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We are concerned with two-level optimization problems, corresponding to non-
zero-sum noncooperative games, in which the set of optimal solutions to the lower
level problem is not a singleton. We are interested in Stackelberg solutions first
introduced by H. Von Stackelberg in the context of economic competition. Our
aim is to extend some approximation and existence results given by Loridan and
Morgan by considering the case when the set of constraints in the upper level
problem depends on the set of optimal solutions to the lower level problem.
€ 1994 Academic Press, Inc.

[. INTRODUCTION

Let X and Y be two Haussdorff topological spaces and f; and g,, i =
1, 2, be real valued functions defined on X X Y. We consider the following
constrained Stackelberg problem (S) in which the set of solutions to the
lower level problem is not a singleton:

Inf sup fi(x,y),
YEK yEM,(x)
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where M,(x) is the set of optimal solutions to the lower level problem

P(x): Inf filx,y)
edimst

and

K= {xe X: sup g,lx,y)= 0}.
YEM ()
This formulation generalizes the one considered by Loridan and Morgan
in [8]. It corresponds to a two-player Stackelberg game in which the first
player called the leader has the leadership in playing the game. The leader
knows everything about the second player called the follower. He knows
his objective and constraint functions and that he reacts optimally,
whereas the follower only knows the strategy announced by the leader.
The aim of the two players is to minimize their objective functions. Since
the optimal reaction set M,(x) is not a singleton, the leader has to provide
himself against the worst choice of optimal strategies in M,(x) and the
possible violation of his constraint by the follower, by minimizing the
function sup,cy. . fi(x, ¥) under the constraint «(x) = 0, where u(x) =
SUP, e £1(%, ¥). The problem (S) may fail to have a solution even if the
decision variables x and y range over a compact set, whereas f| and f,
are continuous (see Basar and Olsder [2]). This fact mainly results from
the lack of lower semicontinuity for the multifunction M,. The aim of this
paper is to use two regularizations of (S) as in [7, 9] in order to obtain an
approximation of (S), together with existence results for the regularized
problems, generalizing the results given by Loridan and Morgan in [7-9].
The paper is organized as follows: In Section 2 we recall some defini-
tions, present the first regularization called s-regularization for which
we need convexity and quasiconvexity assumptions in the lower level
problems to give convergence results for approximate solutions and ap-
proximate marginal values. In Section 3 we recall other definitions and
give the second regularization procedure based on the concept of strict
e-solutions ([7]). For such a regularization, we prove the existence of
solutions to the corresponding regularized Stackelberg problem and the
convergence of approximate marginal values, without convexity and qua-
siconvexity assumptions,

2. THE e-REGULARIZED PROBLEM (S,)
2.1. Notations and Definitions
Let us introduce the following notations:

vy(x) = inf  fio(x,¥), wi(x) = sup fi(x,y), v, = inf w,(x).
YEY YEM,(x) x€EK
galxvy=0
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We assume that v, and v,{x), are finite numbers, for any x € X:

My(x) = {y E Y:g,(x,y) = 0and fo(x,y) = v,(x)}
M, ={xEK:wx)= v}

Fore > 0,
M,(x,€) = {y € Y:g,(x,y) =0and fy(x,y) < v,(x) + €}

KE={x€X: sup g,(x,y)SO}.

yEM(x,e)
We shall assume that K_ is nonempty for ¢ sufficiently small:
wilx,e) = sup fi(x,y), v(e) = inf w (x, )

vEMs(x.e) yeK,

M (e) ={x €K, :w(x, &) = v,(e})}.

DEFINITION 2.1.1. AnyX € K verifying v, = w,(X) is called a Stackel-
berg solution to (S). This definition corresponds to the one given in [4].

DEFINITION 2.1.2.  Any pair (x,y) € K x Y verifying v, = w,(x) and
¥ € M,(x) is called a Stackelberg equilibrium pair. This concept appeared
in [14] for static economic problems. For the dynamic case, see for exam-
ple [2, 12, 13].

Let U be a topological space. We recall the following definitions.

DEFINITION 2.1.3. If A C U, AS is the subset of points y € U limit of
a sequence of points of A; A is sequentially closed if and only if A = A,
A is sequentially compact if and only if any sequence x,, n € N, of points
of A, has a subsequence converging to a point of A.

DEerINITION 2.1.4, Let A,, n € N, be a sequence of subsets of U:

y € liminf A, if and only if there exists a sequence y,, n € N,

o +x

converging to y in U such that y, € A, for large n € N.
y € lim sup A, if and only if there exists an infinite subsequence y,,,

n—+x

ne N CN, convergingtoyin Usuchthaty, €A, foranyn € N'.
For e > 0 let (S,):

Inf sup fi(x,y), where M,(x, &) is the set of g-approximate
XEK,  yEM;(x.e)

solutions to the lower level problem P(x),
previously defined;

(S¢e) is called the e-regularized problem of (S), see (9, Remark 2.3].
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2.2. Assumptions and Properties for the Lower Level Problems
We consider the following assumptions for the follower:

(F,) f,is a real-valued sequentially continuous function defined on
X x Y.

(F,) Y is sequentially compact.

(F;) g, is areal-valued sequentially lower semicontinuous function
defined on X x Y.

(F,) For any (x, y) € X X Y such that g,(x, y) = 0, and for any
sequence x, converging to x in X, there exists a sequence y, € Y converging
to y in ¥ such that g,(x,. y,) = 0 for large n € N.

(Fs) Yis a convex subset of a real vector topological space.

(Fy) Forany x € X, the function y — f5(x, y) is strictly quasiconvex
on Y (Mangasarian [11]).

(F;) For any x € X, the function y — g,(x, y) is convex on Y.

PrROPOSITION 2.2.1. [If the assumptions (F ) to (F,) are satisfied, then
for any x € X and for any sequence x, converging to x in X, we have:

() lim v,(x,) = v,(x)

n—s+x

(i) lim sup M,(x,, €) C M,{(x, &), fore =0

n—+x

(iii) lim sup M,(x,, &,) C M,(x), for any sequence ¢,— 0, with e, >

s +x

0 for any n € N.

We note that the limits of sets are given in a sequential sense, according
to Definition 2.1.4.

Proof. (i) The proof is an adaptation of the one in [9, Proposition 4.3]
by taking into account the inequality constraint g,(x, y) = 0. From (F,),
(F,), and (F;) we deduce that v,(x) is a finite number (and M,(x) # ),
for any x € X. Let x € X and x, be a sequence converging to x in X. Let
y € Y verifying g,(x, y) = 0. From (F,), there exists a sequence y,
converging to y in Y verifying g,(x,, y,) = 0 for large n € N. But f, is
sequentially continuous, so

nETfo(xnv yn) :fl(x’y)'

Since v,(x,) = folx,, y,) for large n € N, we deduce that

lim iup vy(x,) = frlx, y)
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for any y € Y such that g,(x, y) = 0. Hence,

lim sup v,(x,) < v,(x)
n—+x

and the sequence v,(x,), n € N, is bounded above. Furthermore, it is
bounded from below. If not, there would exist an infinite subsequence
v,(x,), n € N' C N, converging to —«. Then for any A > 0, there would
exist ny € N’ such that v,(x,) < —A forany n € N', n = n,. So, for any
n = ng, n € N’, there would exist y, € Y, verifying f,(x,, yn) = — A and
g,(x,, y,) = 0. From the sequential compactness of Y, there would exist
a subsequence y,, n € N" C N’', convergingtoy € Y. So

g:(x,y) =liminfg,(x, y ) =0

and

—-A = lim fy(x,,y,) = £,(x,5) = v,(x)

n—+x
neEN"

and we get a contradition by choosing —A < v,(x). Then the sequence
vy(x,), n € N, is bounded in R.

Now, let v,(x,), n € N; C N, an infinite subsequence converging to
7 € R. Let @ > 0. For any n € N, there exists y* € Y, verifying f,(x,,
y2) = vy(x,) + a and g,(x,, y7) = 0. From the sequential compactness
of Y, there exists an infinite subsequence y%, n € N, C N,, converging to
y* € Y. By using, respectively, (F;) and (F,) we get

g,(x, y*) =liminfg,(x,,y¥) <0
n—+x
nEN,

and

vy(0) = fo(x, ¥y*) = lim filx,,y3) = lim v,(x,) + a =7 + a.
n—> 4w n—»+x
nEN, neN,

Since we have v,(x) = D + « for any a« > 0, we deduce that v,(x) = .
From the first part of the proof we have

lim sup v,(x,) = v,(x)

n— +x
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and
U = lim v,(x,) = limsup v,(x,) =< v,(x)
n—+x n—+x
nEN,

and v,(x) = 0. Then the entire sequence v,(x,), n € N, converges to v,(x).

(i) Let x € X and let x, be a sequence converging to x in X. We
have lim sup,_, ,. M,(x,, &) # (J, because M,(x,, e) # &, for all n € N,
and Y is sequentially compact. Let ¥ € lim sup,_, .. M,(x,, €). There
exists an infinite subsequence y,, n € N’ C N, converging to 7 in
Y, verifying y, € M,{(x,, ¢) for any n € N'; that is to say, f>(x,, y,) =
U,(x,) + € and g.(x,, y,) = 0forany n € N'. By using (i), (F,), and (F;)
we get

L, ¥) = lim vy(x,) + £ = v,(x) + ¢
n—+x
nenN’

and

gQ(x* y) = lim infgz(xrn yn) =0
N

which means that y € M,(x, ¢).
(iii) It is similar to the previous proof.

Remark 2.2.1. The result (ii) means that the multifunction M,(-, &) is
sequentially closed graph on X (see [5]).

For &€ > 0 let M,(x, &) = {y € Y:g,(x,y) = 0and fy(x, y) < v,(x) + &},
the set of strict e-solutions to P(x). Then, we have the following result.

COROLLARY 2.2.1. With the previous assumptions, for any x € X, for
any sequence x, converging to x in X, and for any sequence &, — 0 with
g, > 0 for any n € N, we have

lim sup M,(x,, &,) C M,(x).

n—+x

Proof. We have M,(x,, €,) C M,(x,, &,), then, from Proposition 2.2.1
we get

lim sup M,(x,, £,) C lim sup M,(x,, £,) C My(x).

> +x >+ x

PropPOSITION 2.2.2.  We suppose that the assumptions (F)) to (F;) are
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satisfied. Then for any € > 0, for any x € X, and for any sequence x,
converging to x in X, we have

M,(x, &) C lim inf M,(x,, €)5.

n—+x

Proof. It is an adaptation of the one given by Loridan and Morgan in
[9, Proposition 6.2] for lower level problems without explicit contraints.
First, let us prove that

Mz(x, 8) - llm insz(X,,, 8).

n—s+x

Lety € Mz(x, €); that is to say, fo(x, y) < vy(x) + &£ and g,(x, y) = 0.
From (F,) there exists a sequence y, converging to y in Y, such that g,(x,,
y,) = 0 for large n € N. By using Proposition 2.2.1 and (F|) we get

lim v,(x,) = vy(x), lim fy(x,,y,) = frlx,y).

n— +x

So lim,_, .. (filx,, ¥,) — v,(x)) < & and we deduce that f;5(x,, y,) <
vy(x,) + € and g,(x,, y,) = 0 for large n € N, which means that y, €
M,(x,, &), for large n € N. Then y € lim inf,_, , .. M,(x,, €).

Now, let us prove that M,(x, €) = M,(x, £)°. From (F,) and (F;),
M,(x, £) is sequentially closed, so M,(x, £)° C M,(x, £). Let Y € M,(x, &).
If 3 € M,(x, &) the result is obvious. So, it suffices to consider the case
when ¥y satisfies f5(x, ) = v,(x) + &.

Let z € M,(x, €). For any k € N* we let y, = (1/k)z + (1 — U/k)y.
For any neighbourhood V of the origin, ¥, — ¥ = (1/k) (z — y) belongs
to V for large k. So 5, — ¥ as k — +=. From convexity assumptions we
have ¥, € Y and g,(x, ¥,) = (1/k)go(x, 2) + (1 — 1/k)g,(x,y) = 0Vk #
0, and from the strict quasiconvexity of the function y — f,(x, y) we have

F(x, 3,) <max{f(x, 2), /,(x,¥)} = v,(x) + &

which means that 5, € M,(x, ). Then y € M,(x, )° and M,(x, &) =
M,(x, €)% and we deduce that

Mz(.x, 8) C lim il’lsz(x,,, S)S.

n—+x

Remark2.2.2. We recall that the topological and the sequential defini-
tions of lim sup and lim inf of sets are equivalent in the case when Y is
a first countable space [3]. In such a case, the sequential closure is equal
to the topological one.

409/188/1-8
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PROPOSITION 2.2.3.  If the assumptions (F,) to (Fy) are satisfied, then,
for any € > 0, for any x € X, and for any sequence x, converging to x
in X,

M,(x, €) C lim inf M,(x,, &).

2n— X

Proof. See the first part of the proof of Proposition 2.2.2.

Remark?2.2.3. Theresultof Proposition 2.2.3 means that the multifunc-
tion M, (-, &) is sequentially lower semicontinuous on X (see [5]).

Remark 2.2.4. From (F,) and (F;) we deduce that the function y —
f2(x, y) is quasiconvex and sequentially continuous for any x € X. If the
assumptions (F)) to (F;) (except (F,)) are fulfilled, then M,(x, ) and M ,(x)
are sequentially compact convex sets. In particular, v,(x) is a finite number
for any x € X.

2.3. Assumptions and Properties for the Upper Level Problems
We consider the following assumptions for the leader:
(L,) g, is areal-valued sequentially upper semicontinuous function

defined on X x Y.

(L,) For any x € X such that sup,ey, 8:(x, y) = 0, there exists a
sequence x, € X converging to x in X such that sup,cy,,) 8(x,, y) <0
for large n € N.

Remark 2.3.1. The second assumption generalizes the following one
which was used by Aiyoshi and Shimizu in [1] and Loridan and Morgan
in [8] in the case where M,(x) = {§(x)}, namely:

For any x € X such that g,(x, ¥(x)) = O there exists a sequence x,
converging to x verifying g,(x,, y(x,)) < 0 for all n € N; it means that
the constraint g, of the upper level problem is consistent with the collection
of the lower level problems P(x), x € X.

Let us consider the following example of spaces and functions veri-
fying (L,).

ExaMPLE 2.3.1. LetX =[-4,4,Y =[-535]l,g/x,¥y) =x —y -
2, g,(x,y) = x + 2y — 2 and let f; be the following function:

ifx=0,f(k,y) =0foranyy€ Y
ifx >0, fo(x,y) = 0fory = 0; xy for y # 0.
We note that f, is continuous on X x Y. Furthermore:
if x = 0, we have v,(x) = 0and M,(x) = [-5, 2 — x)/2]
if x > 0, we have v,(x) = —S5x and M,(x) = {-5}.
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Let K* = {x € X:sup,ep,n &1(x, ¥) = 0}. Then we have K = {x €

X:x = —3}and K* = {—3}. We take the sequence x, = —3 — 1/n, n
€ N*, which converges to —3. Then v,(x,) = 0, M,(x,) = [-5, (2 —
x,)/2], and sup,epyc,) 81X, ¥) = —1/n < 0. Hence (L,) is satisfied.

LEMMA 2.3.1. If the assumptions (L,) and (L,) and the assumptions
of Proposition 2.2.1 are satisfied, if X is such that:

(D) x; = lm,_, ., x;, and x = im_, . x, imply that there exists a
mapping k — k(n) increasing to +> such that x = lim,_, , . X; 05

then we have

(L,) Foranyx € X such that SUPyepm, 0 £1(X, ¥) =0, for any sequence
e, = 0, with g, > 0 for any n € N, there exists a sequence x, € X
converging to x € X such that supep,, ., 81(x,, y) = 0 for large n € N.

Remark 2.3.2. (i) The condition (D) is satisfied if X is a first countable
topological space [6].
(i1)) The result (Zz) means that: for any sequence ¢, — 0, with g, >
0 for any n € N, we have K C liminf,_, . K, .

Proof of Lemma 2.3.1.  First case. Let x € X such that sup,¢,, ., 8,(x,
y) < 0, that is to say for any y € M,(x), we have g,(x, y) < 0. Let g, —
0, with £, > 0 for any n € N. Then, there exists a sequence x, converging
to x in X such that sup,cp,, ) 814, ) = 0 for large n € N. In effect,
if it is not true, then there exists a sequence g, — 0, with ¢, > 0 for any
n € N, such that for any sequence x, € X converging to x € X, there
exists an infinite subsequence x,,, n € N’ C N, verifying SUPyeM,ix,.c,) 81(Xn>
y) > 0. So, for each n € N', there exists y, € M,(x,, €,) such that g,(x,,
y,) > 0. From the sequential compactness of Y, there exists an infinite
subsequence y,, n € N" C N’, converging to ¥y € M,(x) (from Proposition
2.2.1). The function g, is sequentially upper semicontinuous; then g (x,
y) = 0, which contradicts g,(x, y) < 0.

Second case. Let x € X such that SUP ety g,(x, y) = 0. From (L,),
there exists a sequence x,, kK € N, converging to x in X, verifying
SUP,eptyx, 810Xk ¥) < 0, for large & € N. From the first case, for any
sequence ¢, — 0, with £, > 0, for any n € N, there exists a sequence
Xin € X, Xy, — x; a8 n — +, verifying SUPyeMyr, , ) g1(xi . y) =0for
large n € N. From (D), there exists a selection of integers k(n) such that
x =lim,, .. x;,and k(n) > +xas n— +x. Letz, = x4, then we
have z, — x as n — + and sup,ey,, .., £1(z,, ) < 0 for large n € N.

DefFINITION 2.3.1 [5]. Let M: X == Y a multifunction. M is nearly
sequentially lower semicontinuous at x € X if for any sequence x,, n €
N, converging to x in X we have
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M(x) C liminf M(x,)%;

n—t+x
that is to say:

—either M(x) = &

—or for any sequence x,, n € N, converging to x in X and any y €
M(x), there exists a sequence y,,, m € N, converging to y in Y and a
sequence y,, ., h € N, converging to y,, in Y such that y,, , € M(x,) for
large n.

M is nearly sequentially lower semicontinuous on X if it is nearly sequen-
tially lower semicontinuous at any x € X.

ProrosITION 2.3.1.  If the assumptions of Proposition 2.2.2 are satis-
fied, if X is sequentially compact and f, and g, are sequentially lower
semicontinuous, then the e-regularized problem (S,) has at least one
solution.

Proof. From Proposition 2.2.2, for any & > 0, for any x € X and any
sequence x, converging to x in X, we have

M,(x, &) C lim inf M4(x,,, £)°.

n—+x

Let u(x, &) = sup,epir.e) £1(x, y) and wy(x, €) = sup,er, . f1(x, ). The
functions f; and g, are sequentially lower semicontinuous and the multi-
function M,(-, €) is nearly lower semicontinuous on X, then w,(-, &) and
u(-, &) are sequentially lower semicontinuous on X (see [5]). So, the set
K. = {x € X:sup,epm, &1 (x,y) = 0}is sequentially closed in the sequen-
tially compact space X, and it is also sequentially compact. Then,
w, (-, €) is sequentially lower semicontinuous on K, sequentially compact
and the existence of solutions to (S,) is derived.

CoROLLARY 2.3.1. Ifthe assumptions of Proposition 2.3.1. are fulfilled
and if, moreover, f, is a sequentially upper semicontinuous function, then:
for any € > 0, there exists an e-regularized Stackelberg equilibrium pair
(X., ¥.) such that

fix.,y) = inf sup fi(x,y) = v (s).

XEK, yEM,(x,e)

Proof. With the previous assumptions in Proposition 2.3.1. the mar-
ginal function w(x, £) = Sup,e. .01 (x, ¥) is sequentially lower semicon-
tinuous on K, sequentially compact, then there exists X, € K, such that
w(X,, ) = v (e). Finally, from the sequential compactness of M,(x,, €)
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and, since f| is a sequentially continuous function, there exists ¥, € M,(x_,
8) SUCh thatfl(}e’ ys) = vvl(fev 8) = U](E).

Remark 2.3.3. The previous result generalizes the one given in [9,
Proposition 7.4].

PropoSITION 2.3.2.  [f the assumptions of Lemma 2.3.1 are satisfied,
if f, is sequentially upper semicontinuous, then

lim v(e) = v,.
0"

Proof. We have K, C K Ve > 0. Let g, — 0, with g, > 0 for any
n € N. We shall prove that lim,_, , . v,(g,) = v,. We have

wi(x) = sup filx,y)= sup 'fu(x, y) = w(x, €)

YEM,(v) YEM,(x.e
SO

v, = inf w(x) < inf w (x, &) < inf w,(x, &) = v,(e)
Y€K xeK XEK,

and we deduce that

v, =liminfo,(g,).

n— +x

Now, let x € K and let us prove that lim sup,_, .. v,(¢,) = v,. From
Lemma 2.3.1, there exists a sequence x, converging to x in X such that
SUPyenryix, e, &1(Xn, ¥) = 0 for large n € N. Then for this sequence x,
we have

lim sup w,(x,, £,) = w,(x).

n—+x
In effect, if it is not true, then there exists @ € R, verifying

wi(x) < a <limsup w,(x,, &,).
n—+x

Since there exists an infinite subsequence w (x,,, €,), n € N’ C N, such that

lim w,(x,, g,) = limsupw,(x,, g,),
n—+x n— +x
neN’
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there exists ny € N' such that w,(x,, e,) > aforn = n,, n € N'. So, for
each n € N', n = ny, there exists y, € M,(x,, ¢,) such that fi(x,, y,) >
a. From the sequential compactness of Y, there exists a subsequence y,,
n € N" C N’ converging toy € M,(x). So

a = limsup fi(x,,y,) = [i(x,7) = w,(x)
n—+x

neEN”

which contradicts w(x) < «. Then we have

lim sup w {x,, &,) = w,(x), limsupuv(e,) =w (x}) VxeK

n— +x H—+x

because v,(g,) = w,(x,, €,), since x, € K, for large n € N. So, we obtain

limsup v,(g,) < v,
n—+x

and from the first part we deduce that lim,, . v,(¢,) = v,. Then
lime_,(p U](s) = U‘.

COROLLARY 2.3.2. Ifthe assumptions of Proposition 2.3.1 and Propo-
sition 2.3.2 are satisfied, then for any ¢ > 0, (§,) has at least one solution
x, and lim_ g+ v,(e) = lim_ w(x,, &) = v,.

Proof. From Proposition 2.3.1, (§,) has at least one solution, x, €
K..Sov(e) = w,(x,, & and from Proposition 2.3.2,

lim v,(&) = lim w(x,,8) = v

&0 a0

Let M° = {x € K’:there exists y € M,(x) verifying f,(x, ) = v,}.
Then, we have the following result.

ProPoOSITION 2.3.3.  Ifthe assumption of Proposition 2.3.2 are fulfilled
and if, moreover, f, is sequentially lower semicontinuous, then for any
sequence g, — 0, with g, > 0 for any n € N, we have

lim sup M,(g,) C M°.

n—+x

Proof. If lim sup,_, .. M,(g,) = &, the result is obvious. Otherwise,
let ¥ be an element of lim sup,,_, ., .M, (e,). There exists an infinite subse-
quence X, € X, n € N’ C N, converging to X € X, verifying X, € M,(¢,),
for any n € N'; that is to say, X, € K, and w (X, ¢,) = v,(e ) for any
ne€N'.Sox € limsup,... K, C KS "because K, CKforanyne N,
But the function f; is sequentlally continuous and M ,(X,) is sequentially
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compact for any n € N’. Then for any n € N’ there exists y, € M,(X,)
such that w(x,) = f,(X,, ¥,). From the sequential compactness of Y,
there exists a subsequence ¥,, n € N”" C N’, converging to y € M,(x)
(from Proposition 2.2.1). By using the inequalities

v, =w (x,) = fiX,. V) =w,(X,.&,) = vle,) foralln e N’
and Proposition 2.3.2, we get

vy < lim w,&,) = lim f,(x,.¥,) = i(x.7) = lim v,(e,) = v,.
n—+x n—+x — 4%
HEN" HEN" nEN"

Then f(X, ¥) = v, and ¥ € K3, that is to say, X € M°.

Remark 2.3.4. Generally, the previous result does not hold when M°
is replaced by M, (the set of solutions to (S)). This mainly results from
the lack of lower semicontinuity for M, (see [10]).

3. THE STRICT &-REGULARIZED PROBLEM (§,)

In order to avoid convexity and strict quasiconvexity assumptions we
consider the set M,(x, &), instead of M,(x, &). For ¢ > 0, we define the
strictly e-regularized problem, (S ):

Inf sup f,(x,y),  where M,(x, €) is the set of strict
x€EK, yEM,(x.8)

e-solutions to the lower level problem
P(x) previously defined

and

K, = {xEX: sup gl(x,y)so}-

YEM,(x.e)

Let us denote

wi(x,e) = sup filx,y), ©,(e) = inf W,(x, €).
YEM;(x8) €K,

ProposITION 3.1.  With the assumptions of Proposition 2.3.2 we have

lim 9,(¢) = v,.

()
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Proof. For any x € X and any & > 0 we have M,(x) C M,(x, &) C
M,(x, ). So

wi(x) = w,(x, ) < w(x, €).
Since K, C K, C K, we get

inf wi(x) =v, = mf Wi lx, g) < inf w {x,e) = D,(e)
xeX xEK,

and

inf w,(x, &) = 0,(e) = inf w (x,e) = inf w(x,e) = v,(e);
xeK, ek, xeK,

then we get v, = 0,(g) = v,(¢), and from Proposition 2.3.2 we deduce
that lim,_,,+ v,( ) =

ProrosiTION 3.2.  Lete > 0. Supposing that the assumptions of Propo-
sition 2.2.3 are fulfilled, together with X sequentially compact and the
functions f) and g, sequentially lower semicontinuous at every (x, y) €
X x Y, such thaty € M, ,(x, €), then the problem (S ) has at least one
solution.

Proof. Let us show that the marginal function w,(x, &) =
SUPye it x.e S1(X, ¥) 18 sequentially lower semicontinuous on X. Let x € X
and let x, be a sequence converging to x in X and y € M,(x, &). From
Proposmon 2.2.3, there exists a sequence y, converging to y such that
y, € My(x,, €) for large n € N. So

wi(x,, )= sup filx,,y)=f(x,,y,) forlargen €N

.VEMI(X,,,E)
and

liminfw,(x,, €) = llm lnffl(x,,, v =filx, ).

Since liminf,_,, . w,(x,, &) = f,(x, y) for any y € M,(x, &), we get

liminfw,(x,, &) = w,(x, &).
n—+x

Let a(x, €) = sup,ejp,e &1(X, ¥). By using the previous arguments we
can also show that the marginal function (-, &) is sequentially lower
semicontinuous. So, the set K, is sequentially closed in the sequentially
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compact space X. Then K_ is also sequentially compact and we deduce
that ($,) has at least one solution.

DEFINITION 3.1 [6]. Let M : X =3 Y a multifunction. M is sequentially
open graph at x € X if for any y € M(x), any sequence x, converging to
x in X, and any sequence y, converging to y in Y, we have y, € M(x,)
for large n € N. M is sequentially open graph on X if it is sequentially
open graph at any x € X.

ProprosITION 3.3. If the assumptions (F,) to (F;) are satisfied and if
the function g, satisfies:

(F,) For any (x, y) € X X Y such that g,(x, y) <0, for any sequence
(x,, ¥,) converging to (x, y)in X X Y, we have g,(x,, y,) = 0 for large
neN;

then the multifunction M,(-, €) is sequentially open graph on X Ye > 0.

Proof. The proof is merely an adaptation of the one given in [7, Propo-
sition 3.5] in the case where there are no explicit constraints.

Remark 3.1. If the assumption (F,) is satisfied, then (F,) is satisfied
(take y, = y Va € N in (F,)).

PrOPOSITION 3.4. Let e > 0. Suppose that the assumptions of Proposi-
tion 3.3 are satisfied. If, morever, X is sequentially compact and if we
suppose that:

(H,) Forany x € X, forany y € M,(x, €), and for any sequence
x, converging to x in X, there exists a sequence y, converging toy in 'Y
such that

fl(xv )/') = Ilm inffl(xn’ yn);

n—+x

(Hy,) Forany x € X, for any y € M,(x, €), and for any sequence
x, converging to x in X, there exists a sequence y, converging to y in Y
such that

g:(x,y)=liminfg,(x,, y,);
n—+x

then, there exists at least a solution to the problem (S'E).

Proof. 1t is sufficient to prove that the marginal function w,(x, ) =
SUP,e 41,00 f1(%5 ¥) is sequentially lower semicontinuous on X and that the
set K, 1s sequentially compact in X.

Let x € X and x, be a sequence converging to x in X. Let y € M,(x,
e). From (H,) there exists a sequence y, converging to y in Y such that
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fl(xﬂ y) = llm il’lffl(.\',,, yn)'

H—> + %

From Prqposition 3.3 we have Mz(-, ) sequentially open graph on X,
s0 y, € M,(x,, ) for large n € N. Since w,(x,, &) = f,(x,, y,) for large
n € N, we deduce that

liminfw, (x,, &) = liminff(x,, y,) = f,(x, y).

nH— +% n—+x
So we get

liminfw,(x,, &) = fi(x,y)  foranyy € M,(x, &),

n—+x
then

liminfw,(x,, &) = w (x, &).

n—+x

By using the previous arguments we can also prove that the marginal
function i(x, €) = SUP,ejis,ir.0) £1(%, ¥) is sequentially lower semicontinuous
on X and, finally, we deduce that the set K is sequentially compact. From
the sequential compactness of K, and the sequential lower semicontinuity
of the marginal function #w,(-, &) we deduce that the problem (5,) has at
least one solution.

Remark 3.2. The Stackelberg value 0;(g) of (SE) is a real number for
any & > 0 but (5,) does not necessarily possess a Stackelberg equilibrium
pair (x,, 7.), verifying a property analogous to the one of Corollary 2.3.1,
that is to say,

ik, ¥,) = inf sup fi(x,y) = 0,(e)

XEK, YEM,(x,£)

which is contrary to (§.). This fact mainly results from the lack of
closedness of the set M,(x, ).
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