiction to (4.7). Thus IQTI = q2 = 

18(s)l· 
In co-ordinates, if S = s(O, 0) = {(O, 0, z) I z E F}, and Q = (0,0,0) E S, then 

8( s) = UXEF s(x, _xs+ 1
), where s(x, _xs+1

) = tx,z( s). 0 

PROPOSITION 4.10. If R E 8( s) and Q E S, then P, R, Q are not together on a block. 

PROOF. If RES then we have the proof from (4.6). So let R = Qt, t E T. If P, Q, R 
are on a block, there is an involution tl fixing P, Q, R, so that t~ fixes P and Qt = R, 
whence t~ = tl and t E CN(t1), which contradicts tl being the only involution in CN(t1). 0 

PROPOSITION 4.11. Let S E A(P), 8 = 8( s) and K = Ne. Then for any Q E S, if 
q > 3, K = ZNQ , and if q = 3, K = N' NQ • 

PROOF. First we show that K ~ NQ for any Q E s. Thus let g E NQ and let t E T. 
Then (Qt)K = QKtg = Qt

g
, and tK E T, so that g fixes QT = 8. This holds for any Q E s. 
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Next we show that Z.::;; K. Let Z E Z, t E T. Then (Cty = Ctz = cz-1t = Ct, by (4.8). 
Thus Z.::;;K. 

Now Z <J N, so Z <J K and Z n NQ = 1 implies that IZNQI = q(q - 1) and ZNQ .::;; K. 
Let M = ZNQ. Then MQ = NQ (for Q E C) has order q -1, so the orbit of M 
containing Q in C has size q. If for some PI f. C we have Mp1 =1= 1 then there is an 
element g E Mp1 with g f. Z, so that g E NQI for some QI E C. Thus g fixes a triangle (by 
(4.10» which is impossible. Thus Mp1 = 1 for all PI E O\C, and M has one short orbit C, 
of length q, and one long orbit Ut',ot Ct of length q(q -1). 

Suppose that K =1= M. Then K cannot fix C since the stabilizer of any point of C is as 
large as it can be inside N. Thus K is transitive on the q2 point of 0, and 
IKI = q2(q -1). Hence K;;2 T, Z and NR for all REO. Let L = (T, Z).::;; K. Then 
L <J Nand L is transitive on O. So q211LI. Let L * = L n P. Then L * <J P and q211L *1. 
Now L * n Cp(t) = 1 for all t E T: for any t E T fixes 0, and hence will fix some Z-orbit 
Ct inside O. It will thus also fix a point QI of CI' Now, if gEL * n Cp(t), then tg = t, so 
g fixes the block corresponding to t, i.e. P, QI1 Qf will be together on a block. But 
(4.10) is now contradicted, since K is transitive on 0, so what was true for the orbit' is 
now true for any of the other orbits ct. Thus L *Cp(t)'::;; P and IL *Cp(t)1 = q3, so 
L *Cp(t) = P. Then PI L * == Cp(t) is abelian, so L* ~ P'. For q > 3, L * = P' and for 
q = 3, L * > P'. Thus for q > 3 we have a contradiction, since Cp(t) = Cp'(t) > 1. Hence 
for q > 3, K = M = Ne = ZNQ. 

For q = 3, K = N' NQ is of order 18 (101 = 9 in this case), and K is transitive on O. 
In terms of co-ordinates, taking C = ,(0, 0) = {(O, 0, z) I Z E F}; e( C) = 0 = 

{(x,-xs+t,Z)IZEF}; for q>3, Ne={(O,O,z;k)lzEF,kEF X}; for q=3, Ne = 
{(x, -x, z; k) I x, Z E F, k E FX}, i.e. INel = 18. 0 

PROPOSITION 4.12. Let' E A( P) and e = O( ,). Then every block through P meets 0 
exactly once. 

PROOF. Let PI, P2 EO. We need to show that the block PIP2 does not contain P. If 
PI1 P2 E Ct

, or if PI or P2 E , then (4.6) and (4.10) prove it. So suppose PI1 P2 E 0\' and 
hence that there is gENe such that Pf = P2 • If P, PI, P2 are on a block then let t be the 
involution corresponding to this block, i.e. fixing P, PI and P2 • Then tg = t, so that 
g E CN(t). Now if Igl = 3r, then gT E Z and Z n CN(t) = l,so gT = 1. So 3 f Igl, and 
g f. Z, so that g E NR for some R E , (since Ne = Z U UREdNR \{1}». Thus g fixes 
P, R, the block PR and the block t. It cannot fix any point other than P on the block t, 
and neither can any of its non-identity powers, since the blocks PR and t are distinct 
(by (4.10», and no non-identity element of G can fix a triangle pointwise. Hence 
Igil q, which contradicts the above. 

In terms of co-ordinates, 0 = {(x, -xs+t, z) I x, Z E F}. The blocks through 00 have 
the form {o.c = {( -a, b, ab - c - as+2

) I b E F} U {oo}, by (4.4). If x = -a then b = 
_xs+ t holds for only one value of b, so the block cannot intersect e more than 
once. 0 

PROPOSITION 4.13. Let ( be a block through the point Q, where Q E , E A(P). Then 
if 0 = 0(,), {meets 0 U {P} exactly once again, and C U {P} is a (q + I)-arc. 

PROOF. If P is on {then {cannot meet 0 again, by (4.12). Suppose P f. {. By (4.7 
there is a unique involution t E T that fixes {, and fixes no point of {. Thus every block 
through Q meets e U {P} again. Now there are q2 blocks through Q and each must 
meet 0 U {P} again. Since 0 U {P}\{Q} has precisely q2 points, every block meets 
o U {P} exactly once again. Thus l; U {P} is a (q + I)-arc. 0 
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PROPosmON 4.14. The product of any two involutions in T is in P. 

PROOF. N = PW, where P <l N, P n W = 1 and W == Cq _ l . Let t be the unique 
involution of W, and let h E T. Then h = gw, where g E P, WE W, and h2 = gwgw = 
ggW-'w2 = 1, i.e. w2 = 1, so that w = t. Thus every involution of N can be written in the 
form gt, where g E P and gg' = 1, i.e. g-1 = g'. Now let t1, t2 E T. Then tl = glt, t2 = g2t, 
tlt2 = gltg2t = glgzl E P, as required. 0 

PROPosmON 4.15. For ~ E A(P), let ~ = {t 1 t E T, ~' = ~}. Let tl E T\Tt;" ~1 = ~'!. 
Then ~i is independent of t E ~, and setting ~2 = ~i, we have ~2 c 8(~) and ~~ = ~2' 

PROOF. For q = 3, Ne is transitive on 8, and there are only three Z-orbits in the set 
8, so the conclusion follows immediately. Thus let q > 3. Then Nt;, = Ne. For N acts 
transitively on A(P), so INI = IA(P)IINt;,1 = q2 1Nt;,1 = q3(q -1). Thus INt;,I = q(q -1) = 
INel, and we know that Ne ~ Nt;, for q > 3, by (4.11). 

Now since tl f/.~, ~I #:~. Let t, t* E Tt;,; then ~i = ~r iff (tt*)" E Nt;,. Now tt* E Nt;" 
and, by (4.14), tt* E P, thus tt* E Z. Since Z <l N, (tt*)" E Z, and hence (tt*)'! E Nt;. 
Thus ~i is invariant for all t E Tt;,. Since Tt; C Ne, ~i = ~2 C 8(~) for any t E Tt;,. Also, 
~~ = ~~' = ~',''', and hence ~~ = ~2 iff (tlt)2tl E Nt;, i.e. (t1t)3 E Nt;, (since t E Nt;). But 
tit E P by (4.14), and, by (4.1), (tlt)3 E Z < Nt;. 0 

We are finally ready to define the (3q + 1)-arcs: with notation as in (4.15), let 

d = {P} U ~ U ~I U ~2' 

We have then the following three results: 

PROPosmON 4.16. The stabilizer Nd = (Z, t, t l ) for any t E Tt;, INdl = 6q, and Nd is 
transitive on ~ U ~I U ~2' 

PROOF. Clearly, Z fixes d, and since t: ~I- ~2 and tl: ~- ~l> Nd is transitive on 
~ U ~1 U ~2' Since INd.QI = 2, and this is as large as possible here, INdl = 6q. 

In co-ordinates, let ~ = {CO, 0, z) 1 z E F}, ~I = {(a, _as+l , c) 1 c E F}, Tt; = {to,z = 
(0,0, z; -1) I z E F}; to,zC(a, _as+1, c)) = (-a, _as+1, *), so to,z(~(a, -as+I » = 
~(-a, _as+1) = ~2; d = {oo} U ~(O, 0) U ~(a, _as+1) U ~(-'-a, _as +1) for any a E FX; 
Nd = {(ma, -(may+t, z; k) 1 m E GF(3), Z E F, k = ±1}. 0 

PROPosmON 4.17. The set d is a (3q + 1)-arc. 

PROOF. By (4.13), any block through Q E ~ will meet d at most once again. Since 
Nd is transitive on d\{P}, this property will hold also for blocks through points of ~1 
or ~2' Also, by (4.12), any block through P will meet d at most once again, and hence 
d is a (3q + 1)-arc. 0 

PROPosmON 4.18. For the arc d, Gd = Nd . 

PROOF. If Gd #:Nd then Gd moves P, and is transitive on d. Thus (3q + 1) IIGI, 
i.e. (3q + 1) 1 (q3 + 1)(q - 1) = q4 - q3 + q - 1. Suppose a prime p divides (3q + 1). 
Then 3q==-1(modp). Obviously, p#:3, so q4_ q3+ q -1==0 (modp)~(3q)4-
3(3q)3 + 33(3q) - 34 == 0 (mod p). Thus p = 2 or 13. 

For p = 2, 21 (3q + 1) and 21 (q3 + 1)(q - 1). If 2 is the only prime dividing (3q + 1) 
then 3q + 1 ~ 23

, since we know that 23 is the highest power of 2 dividing IGI (by 
(4.3». This is clearly impossible. 
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For p = 13, we have q = 32n+1, so 3q = 32m
, where m = n + 1. Then 9 == -4 

(mod 13) ~ 3q = 32m == (-4)m(mod 13). Now (_4)2 == 16 == 3, (-4)3 == -12 =- 1(13), so 
(_4)m ;j=. -1(mod 13) for any m, i.e. 13 f (3q + 1). 0 

For q = 3, 3q + 1 = q2 + 1, so that .sIl is an oval for ~'Yl(3). For q > 3 we have 
shown by computation that when q = 33, the (3q + I)-arcs are complete arcs. i.e. 
cannot have extra points added while retaining the property of being an arc. Also, for 
q = 33 and q = 35

, we have shown by computation that (J is not an arc. Thus we are not 
hopeful of obtaining ovals for g't'Yl(q) for q > 3 in this way, should they exist at all. 

To summarize, Propositions 4.1-4.18 give the following result: 

THEOREM B. Let g't'Yl(q) be the Ree unital, G = R(q) the Ree group for q = 32n+t, 
n;;;' 0. Let P be a Sylow 3-subgroup of G, N the normalizer of Pin G, T the set of all 
involutions in N, Z the centre of P. Then for C any orbit of Z distinct from {P}, we 
have: 
(i) C U {P} is a (q + l)arc; 
(ii) if t, tt e T, t e NI;" tt f NI;" then .sIl = {P} U C U Ctl U ctlt is a (3q + I)-arc, and 

IGdl =6q; 
(iii) for q = 3, .sIl is an oval for the design ~'Yl(3). 

5. DESIGNS FROM REE UNITALS 

For q odd, Holz [11] constructed two classes, 'Ylt(q) and ~(q), of 2-designs from 
'Yl(q) as follows . Let 'Yl(q) have point set 1f and block set ~; then 'Ylt(q) = (1f, ~t) is a 
2_(q3 + 1, q + 1, q + 1) design with block set ~t' where the blocks are (q + I)-arcs in 
'Yl(q) formed by taking the intersections of a certain class of Baer subplanes of 
PG(2, q2) with the point set 1f of 'Yl(q) , and ~(q) = (1f, @J U ~t) is the 2_(q3 + 1, 
q + 1, q + 2) design formed by taking all the blocks of 'Yl(q) and 'Ylt(q). Both 'Yll(q) 
and ~(q) have the property that blocks meet in at most two points. 

We obtain similar designs for the Ree unitals by using Z-orbits, together with {P}, 
for the (q + I)-arcs. 

THEOREM C. Let G = R (q) be the Ree group acting doubly transitively on the points 
of its unital g't'Yl(q) = (1f, ~). For each P e 1f (viewed as a Sylow 3-subgroup of G) let 
A(P) = {C I c an orbit of Z(P) on 1f\{P}} and set ~t = UPEn {C U {P} ICe A(P)}. If 
g't%(q) = (1f, ~t) and g't~(q) = (1f, ~ U ~t), then g't%(q) is a 2_(q3 + 1, q + 1, q + 1) 
design and g't~(q) is a 2_(q3 + 1, q + 1, q + 2) design with distinct blocks meeting in at 
most two points; G is an automorphism group of both designs. 

PROOF. Consider the structure g't'Yll(q): by the definition of ~11 G is clearly 
transitive on blocks. Also, 

and 
_ (q3 + l)q2(q + 1) _ 2( ) 

r- (3 ) -q q+l. 
q + 1 

Thus A. = q + 1. (The structure is clearly a 2-design since it has a 2-transitive group 
acting on it.) To show that blocks meet in at most two points, we show that the 
A. = q + 1 blocks through two given points do not meet again. By double transitivity, 
this will give the required result. We prove this using the co-ordinate form of the 
construction, with P = 00 and Q = (0,0,0), by forming the (q + 1) blocks of ~t 
containing P and Q. Let C = C(O, 0) = {(a, 0, z) I z e F} . Let C€ = {tit e ~l and 
P,Qet}. Let to=CU{oo}eC€. Then w(to)=tt={oo}U{(O,O,0)}U{(zs-2,0, 
-Z-l) I z e F X

}, where w is defined in Section 4. Thus t1 e C€. 
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Now (1,0, -1) E 61 so that (0,0,0) E (1, 0, -1)-1(61), From Section 4 we 
find (1,0,-1)-1=(-1,1,1), so 62 =(-1, 1, 1)(61)= {oo}U{(-I, 1, I)}U{(zS-Z-1, 
_(zS-Z_1), 1 - Z-I) I Z E FX}. For z = 1 we obtain (0,0,0) E 6z, so 62 E cg, and quite 
clearly 6z=I=ho,l~I' For any kEFx, let khz=(0,0,0;k)(6z)={00}U{(-k,ks+l, 
kS+Z)} U {k(zS-Z -1), _kS+1(zS-Z -1), ks+Z(I_ Z-I) I z E FX}. 

Then khz E cg for each k E F X (and for k = 1, 16z = 6z). We show that this is the full 
set cg, i.e. cg = {60 , 61} U {k62 I k E FX} and that any two members of cg meet only in 00 

and (0,0,0). This is clear for 60 and hI' and ho and kh2, since zS-2 - 1 = 0 only for z = 1: 
ths is because s - 2 is an automorphism, with (zs-2y+2 = zs2_4 = z3q-4 = z-t, whence 
z = 1. For the same reason hI and khz meet only in 00 and (0,0,0) . 

Suppose klhz and kP2 have another point in common: then, since the ratio of the 
second co-ordinate to the first co-ordinate in k62 is _ks, we must have -~ = -ki, i.e. 
kl =k2· 

Thus blocks of [!/l°lliq) meet at most twice. For the same property in [!/lOUz.(q), we 
need only note that the blocks of [!/l6!1t(q) have been shown to be (q + I)-arcs (see 
Proposition 4.13), and thus meet blocks of [!/lOU(q) at most twice. D 

6. THE HERMmAN AND REE UNITALS ON 28 POINTS 

The above considerations yield an interesting relationship between the two non
isomorphic 2-(28,4,1) designs, OU(3) and [!/lOU(3). In fact, the extended designs given 

. by Holz for the hermitian unital, and in Section 5 for the Ree unital, are isomorphic 
with automorphism group the symplectic group Sp(6,2). This design is one of the 
elliptic quadric designs given by Theorem 3 in [7J. Here Sp(6, 2), in its doubly
transitive action on 28 points, has exactly one orbit of length 315 in its induced action 
of the 4-subsets. With this orbit as the block set, we obtain the design with d = m - 1 
and m = 3 of the class of designs found by Dillon and Wertheimer ([7J or [26]). From 
this orbit, the hermitian and Ree unitals (with q = 3) can be extracted group-theoretically. 

The coding-theoretic aspects are interesting as well, and in describing them we 
correct an error made in the Note on p. 188 of [3J. Firstly, both PTL(2, 8) = R(3) and 
PTU(3, 3) are subgroups of Sp(6, 2) and hence act on any code acted on by Sp(6, 2), 
in particular on the binary code generated by the orbit of length 315 described above. 
Further, this code is the dual of the code mentioned in the Note of [3J. 

In more detail: let C be the binary code defined by OU(3) in the usual way (see 
Section 2). Then C is a (28,21) binary code, with minimum weight 4, and, in addition 
to the vectors given by the blocks of the unital, there are 252 further weight-4 vectors. 
These minimum-weight vectors give the design :!lJ of [7J, with automorphism group 
Sp(6, 2). This is also the design 0Uz.(3) of Holz, as described in Section 5. 

The small Ree group prL(2, 8) also acts on:!lJ, and the Ree unital [!/lOU(3) occurs as 
a subdesign of :!lJ. If C1 is the binary code of such a unital, then C1 < C, and has 
dimension 19. Also C = C1 + ct, and C.L = C1 n ct, the latter code being the (28, 7) 
code with weight distribution X

O + 63 (x 12 + X 16
) + X 28 of the Note at the end of [3J. 

Since the all-one vector occurs in C.L, the 6-dimensional 2-modular representation of 
Sp(6, 2) given by the quotient space will be the natural one for the symplectic group. 

The question still remains, then, as to the uniqueness of a (28,7) binary code with 
minimum weight 12, since the two given by the hermitian unital, C.L, and the Ree 
unital, C1 n ct, are isomorphic (in fact, identical, in the construction we have just 
described) . 

The embedding of [!/lOU(3) in the design :!lJ is the smallest case of a general 
embedding of certain Steiner systems with parameters 2_(2m-l(2m -1), 2m

-
I

, 1) in the 
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elliptic quadric designs described in [7] and acted on by Sp(2m, 2). These designs are 
described in [4] or [14], for example, and for m > 3 have l!-but not 2-transitive 
automorphism groups. The Ree unital iYlOU(3) may fit more naturally into this 
collection, as the smallest hermitian unital, 011(2), fits naturally into the collection of 
affine planes. 
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