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Abstract

We consider the defocusing, Ḣ 1-critical Hartree equation for the radial data in all dimensions (n � 5).
We show the global well-posedness and scattering results in the energy space. The new ingredient in this pa-
per is that we first take advantage of the term − ∫

I

∫
|x|�A|I |1/2 |u|2�( 1

|x| ) dx dt in the localized Morawetz
identity to rule out the possibility of energy concentration, instead of the classical Morawetz estimate de-
pendent of the nonlinearity.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we study the Cauchy problem for the Hartree equation

{
iut + �u = f (u), in R

n × R, n � 5,

u(0) = ϕ(x), in R
n.

(1.1)
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Here f (u) = (V ∗ |u|2)u is a nonlinear function of Hartree type for V (x) = |x|−γ , 0 < γ < n,
where ∗ denotes the convolution in R

n. In practice, we use the integral formula of (1.1)

u(t) = U(t)ϕ − i

t∫
0

U(t − s)f
(
u(s)

)
ds, (1.2)

where U(t) = eit�.
If the solution u of (1.1) has sufficient smoothness and decay at infinity, it satisfies two con-

servation laws:

M
(
u(t)

) = ∥∥u(t)
∥∥

L2 = ‖ϕ‖L2,

E
(
u(t)

) = 1

2

∥∥∇u(t)
∥∥2

L2 + 1

4

∫ ∫
1

|x − y|γ
∣∣u(t, x)

∣∣2∣∣u(t, y)
∣∣2

dx dy = E(ϕ). (1.3)

As explained in [6], the energy is also conserved for the energy solutions u ∈ C0
t (R,H 1).

From the viewpoint of the fractional integral, we rewrite Eq. (1.1) as

iut + �u = (
(−�)−

n−γ
2 |u|2)u.

For dimension n � 5, the exponent γ = 4 is the unique exponent which is energy critical in the
sense that the natural scale transformation

uλ(t, x) = λ
n−2

2 u
(
λ2t, λx

)
,

leaves the energy invariant, in other words, the energy E(u) is a dimensionless quantity.
The Cauchy problem of the Hartree equation has been intensively studied [4–10,14,15,17,

18]. With regard to the global well-posedness and scattering results, they all dealt with the
Ḣ 1-subcritical case (2 < γ < min(4, n)) in the energy space or some weighted spaces. In [15],
we obtained the small data scattering result for the Ḣ 1-critical case in the energy space. For the
large initial data for the Ḣ 1-critical case (γ = 4, n � 5) in the energy space, the argument in [15]
cannot yield the global well-posedness, even with the conservation of the energy (1.3), because
the time of existence given by the local theory depends on the profile of the data as well as on
the energy.

Concerning the Ḣ 1-subcritical case (2 < γ < min(4, n)), using the method of Morawetz and
Strauss [16], J. Ginibre and G. Velo [6] developed the scattering theory in the energy space,
where they exploited the properties of � and obtained the usual Morawetz estimate

−
t2∫ ∫ ∫ ∣∣u(t, x)

∣∣2 x

|x|
1

|x − y|γ ∇∣∣u(t, y)
∣∣2

dy dx dt � CE(u).
t1
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Later, K. Nakanishi [17] exploited the properties of i∂t + � and used a certain related Sobolev-
type inequality to obtain a new Morawetz estimate

∫ ∫

Rn+1

|t |1+ν |u(t, x)| 2n
n−2

(|t | + |x|)2+ν
dx dt � C(E,ν), for any ν > 0,

which was independent of the nonlinearity.
In this paper, we deal with the Cauchy problem of the Hartree equation with the large data for

the Ḣ 1-critical case (γ = 4, n � 5). Mimicking the approach of Bourgain [1], Killip, Visan and
Zhang [13] and Tao [21] in the case of the Ḣ 1-critical Schrödinger equation with the local non-
linear term, we obtain the global well-posedness and scattering results for the Hartree equation
for the large radial data in Ḣ 1. The new ingredient is that we take advantage of the following
localized estimate for the first time

−
∫
I

∫

|x|�A|I |1/2

∣∣u(t, x)
∣∣2

�

(
1

|x|
)

dx dt = (n − 3)

∫
I

∫

|x|�A|I |1/2

|u(t, x)|2
|x|3 dx dt � A|I |1/2C(E)

to rule out the possibility of energy concentration, instead of the classical Morawetz estimate

−
∫
I

∫ ∫ (
x

|x| − y

|y|
)

∇V (x − y)
∣∣u(x)

∣∣2∣∣u(y)
∣∣2

dy dx dt � C(E)

due to the nonlinear term.
Our main result is the following global well-posedness result in the energy space.

Theorem 1.1. Let n � 5, and ϕ ∈ Ḣ 1 be radial. Then there exists a unique global solution

u ∈ C0
t (Ḣ 1

x ) ∩ L6
t L

6n
3n−8
x to

{
iut + �u = (

V ∗ |u|2)u, in R
n × R,

u(0) = ϕ(x), in R
n,

(1.4)

where V (x) = |x|−4, and on each compact time interval [t−, t+], we have

‖u‖
L6

t L

6n
3n−8
x ([t−,t+]×Rn)

� C
(‖ϕ‖Ḣ 1

)
. (1.5)

As the right-hand side of (1.5) is independent of t−, t+, we can obtain the global spacetime

estimate. As a direct consequence of the global L6
t L

6n
3n−8
x estimate, we have scattering, asymptotic

completeness, and uniform regularity.

Corollary 1.1. Let ϕ be radial and have finite energy, and u ∈ C0
t (Ḣ 1

x ) ∩ L6
t L

6n
3n−8
x be the global

solution to (1.4). Then there exist finite energy solutions u±(t, x) to the free Schrödinger equation
iut + �u = 0 such that

∥∥u±(t) − u(t)
∥∥ ˙ 1 → 0 as t → ±∞.
H
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Furthermore, the maps ϕ 	→ u±(0) are homeomorphisms from Ḣ 1(Rn) to Ḣ 1(Rn). Finally, if
ϕ ∈ Hs for some s > 1, then u(t) ∈ Hs for all time t , and one has the uniform bounds

sup
t∈R

∥∥u(t)
∥∥

Hs � C
(
E(ϕ), s

)‖ϕ‖Hs .

The paper is organized as follows.
In Section 2, we introduce notations and the basic estimates. In Section 3, we derive the local

mass conservation and Morawetz inequality. In Section 4, we discuss the local theory for (1.4).
In Section 5, we obtain the perturbation theory. Finally, we prove the main theorem in Section 6.

2. Notations and basic estimates

We will often use the notations a � b and a = O(b) to denote the estimate a � Cb for some C.
The derivative operator ∇ refers to the space variable only. We also occasionally use subscripts
to denote the spatial derivatives and use the summation convention over repeated indices.

We define 〈a, b〉 = Re(ab̄), ∂ = (∂t ,∇). For 1 � p � ∞, we denote by p′ the dual exponent,
that is, 1

p
+ 1

p′ = 1.

For any time interval I , we use L
q
t Lr

x(I × R
n) to denote the mixed spacetime Lebesgue norm

‖u‖L
q
t Lr

x(I×Rn) :=
(∫

I

‖u‖q

Lr (Rn)
dt

)1/q

with the usual modifications when q = ∞. When q = r , we abbreviate L
q
t Lr

x by L
q
t,x .

We use U(t) = eit� to denote the free group generated by the free Schrödinger equation
iut + �u = 0. It can commute with derivatives, and obeys the inequality

∥∥eit�f
∥∥

Lp(Rn)
� |t |−n( 1

2 − 1
p

)‖f ‖
Lp′

(Rn)
(2.1)

for t = 0, 2 � p � ∞.
Let n � 5, we say that a pair (q, r) is admissible if

2

q
= n

(
1

2
− 1

r

)
, for 2 � r � 2n

n − 2
.

For a spacetime slab I × R
n, we define the Strichartz norm Ṡ0(I ) by

‖u‖Ṡ0(I ) := sup
(q,r) admissible

‖u‖L
q
t Lr

x(I×Rn),

and define Ṡ1(I ) by

‖u‖Ṡ1(I ) := ‖∇u‖Ṡ0(I ).

When n � 5, the spaces (Ṡ0(I ),‖ · ‖Ṡ0(I )) and (Ṡ1(I ),‖ · ‖Ṡ1(I )) are Banach spaces, respec-
tively.

Based on the above notations, we have the following Strichartz inequalities.
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Lemma 2.1. (See [11,20].) Let u be an Ṡ0 solution to the Schrödinger equation (1.1). Then

‖u‖Ṡ0 �
∥∥u(t0)

∥∥
L2

x
+ ∥∥f (u)

∥∥
L

q′
t Lr′

x (I×Rn)

for any t0 ∈ I and any admissible pairs (q, r). The implicit constant is independent of the choice
of interval I .

From Sobolev embedding, we have

Lemma 2.2. For any function u on I × R
n, we have

‖∇u‖L∞
t L2

x
+ ‖∇u‖

L3
t L

6n
3n−4
x

+ ‖u‖
L∞

t L

2n
n−2
x

+ ‖u‖
L6

t L

6n
3n−8
x

� ‖u‖Ṡ1 ,

where all spacetime norms are on I × R
n.

For convenience, we introduce two abbreviated notations. For a time interval I , we denote

‖u‖X(I) := ‖u‖
L6

t L

6n
3n−8
x (I×Rn)

, ‖u‖W(I) := ‖∇u‖
L3

t L

6n
3n−4
x (I×Rn)

.

Lemma 2.3. Let f (u) = (V ∗ |u|2)u, where V (x) = |x|−4. For any time interval I and t0 ∈ I ,
we have

∥∥∥∥∥
t∫

t0

ei(t−s)�f (u)(s, x) ds

∥∥∥∥∥
Ṡ1(I )

� ‖u‖2
X(I)‖u‖W(I).

Proof. By Strichartz estimates, Hardy–Littlewood–Sobolev inequality and Hölder inequality, we
have

∥∥∥∥∥
t∫

t0

ei(t−s)�f (u)(s, x) ds

∥∥∥∥∥
Ṡ1(I )

�
∥∥∇f (u)(t, x)

∥∥
L

3
2
t L

6n
3n+4
x (I×Rn)

�
∥∥∇u

(
V ∗ |u|2)∥∥

L
3
2
t L

6n
3n+4
x (I×Rn)

+ ∥∥u
(
V ∗ (u∇u)

)∥∥
L

3
2
t L

6n
3n+4
x (I×Rn)

� ‖∇u‖
L3

t L

6n
3n−4
x (I×Rn)

∥∥V ∗ |u|2∥∥
L3

t L
3n
4

x (I×Rn)

+ ‖u‖
L6

t L

6n
3n−8
x (I×Rn)

∥∥V ∗ (u∇u)
∥∥

L2
t L

n
2
x (I×Rn)

� ‖u‖2
X(I)‖u‖W(I). �

3. Local mass conservation and Morawetz inequality

In this section, we will prove two useful estimates. One is a local mass conservation estimate
and the other is a Morawetz inequality, which appears in Morawetz identity. The local mass
conservation estimate is used to control the flow of mass through a region of space, and the
Morawetz inequality is used to prevent concentration.
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3.1. Local mass conservation

We recall a local mass conservation law that has appeared in [1,13] and [21]. For complete-
ness, we give the sketch of the proof. Let χ be a bump function supported on the ball B(0,1)

that equals 1 on the ball B(0,1/2). Observe that if u is a finite energy solution of (1.4), then

∂t

∣∣u(t, x)
∣∣2 = −2∇ · Im

(
ū∇u(t, x)

)
.

We define

Mass
(
u(t),B(x0,R)

) :=
∫ ∣∣∣∣χ

(
x − x0

R

)
u(t, x)

∣∣∣∣
2

dx.

Differentiating the above quantity with respect to time, we obtain by the integration by parts

∂t Mass
(
u(t),B(x0,R)

) =
∫ ∣∣∣∣χ

(
x − x0

R

)∣∣∣∣
2

∂t

∣∣u(t, x)
∣∣2

dx

= −2
∫ ∣∣∣∣χ

(
x − x0

R

)∣∣∣∣
2

∇ · Im(ū∇u)dx

= − 4

R

∫
χ

(
x − x0

R

)
∇χ

(
x − x0

R

)
Im(ū∇u)dx

� 1

R

∥∥∇u(t)
∥∥

L2

(
Mass

(
u(t),B(x0,R)

))1/2
,

hence, we have

∣∣Mass
(
u(t1),B(x0,R)

)1/2 − Mass
(
u(t2),B(x0,R)

)1/2∣∣ � 1

R
|t1 − t2|. (3.1)

This implies that if the local mass Mass(u(t),B(x0,R)) is large for some time t , then it can also
be shown to be similarly large for times near t , by increasing the radius R if necessary to reduce
the rate of change of the mass.

On the other hand, from Sobolev and Hölder inequalities, we have

Mass
(
u(t),B(x0,R)

)
�

∥∥∥∥χ

(
x − x0

R

)∥∥∥∥
2

Ln
x

‖u‖2

L

2n
n−2
x

� R2‖∇u‖2
L2

x
. (3.2)

This gives the control of mass in small volumes.

3.2. A Morawetz inequality

To prevent the concentration of the energy, we need a Morawetz estimate.

Proposition 3.1 (Morawetz estimate). Let u be a solution to (1.4) on a spacetime slab I × R
n.

Then for any A � 1, we have
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∫
I

∫

|x|�A|I |1/2

|u|2
|x|3 dx dt −

∫
I

∫ ∫
Ω

(
x

|x| − y

|y|
)

∇V (x − y)
∣∣u(x)

∣∣2∣∣u(y)
∣∣2

dy dx dt

� A|I |1/2E,

where Ω = {(x, y) ∈ R
n × R

n; |x| � A|I |1/2; |y| � A|I |1/2}.

Remark 3.1. Since

−
(

x

|x| − y

|y|
)

∇V (x − y) = 4
|x||y| − x · y

|x − y|6
(

1

|x| + 1

|y|
)

� 0,

we have

−
∫
I

∫ ∫
Ω

(
x

|x| − y

|y|
)

∇V (x − y)
∣∣u(x)

∣∣2∣∣u(y)
∣∣2

dy dx dt � 0.

Proof of Proposition 3.1. We define V a
0 (t) = ∫

a(x)|u(t, x)|2 dx, then

Ma
0 (t) =: ∂tV

a
0 (t) = 2 Im

∫
ajuj ū dx

and

∂tM
a
0 (t) = −2 Im

∫
ajjut ū dx − 4 Im

∫
aj ūj ut dx

= −
∫

��a|u|2 dx + 4 Re
∫

ajkūj uk dx

− 2 Re
∫ ∫

∇a(x)∇V (x − y)
∣∣u(y)

∣∣2∣∣u(x)
∣∣2

dx dy

= −
∫

��a|u|2 dx + 4 Re
∫

ajkūj uk dx

− Re
∫ ∫ (∇a(x) − ∇a(y)

)∇V (x − y)
∣∣u(y)

∣∣2∣∣u(x)
∣∣2

dx dy,

where we use the symmetry of a(x) and V (x). Let R > 0 and let ζ be a bump function adapted
to the ball |x| � R which equals 1 on the ball |x| � R/2. We set a(x) := |x|ζ(x).

For |x| � R/2, we have

aj = xj

|x| , ajk = δjk

|x| − xjxk

|x|3 , �a = n − 1

|x| , −��a = (n − 1)(n − 3)

|x|3 ,

and for R/2 � |x| � R, we have bounds

aj = O(1), ajk = O
(
R−1), ��a = O

(
R−3).

Thus we have
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∂tM
a
0 (t) = (n − 1)(n − 3)

∫
|x|�R/2

|u|2
|x|3 dx + 4

∫
|x|�R/2

|∇u|2 − |∂ru|2
|x| dx

−
∫ ∫

Ω1

(
x

|x| − y

|y|
)

∇V (x − y)
∣∣u(x)

∣∣2∣∣u(y)
∣∣2

dy dx

+ O

( ∫
|x|∼R

( |u|2
R3

+ |∇u|2
R

)
dx

)

+ O

(∫ ∫
Ω2

(
aj (x) − aj (y)

) xj − yj

|x − y|γ+2

∣∣u(x)
∣∣2∣∣u(y)

∣∣2
dy dx

)
,

where γ = 4,

Ω1 = {
(x, y) ∈ R

n × R
n; |x| � R/2, |y| � R/2

}
,

Ω2 = {
(x, y) ∈ R

n × R
n; |x| ∼ R

} ∪ {
(x, y) ∈ R

n × R
n; |y| ∼ R

}
.

Meanwhile, using Hardy’s inequality, we have

∫
|x|∼R

( |u|2
R3

+ |∇u|2
R

)
dx � R−1E,

∣∣∣∣
∫ ∫

Ω2

(
aj (x) − aj (y)

) xj − yj

|x − y|γ+2

∣∣u(x)
∣∣2∣∣u(y)

∣∣2
dy dx

∣∣∣∣

�
∣∣∣∣
∫ ∫

Ω2: |x−y|�R/4

(
aj (x) − aj (y)

) xj − yj

|x − y|γ+2

∣∣u(x)
∣∣2∣∣u(y)

∣∣2
dy dx

∣∣∣∣

+
∣∣∣∣
∫ ∫

Ω2: |x−y|�R/4

(
aj (x) − aj (y)

) xj − yj

|x − y|γ+2

∣∣u(x)
∣∣2∣∣u(y)

∣∣2
dy dx

∣∣∣∣

� R−1
∣∣∣∣
∫ ∫

Ω2

1

|x − y|γ
∣∣u(x)

∣∣2∣∣u(y)
∣∣2

dy dx

∣∣∣∣
� R−1E.

Moreover, from Sobolev and Hölder inequalities, we have

Ma
0 (t) �

∫
|x|�R

|u||∇u| � ‖u‖
L

2n
n−2
x

‖∇u‖L2
x

( ∫
|x|�R

dx

)1/n

� RE.

So if we integrate by parts on a time interval I and take R = 2A|I |1/2, we obtain
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∫
I

∫

|x|�A|I |1/2

|u|2
|x|3 dx dt −

∫
I

∫ ∫
Ω

(
x

|x| − y

|y|
)

∇V (x − y)
∣∣u(x)

∣∣2∣∣u(y)
∣∣2

dy dx dt

� A|I |1/2E

for n � 4. The proof is completed. �
4. Local theory

In this section, we develop a local well-posedness and blow-up criterion for the Ḣ 1-critical
Hartree equation. First, we have

Proposition 4.1 (Local well-posedness). Let u(t0) ∈ Ḣ 1, and I be a compact time interval that
contains t0 such that

∥∥U(t − t0)u(t0)
∥∥

X(I)
� η,

for a sufficiently small absolute constant η > 0. Then there exists a unique solution u ∈ C0
t Ḣ 1

x to
(1.4) on I × R

n such that

‖u‖X(I) � C
(∥∥u(t0)

∥∥
Ḣ 1

)
.

Proof. The proof of this proposition is standard and based on the contraction mapping argu-
ments. We define the solution map to be

Φ(u)(t) := U(t − t0)u(t0) − i

t∫
t0

U(t − s)f
(
u(s)

)
ds,

then Φ is a map from

B = {
u: ‖u‖X(I) � 2η, ‖u‖W(I) � 2C

∥∥u(t0)
∥∥

Ḣ 1

}

with the metric

‖u‖B = ‖u‖X(I) + ‖u‖W(I)

onto itself because

∥∥Φ(u)
∥∥

X(I)
�

∥∥U(t − t0)u(t0)
∥∥

X(I)
+ C‖u‖2

X(I)‖u‖W(I) � η + 8Cη2
∥∥u(t0)

∥∥
Ḣ 1 � 2η,

∥∥Φ(u)
∥∥

W(I)
� C

∥∥u(t0)
∥∥

Ḣ 1 + C‖u‖2
X(I)‖u‖W(I) � C

∥∥u(t0)
∥∥

Ḣ 1 + 8Cη2
∥∥u(t0)

∥∥
Ḣ 1

� 2C
∥∥u(t0)

∥∥
Ḣ 1,

as long as η is chosen sufficiently small. It suffices to prove Φ is a contraction map. Let u, v ∈ B,
then
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∥∥Φ(u) − Φ(v)
∥∥

W(I)
�

∥∥∥∥∥
t∫

0

U(t − s)
(
V ∗ (|u|2 − v̄u

))
u(s, x) ds

∥∥∥∥∥
W(I)

+
∥∥∥∥∥

t∫
0

U(t − s)
(
V ∗ (

v̄u − |v|2))u(s, x) ds

∥∥∥∥∥
W(I)

+
∥∥∥∥∥

t∫
0

U(t − s)
(
V ∗ |v|2)(u − v)(s, x) ds

∥∥∥∥∥
W(I)

.

By Lemma 2.3, we have

∥∥Φ(u) − Φ(v)
∥∥

W(I)
� ‖u − v‖X(I)

(‖u‖W(I)‖u‖X(I) + ‖u‖W(I)‖v‖X(I) + ‖v‖W(I)‖v‖X(I)

)
+ ‖u − v‖W(I)

(‖u‖X(I)‖u‖X(I) + ‖u‖X(I)‖v‖X(I) + ‖v‖X(I)‖v‖X(I)

)
� 12Cη

∥∥u(t0)
∥∥

Ḣ 1‖u − v‖X(I) + 12η2‖u − v‖W(I)

� 1

4

(‖u − v‖X(I) + ‖u − v‖W(I)

)
.

In the same way, we have

∥∥Φ(u) − Φ(v)
∥∥

X(I)
� 12Cη

∥∥u(t0)
∥∥

Ḣ 1‖u − v‖X(I) + 12η2‖u − v‖W(I)

� 1

4

(‖u − v‖X(I) + ‖u − v‖W(I)

)

as long as η is chosen sufficiently small. Then the contraction mapping theorem implies the
existence of the unique solution to (1.4) on I . In addition, Strichartz estimates also guarantee
that the solution u ∈ C0

t Ḣ 1
x . �

Next, we give the blow-up criterion of the strong solution for (1.4) (i.e. the solution lies in
C0

t Ḣ 1
x ). The usual form is similar to those in [2,12], which is in the form of a maximal interval

of existence. For convenience, we obtain

Proposition 4.2 (Blow-up criterion). Let ϕ ∈ Ḣ 1, and let u be a strong solution to (1.4) on the
slab [0, T ) × R

n such that

‖u‖X([0,T )) < ∞.

Then there exists δ > 0 such that the solution u extends to a strong solution to (1.4) on the slab
[0, T + δ] × R

n.

Proof. By the absolute continuity of integrals, there exists t0 ∈ [0, T ), such that

‖u‖X([t0,T )) � η/4,
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then by Lemma 2.3, we have

‖u‖W([t0,T )) �
∥∥u(t0)

∥∥
Ḣ 1 + ‖u‖2

X([t0,T ))‖u‖W([t0,T )),

therefore

‖u‖W([t0,T )) �
∥∥u(t0)

∥∥
Ḣ 1 .

Now we write

U(t − t0)u(t0) = u(t) + i

t∫
t0

U(t − s)
(
V ∗ |u|2)u(s, x) ds,

then

∥∥U(t − t0)u(t0)
∥∥

X([t0,T ))
� ‖u‖X([t0,T )) + C‖u‖2

X([t0,T ))‖u‖W([t0,T ))

� η

4
+ Cη2

∥∥u(t0)
∥∥

Ḣ 1 � η

2
.

By the absolute continuity of integrals again, there exists δ, such that

∥∥U(t − t0)u(t0)
∥∥

X([t0,T +δ))
� η.

Thus we may apply Proposition 4.1 on the interval [t0, T + δ] to complete the proof. �
In other words, this lemma asserts that if [t0, T ∗) is the maximal interval of existence and

T ∗ < ∞, then

‖u‖X([t0,T ∗)) = ∞.

5. Perturbation result

In this section, we obtain the perturbation for the Hartree equation, which shows that the
solution cannot be large if the linear part of the solution is not large. This is an analogue of
Lemma 3.2 in [21], and later, Killip, Visan and Zhang [13] gave the similar perturbation result
for the Schrödinger equation with the quadric potentials.

Lemma 5.1 (Perturbation lemma). Let u be a solution to (1.4) on I = [t1, t2] such that

1

2
η � ‖u‖X(I) � η,

where η is sufficiently small constant depending on the norm of the initial data, then

‖u‖Ṡ1(I ) � 1, ‖uk‖X(I) � 1

4
η,

where uk(t) = U(t − tk)u(tk) for k = 1,2.
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Proof. From Strichartz estimate and Lemma 2.3, we obtain

‖u‖Ṡ1(I ) �
∥∥u(t1)

∥∥
Ḣ 1 + ‖u‖2

X(I)‖u‖W(I)

�
∥∥u(t1)

∥∥
Ḣ 1 + ‖u‖2

X(I)‖u‖Ṡ1(I )

�
∥∥u(t1)

∥∥
Ḣ 1 + η2‖u‖Ṡ1(I ).

If η is sufficiently small, we have the first claim

‖u‖Ṡ1(I ) � 1.

As for the second claim, we give the proof for k = 1, the case k = 2 is similar. Using Strichartz
estimate and Lemma 2.3 again, we have

‖u − u1‖X(I) � η2‖u‖Ṡ1(I ) � η2,

therefore, the second claim follows by the triangle inequality and choosing η sufficiently
small. �
6. Global well-posedness

In this section, we give the proof of Theorem 1.1. The new ingredient is that we first take

advantage of the estimate of the term
∫
I

∫
|x|�A|I |1/2

|u|2
|x|3 dx dt in the localized Morawetz identity

to rule out the possibility of energy concentration, which is independent of the nonlinear term.
For the Schrödinger equation, Bourgain [1] and Tao [21] used the classical Morawetz estimate,
which depends on the nonlinearity, to prevent the concentration.

For readability, we first take some constants

C1 = 6n, C2 = 3, C3 = 18n, (6.1)

which come from several constraints in the rest of this section. All implicit constants in this
section are permitted to depend on the dimension n and the energy.

Fix E, [t−, t+], u. We may assume that the energy is large, E > c > 0, otherwise the claim
follows from the small energy theory [15]. From the boundedness of energy and Sobolev embed-
ding, we can obtain

∥∥u(t)
∥∥

Ḣ 1
x

+ ∥∥u(t)
∥∥

L

2n
n−2
x

� 1 (6.2)

for all t ∈ [t−, t+].
Assume that the solution u already exists on [t−, t+]. By Proposition 4.2, it suffices to obtain

a priori estimate

‖u‖X([t−,t+]) � O(1), (6.3)

where O(1) is independent of t−, t+.
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We may assume that

‖u‖X([t−,t+]) � 2η,

otherwise it is trivial. We divide [t−, t+] into J subintervals Ij = [tj , tj+1] for some J � 2 such
that

η

2
� ‖u‖X(Ij ) � η, (6.4)

where η is a small constant depending on the dimension n and the energy. As a consequence, it
suffices to estimate the number J .

Now let u± = U(t − t±)u(t±). By Sobolev embedding and Strichartz estimates, we have

‖u±‖X([t−,t+]) � 1. (6.5)

We use the following definition of Tao [21].

Definition 6.1. We call Ij exceptional if

‖u±‖X(Ij ) > ηC3

for at least one sign ±. Otherwise, we call Ij unexceptional.

From (6.5), we obtain the upper bound on the number of exceptional intervals, O(η−6C3). We
may assume that there exist unexceptional intervals, otherwise the claim would follow from this
bound and (6.4). Therefore, it suffices to compute the number of unexceptional intervals.

As in [1,13] and [21], we first prove the existence of a bubble of mass concentration in each
unexceptional interval.

Proposition 6.1 (Existence of a bubble). Let Ij be an unexceptional interval. Then there exists
xj ∈ R

n such that

Mass
(
u(t),B

(
xj , η

−C1 |Ij |1/2)) � ηC1 |Ij |

for all t ∈ Ij .

Proof. By time translation invariance and scale invariance, we may assume that Ij = [0,1].
We subdivide Ij further into [0, 1

2 ] and [ 1
2 ,1]. By (6.4) and the pigeonhole principle and time

reflection symmetry if necessary, we may assume that

‖u‖
X([ 1

2 ,1]) � η

4
.

Thus by Lemma 5.1, we have

∥∥∥∥U

(
t − 1

2

)
u

(
1

2

)∥∥∥∥ 1
� η

8
. (6.6)
X([ 2 ,1])
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By Duhamel formula, we have

U

(
t − 1

2

)
u

(
1

2

)
= U(t − t−)u(t−) − i

1
2∫

0

U(t − s)f
(
u(s)

)
ds

− i

0∫
t−

U(t − s)f
(
u(s)

)
ds. (6.7)

Since [0,1] is unexceptional interval, we have

∥∥U(t − t−)u(t−)
∥∥

X([ 1
2 ,1]) = ∥∥u−(t)

∥∥
X([ 1

2 ,1]) � ηC3 .

On the other hand, by (6.4), Lemmas 2.2, 2.3 and 5.1, we have

∥∥∥∥∥
1
2∫

0

U(t − s)f
(
u(s)

)
ds

∥∥∥∥∥
X([ 1

2 ,1])
� ‖u‖2

X([0, 1
2 ])‖u‖

W([0, 1
2 ])

� η2‖u‖
Ṡ1([0, 1

2 ]) � η2.

Thus the triangle inequality implies that

∥∥∥∥∥
0∫

t−

U(t − s)f
(
u(s)

)
ds

∥∥∥∥∥
X([ 1

2 ,1])
� 1

100
η,

provided η is chosen sufficiently small. Hence, if we define

v(t) :=
0∫

t−

U(t − s)f
(
u(s)

)
ds,

then we have

‖v‖
X([ 1

2 ,1]) � 1

100
η. (6.8)

Next, we estimate the upper bound on v. We have by (6.7) and the triangle inequality

‖v‖
Ṡ1([ 1

2 ,1]) �
∥∥∥∥U

(
t − 1

2

)
u

(
1

2

)∥∥∥∥
Ṡ1([ 1

2 ,1])
+ ∥∥U(t − t−)u(t−)

∥∥
Ṡ1([ 1

2 ,1])

+
∥∥∥∥∥

1
2∫
U(t − s)f

(
u(s)

)
ds

∥∥∥∥∥
Ṡ1([ 1 ,1])
0 2
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� ‖u‖Ḣ 1 + ‖u‖2
X([0, 1

2 ])‖u‖
W([0, 1

2 ])

� ‖u‖Ḣ 1 + ‖u‖2
X([0, 1

2 ])‖u‖
Ṡ1([0, 1

2 ])
� 1, (6.9)

where we have used Strichartz estimate, (6.4) and Lemma 5.1. �
We shall need some additional regularity control on v. For any h ∈ R

n, let u(h) denote the
translation of u by h, i.e. u(h)(t, x) = u(t, x − h).

Lemma 6.1. Let χ be a bump function supported on the ball B(0,1) of total mass one, and define

vav(t, x) =
∫

χ(y)v
(
t, x + ηC2y

)
dy,

then we have

‖v − vav‖X([ 1
2 ,1]) � ηC2 .

Proof. By the chain rule, Hölder inequality and Sobolev embedding, we have

∥∥∇f (u)(s)
∥∥

L

2n
n+4
x

�
∥∥(

V ∗ |u|2)∇u
∥∥

L

2n
n+4
x

+ ∥∥u
(
V ∗ ∇|u|2)∥∥

L

2n
n+4
x

� ‖∇u‖L2

∥∥V ∗ |u|2∥∥
L

n
2

+ ‖u‖
L

2n
n−2

∥∥V ∗ ∇|u|2∥∥
L

n
3

� ‖∇u‖L2

∥∥|u|2∥∥
L

n
n−2

+ ‖u‖
L

2n
n−2

∥∥∇|u|2∥∥
L

n
n−1

� 1,

it follows by (2.1)

‖∇v‖
L∞

t L

2n
n−4
x ([ 1

2 ,1]×Rn)

� sup
t∈[ 1

2 ,1]

0∫
t−

1

|t − s|2
∥∥∇f (u)(s)

∥∥
L

2n
n+4
x

ds � 1.

From (6.9) and interpolation, we have

‖∇v‖
L∞

t L

6n
3n−8
x ([ 1

2 ,1]×Rn)

� ‖∇v‖2/3

L∞
t L

2n
n−4
x ([ 1

2 ,1]×Rn)

‖∇v‖1/3
L∞

t L2
x([ 1

2 ,1]×Rn)

� 1.

From the fundamental theorem of calculus, we have

∥∥v − v(h)
∥∥

L∞
t L

6n
3n−8
x ([ 1

2 ,1]×Rn)

� |h|.

This implies
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‖v − vav‖
L∞

t L

6n
3n−8
x ([ 1

2 ,1]×Rn)

�
∫

χ(y)
∥∥v

(
t, x + ηC2y

) − v(x)
∥∥

L∞
t L

6n
3n−8
x ([ 1

2 ,1]×Rn)

dy

�
∫

χ(y)
∣∣ηC2y

∣∣dy

� ηC2 .

Hence from Hölder inequality, we obtain

‖v − vav‖X([ 1
2 ,1]) � ‖v − vav‖

L∞
t L

6n
3n−8
x ([ 1

2 ,1]×Rn)

� ηC2 .

This completes the proof of lemma. �
Now we return to the proof of Proposition 6.1. By Lemma 6.1 and (6.8), we have

‖vav‖X([ 1
2 ,1]) � η. (6.10)

On the other hand, by Hölder inequality, Young inequalities and (6.9), we have

‖vav‖
L

2(3n−8)
n−2

t L

2n
n−2
x ([ 1

2 ,1]×Rn)

� ‖vav‖
L∞

t L

2n
n−2
x ([ 1

2 ,1]×Rn)

� ‖v‖
L∞

t L

2n
n−2
x ([ 1

2 ,1]×Rn)

� 1.

Interpolating with (6.10) gives

‖vav‖L∞
t,x ([ 1

2 ,1]×Rn))
� ‖vav‖

3n−6
2

X([ 1
2 ,1])‖vav‖− 3n−8

2

L

2(3n−8)
n−2

t L

2n
n−2
x ([ 1

2 ,1]×Rn)

� η
3n−6

2 .

Thus there exists (sj , xj ) ∈ [ 1
2 ,1] × R

n such that

∣∣vav(sj , xj )
∣∣ � η

3n−6
2 .

Hence, by Cauchy–Schwarz inequality, we have

∣∣vav(sj , xj )
∣∣ =

∣∣∣∣
∫

χ(y)v
(
sj , xj + ηC2y

)
dy

∣∣∣∣
= η−nC2

∣∣∣∣
∫

χ

(
x − xj

ηC2

)
v(sj , x) dx

∣∣∣∣
� η−nC2η

n
2 C2 Mass

(
v(sj ),B

(
xj , η

C2
))1/2

,
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that is

Mass
(
v(sj ),B

(
xj , η

C2
))

� η3n−6+nC2 � ηC1 . (6.11)

Observe that (3.1) also holds for v. If we take R = η−C1 and choose η sufficiently small, we
have

Mass
(
v(t),B

(
xj , η

−C1
))

�
(

Mass
(
v(sj ),B

(
xj , η

−C1
))1/2 − 1

η−C1

)2

�
(
Mass

(
v(sj ),B

(
xj , η

C2
))1/2 − ηC1

)2

� ηC1 (6.12)

for all t ∈ [0,1].
The last step is to show that this mass concentration holds for u. We first show mass concen-

tration for u at time 0.
Since [0,1] is unexceptional interval, by the pigeonhole principle, there is a τj ∈ [0,1] such

that

∥∥u−(τj )
∥∥

L

6n
3n−8
x

� ηC3,

and so by Hölder inequality,

Mass
(
u−(τj ),B

(
xj , η

−C1
))

�
∥∥∥∥χ

(
x − xj

η−C1

)∥∥∥∥
2

L
3n
4

x

∥∥u−(τj )
∥∥2

L

6n
3n−8
x

� η− 8
3 C1+2C3 � η2C1 .

From (3.1), we have

Mass
(
u−(0),B

(
xj , η

−C1
))

� η2C1 . (6.13)

Recall that u(0) = u−(0) − iv(0). Combining (6.12) and (6.13) with the triangle inequality,
we obtain

Mass
(
u(0),B

(
xj , η

−C1
))

� ηC1 . (6.14)

Using (3.1) again, we obtain the result.
Next, we use the radial assumption to show that the bubble of mass concentration must occur

at the spatial origin. In the forthcoming paper, we shall use the interaction Morawetz estimate
with the frequency localized L2 almost-conservation law to rule out the possibility of the energy
concentration at any place and deal with the non-radial data. The corresponding results for the
Schrödinger equation with local nonlinearity, please see [3,19] and [22].
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Corollary 6.1 (Bubble at the origin). Let Ij be an unexceptional interval, and u be a radial
solution to (1.4). Then

Mass
(
u(t),B

(
0, η−3C1 |Ij |1/2)) � ηC1 |Ij |

for all t ∈ Ij .

Proof. If xj in Proposition 6.1 is within 1
2η−3C1 |Ij |1/2 of the origin, then the result follows

immediately. Otherwise by the radial assumption, there would be at least

O

(
(η−3C1 |Ij |1/2)n−1

(η−C1 |Ij |1/2)n−1

)
≈ O

(
η−2(n−1)C1

)

disjoint balls each containing at least ηC1 |Ij | amount of mass. By Hölder inequality, this implies

η−2(n−1)C1 × ηC1 |Ij | �
∫

(η−3C1 −η−C1 )|Ij |1/2�|x|�(η−3C1 +η−C1 )|Ij |1/2

∣∣u(t, x)
∣∣2

dx

� ‖u‖2

L

2n
n−2
x

×
( ∫

(η−3C1 −η−C1 )|Ij |1/2�|x|�(η−3C1 +η−C1 )|Ij |1/2

dx

)2/n

≈ ‖u‖2

L

2n
n−2
x

× ((
η−3C1 |Ij |1/2)n−1 × η−C1 |Ij |1/2) 2

n ,

that is

‖u‖2

L

2n
n−2
x

� η− 2n2−9n+4
2n

C1 .

Because 2n2 − 9n + 4 > 0 for n � 5, this contradicts the boundedness on the energy of (6.2).
This completes the proof. �

Next, we use Proposition 3.1 to show that if there are many unexceptional intervals, they must
form a cascade and must concentrate at some time t∗.

Corollary 6.2. Assume that the solution u is spherically symmetric. For any interval I ⊆ [t−, t+]
and I be a union of consecutive unexceptional intervals Ij . Then

∑
Ij ⊆I

|Ij |1/2 � η−13C1 |I |1/2,

and moreover, there exists a j such that

|Ij | � η26C1 |I |.
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Proof. For any unexceptional interval Ij , from Hölder inequality and Corollary 6.1, we have

ηC1 |Ij | � Mass
(
u(t),B

(
0, η−3C1 |Ij |1/2))

�
∥∥∥∥
∣∣∣∣χ

(
x

η−3C1 |Ij |1/2

)∣∣∣∣
2

|x|3
∥∥∥∥

L∞
x

∥∥∥∥
∣∣∣∣χ

(
x

2η−3C1 |Ij |1/2

)∣∣∣∣
2 |u(t, x)|2

|x|3
∥∥∥∥

L1
x

�
(
η−3C1 |Ij |1/2)3

∫

|x|�2η−3C1 |Ij |1/2

|u(t, x)|2
|x|3 dx,

therefore

∫

|x|�2η−3C1 |Ij |1/2

|u(t, x)|2
|x|3 dx � η10C1 |Ij |− 1

2 .

We integrate this over each unexceptional interval Ij and sum over j ,

η10C1
∑
Ij ⊆I

|Ij |1/2 �
∑
Ij ⊆I

∫
Ij

∫

|x|�2η−3C1 |Ij |1/2

|u(t, x)|2
|x|3 dx

�
∑
Ij ⊆I

∫
Ij

∫

|x|�2η−3C1 |I |1/2

|u(t, x)|2
|x|3 dx

�
∫
I

∫

|x|�2η−3C1 |I |1/2

|u(t, x)|2
|x|3 dx

� η−3C1 |I |1/2.

The second claim follows from the first and the fact that

|Ij |1/2 � |Ij |
(

sup
Ik⊆I

|Ik|
)−1/2

.

This completes the proof. �
Proposition 6.2 (Interval cascade). Let I be an interval tiled by finitely many intervals
I1, . . . , IN . Suppose that for any contiguous family {Ij : j ∈ J } of the unexceptional intervals,
there exists j∗ ∈ J such that

|Ij∗ | � a

∣∣∣∣
⋃
j∈J

Ij

∣∣∣∣ (6.15)

for some small a > 0. Then there exist K � log(N)/ log(2a−1) distinct indices j1, . . . , jK such
that
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|Ij1 | � 2|Ij2 | � · · · � 2K−1|IjK
|,

and for any t∗ ∈ IjK
,

dist(Ijk
, t∗) � 1

a
|Ijk

|

hold for 1 � k � K .

Proof. Here we use an algorithm in [1,13] and [21] to assign a generation to each Ij . By hypoth-
esis, I contains at least one interval of length a|I |. All intervals with length larger than a|I |/2
belong to the first generation. By the total measure, we see that there are at most 2a−1 − 1 inter-
vals in the first generation. Removing these intervals from I leaves at most 2a−1 gaps, which are
tiled by intervals Ij .

By (6.15) and the contradiction argument, we know that there is not gap with length larger
than |I |/2.

We now apply this argument recursively to all gaps generated by the previous iteration until
every Ij has been labeled with a generation number.

Each iteration of the algorithm removes at most 2a−1 −1 intervals and produces at most 2a−1

gaps. Suppose that there are N consecutive unexceptional intervals initially, and we perform at
most K times iterations. Then the number K obeys

N �
(
2a−1 − 1

) + (
2a−1 − 1

)
2a−1 + · · · + (

2a−1 − 1
)(

2a−1)K−1

�
(
2a−1)K

,

which leads to the claim K � log(N)/ log(2a−1).
Let I (K) be a collection of intervals obtained after K − 1 iterations and IjK

be any interval in
I (K). For 1 � i � K −1, let I (i) be the (i −1)-generation gap which contains the IjK

, and assign
the Iji

be any ith generation interval which is contained in I (i) (see Fig. 1). By the construction,
for any t∗ ∈ IjK

, we have

dist(t∗, Ijk
) �

∣∣I (k)
∣∣ � 2a−1|Ijk

|
for all 1 � k � K . �
Proposition 6.3 (Energy non-evacuation). Let Ij1, . . . , IjK

be a disjoint family of unexceptional
intervals obeying

|Ij1 | � 2|Ij2 | � · · · � 2K−1|IjK
| (6.16)

and for any t∗ ∈ IjK
,

dist(Ijk
, t∗) � η−26C1 |Ijk

|
hold for 1 � k � K . Then

K � η−100C1 .
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Fig. 1. Iteration process in Proposition 6.2.

Proof. By Corollary 6.1,

Mass
(
u(t),B

(
0, η−3C1 |Ijk

|1/2)) � ηC1 |Ijk
|

for all t ∈ Ijk
. By (3.1), we have

Mass
(
u(t∗),B

(
0, η−27C1 |Ijk

|1/2)) �
((

ηC1 |Ijk
|)1/2 − dist(t∗, Ijk

)

η−27C1 |Ijk
|1/2

)2

� ηC1 |Ijk
|.

On the other hand, from (3.2), we have

Mass
(
u(t∗),B

(
0,2ηC1 |Ijk

|1/2)) � η2C1 |Ijk
|.

Define

A(k) = {
x: ηC1 |Ijk

|1/2 � |x| � η−27C1 |Ijk
|1/2},

then we have



626 C. Miao et al. / Journal of Functional Analysis 253 (2007) 605–627
∫
A(k)

∣∣u(t∗, x)
∣∣2

dx � Mass
(
u(t),B

(
0, η−27C1 |Ijk

|1/2)) − Mass
(
u(t),B

(
0,2ηC1 |Ijk

|1/2))

� ηC1 |Ijk
|.

By Hölder inequality, we have

∫
A(k)

∣∣u(t∗, x)
∣∣ 2n

n−2 dx �
(
ηC1 |Ijk

|) n
n−2

(
η−27C1 |Ijk

|1/2)− 2n
n−2

� η95C1 .

Choosing M = −56C1 logη, then we obtain by (6.16)

η−27C1 |IjM+1 |1/2 � ηC1 |Ij1 |1/2,

η−27C1 |Ij2M+1 |1/2 � ηC1 |IjM+1 |1/2,

· · ·
Hence the annuli A(k) associated to k = 1,M + 1,2M + 1, . . . , are disjoint. The number of such
annuli is O(K/M).

Therefore from (6.2), we obtain

K

M
η95C1 �

∫
Rn

∣∣u(t∗, x)
∣∣ 2n

n−2 dx � 1.

That is

K � Mη−95C1 � η−100C1 . �
We now return to the proof of Theorem 1.1. As explained at the beginning of this section, it

suffices to bound the number of the unexceptional intervals.
Note that the number of exceptional interval is at most O(η−6C3). We first bound the number

N of unexceptional intervals that can occur consecutively.
Let us denote the union of these consecutive unexceptional intervals by I . By Corollary 6.2,

the hypotheses of Proposition 6.2 are satisfied with a = η26C1 and so we can find a cascade of K

intervals and they satisfied the hypotheses of Proposition 6.3. The bound on K implies the bound
on N , namely,

N �
(
2a−1)K

≈
(
2η−26C1

)η−100C1
.

At last, since there are at most O(η−6C3) exceptional intervals, the total number of intervals
is

J � η−6C3 + η−6C3N � eη−200C1
.

This completes the proof of Theorem 1.1.
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