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Many questions in mathematical physics lead to a solution in terms of a harmonic function in a closed
region with given continuous boundary values. This problem is knoviirgshlet's problem, whose
solution is based on an existence principle—the so-célladhlet’s principle. However, in the second
half of the 19th century many mathematicians doubted the validity of Dirichlet’s principle. They used
direct methods in order to overcome the difficulties arising from this principle and also to find an explicit
solution of the Dirichlet problem atissue. Many years before, one of these methods had been developed
by Green in 1828, which consists in finding a function—call&€araen’s function—satisfying certain
conditions and appearing in the analytical expression of the solution of the given Dirichlet problem.
Helmholtz, Riemann, Lipschitz, Carl and Franz Neumann, and Betti deduced functions similar to
Green'’s function in order to solve problems in acoustics, electrodynamics, magnetism, theory of heat,
and elasticity. © 2001 Academic Press

Molte questioni fisico matematiche conducono a una soluzione in termini di una funzione armonica
in una regione chiusa con dati valori continui al contorno. Questo problema & notopcobiema
di Dirichlet, la cui soluzione si basa su un principio di esistenza, il cosidgeiteipio di Dirichlet.
Tuttavia, nella seconda meta del diciannovesimo secolo, molti matematici cominciarono a mettere in
dubbio la validita del principio di Dirichlet. Sia per superare le difficolta sorte da tale principio, sia per
trovare una soluzione esplicita del problema di Dirichlet dato, essi presero ad adoperare metodi diretti.
Molti anni prima, uno di questi metodi era stato sviluppato da Green nel 1828 e consiste nel trovare
una funzione, dettunzione di Greenche soddisfa certe condizioni e mediante la quale si rappresenta
analiticamente la soluzione del problema di Dirichletin questione. Helmholtz, Riemann, Lipschitz, Carl
e Franz Neumann, e Betti dedussero delle funzioni simili alla funzione di Green allo scopo di risolvere
problemi di acustica, elettrodinamica, magnetismo, teoria del calore ed elasti@it@o1 Academic Press

Nombreuses questions de physique mathématique ménent a une solution en termes d’'une fonction
harmonique dans une région fermée avec des valeurs continus donnés sur la frontiére. Ce probleme
est connu commprobleme de Dirichletla solution duquel est fondée sur un principe d’existence, le
principe de Dirichlet Cependant dans la seconde moitié du dix-neuviéme siecle plusieurs mathémati-
ciens mirent en doute la validité du principe de Dirichlet. Alors ils employérent des méthodes directes
soit pour surmonter le difficultés nées de ce principe, soit pour déduire une solution explicite du
probléme de Dirichlet en question. Avant plusieurs années une de ces méthoeles\elefppée par
Green en 1828 et consiste a trouver une fonctionfalitetion de Green, qui satisfait certaines conditions
et moyennant laquelle on représente analytiquement la solution du probleme de Dirichlet donné.
Helmholtz, Riemann, Lipschitz, Carl et Franz Neumann, et Betti déduisirent des fonctions semblables
a la fonction de Green pour résoudre de problemes d'acoustique, électrodynamique, magnétisme,
théorie de la chaleur et élasticité® 2001 Academic Press
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1. INTRODUCTION

In his lectures on potential theory held during the academic year 1856/57 and publis
posthumously, by F. Grube in 1876, Peter Gustav Lejeune Dirichlet (1805—1859) [Dirich
1876] tried to find a harmonic function in a closed region with given continuous bounda
values. A functionV is harmonic in a domaim if in the interior region ofR, V satisfies
Laplace’s equation:

2V 92V 92V
VV=—-—+—+—=0.

axz " dy? Tz
Such a problem, later called Dirichlet’s problem, plays an important role in potential theol
its solution is based on an existence principle, actually referred to as Dirichlet’s princip
which states that the integral

(V) = R/ [(%)2 + (%)Z (%)2} dv (1.1)

has a minimum value, wheiR is a connected space aNdXx, y, z) is a function in G(R)
taking the given continuous values on the boundarg.d¥loreover, the functiov making
(1.1) minimum is the solution of the Dirichlet problenT.he Dirichlet principle, which was
considered one of the most important criteria of existence in mathematics, was put in dc
during the second half of the 19th century. In 1870, Weierstrass exhibited a counterexan
to a similar variational problem by constructing a lower bounded functional that does 1
assume a minimal value. Many years later, Hilbert [1904, 1905] “brought back the Dirich
principle to life"—as he wrote. By using variational methods, he indeed proved that in t
bidimensional case the functional (1.1) has a harmonic function assuming given bounc
values as a minimum, under the hypotheses that the boundary is sufficiently regular anc
given function is piecewise analytical.

Before the counterexample of Weierstrass—which was published only in 1895—me
mathematicians realized that difficulties arose from the Dirichlet principle. Leopo
Kronecker (1823-1891), Ludwig Schlafli (1814-1895), Heinrich Weber (1842-191.
Felice Casorati (1835-1890), Hermann Amandus Schwarz (1843-1921) and C(
Gottfried Neumann (1832-1925) tried to put this principle on arigorous footing (see [Mon
1975, Tazzioli 1994a]). Many of them aimed to re-prove Riemann’s mapping theorem
a rigorous way, since in himauguraldissertatiorRiemann [1851] had used the Dirichlet
principle as an argument in his proof. They realized that the crucial point of Riemani
proof could be reduced to the solution of a particular Dirichlet problem, and constructed
solution without referring to the Dirichlet principle.

Schwarz [1869a, 1869b, 1870a, 1870b, 1870c], one of Weierstrass’s students, devel
his own method—called the “alternating method"—of proving Riemann’s mapping theore
for convex bidimensional domains. Schwarz'’s proof was independent of the validity of t
Dirichlet principle, so that “the well-grounded objections against such a principle could r
be raised” [Schwarz 1869a, 83].

1 Before Dirichlet, Green [1835], and Gauss [1839] had faced such a problem in a similar way.
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The Dirichlet problem for three-dimensional convex domains was studied and sol
by Carl Neumann. He used a method of approximate solutions, the so-called “metho
arithmetic mean” (see [Archibald 1996]), which he developed in two papers publishec
1870 [Neumann 1870]. C. Neumann studied problems of conformal mapping and quest
of stationary heat and of electrostatic and electrodynamic equilibrium without using
much discussed Dirichlet principle. His method wadict one which allowed him to
explicitly exhibit the solution. Moreover, in such a way C. Neumann could “avaid [
Dirichlet’s principle,” as he was proud to notice in tReefaceof his celebrated.ectures
on logarithmic and Newtonian potentil. Neumann 1877].

Inltaly, in 1868 Felice Casorati (1835—1890) publishedrtigory of functions of complex
variables[Casorati 1868], a work which was to be—at least in his intentions—in two par
However, the second part of the work has never been published. It was to contain
theory of Abelian functions, treated according to a Riemannian approach, that is to
by using the Dirichlet principle. Doubts about the validity of Dirichlet’s principle stoppe
Casorati from finishing his original plan. He discussed these difficulties with Weierstra
Kronecker, and Schlafli (see [Neuenschwander 1978, Bottazzini 1986, 261-164]) an
1869 wrote to Giuseppe Battaglini (1826—1894) that “the Dirichlet principle contribut
not a little to my delay [in the publication of the second volume offtheory of functions]”
[in Neuenschwander 1978, 29].

Enrico Betti (1823-1892) also took part in the discussion about the validity of Dirichlet
principle and showed different attitudes towards itin his works on potential theory, namel
his papers published Muovo Cimentbetween 1863 and 1864 [Betti 1863—-1864], and in hi:
treatise published in 1879 [Betti 1879]. In his 1863-1864 papers, Betti assumed Dirichl
principle as valid, while in his book, published 15 years later, he made some change:
which the most important concerns the use of Dirichlet’s principle. Indeed iRréfaceof
his treatise Betti [1879, V-VI] expressly questioned the validity of the Dirichlet principle
“In the theory published oMuovo Cimentd had founded the methods of electrostatics
on Dirichlet—-Riemann’s theorem on the existence of a bounded and continuous func
together with its first derivatives, satisfying the Laplace equation in a space of any shape
taking some given values on the boundary [that is to say, Dirichlet problem has one and «
one solution].” And he goes on: “After critical remarks about the proofs of that theorem
all its generality, | thought that it is better to renounce this kind of method. We shall be a
to build again on that theorem when we rigorously state when and where it is valid.” Inde
in his book he never used Dirichlet’s principle and did not propose any alternative proo
the existence of the solution for the general Dirichlet problem. Therefore, he exhibited
solution of the given Dirichlet problem case by case and used direct methods only.

If the Dirichlet principle is not valid, the solution for a given Dirichlet problem is not
generally ensured. Therefore, mathematicians tried to find other alternative methods, w
do not use any existence principle. In his 1828 paper, George Green (1793-1841) [G
1828] developed a direct procedure for solving the Dirichlet problem involving the seal
for a particular function, named Green'’s function (see Section 2). Many 19th-century me
ematicians aimed to find the solution of a given Dirichlet’s probtéractly, by following
Green’s method and by showing the existence of the appropriate Green’s function for
problem at issue. They deduced functions similar to Green'’s function for solving proble
in acoustics, theory of heat, magnetism, electrodynamics, and elasticity, which invc
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differential equations of elliptic, hyperbolic, and parabolic type. Such a method—of fin
ing the suitable Green’s function—is a very modern approach and leads to the solutiol
various types of differential equations.

2. THEESSAWBY GREEN

Green was an audodidact and an outsider in his contemporary academic world. He n
remarkable contributions to analysis and mathematical physics, in particular to electros
ics, elasticity, and potential theory. In 1828 Green publishedEssay on the Application
of Mathematical Analysis to the Theories of Electricity and MagnefiSneen 1828], a
memoir full of new ideas and results in potential theory. He proposed to draw upon 1
historical development of the theories of electricity and magnetism, but only quoted so
works of Cavendish and Poisson. Green noticed that general mathematical methods c
be very useful for treating problems in electricity and magnetism, and to this aim he usuz
employed the “potential function,” whose partial derivatives equal the components of |
force. “The consideration of this function"—he [Green 1828, 9] wrote—"is of great impol
tance in many inquiries, and probably, there are none in which its utility is more mark
than in those about to engage our attention.” Indeed, iGr@eral Preliminary Resultsf
his Essay, he deduced important theorems and formulae in potential theory involving
potential function.

Green proved the well-known Green’s formulae and other results valid for harmot
functions. IfU, V are function ofx, y, z, which are tacitly supposed by Green to be finite
and continuous, together with their derivatives, on a regular registith boundaryo, the
following theorem (calledSreen’s second identity),

U \Y
/V%—do+/VV2Udv=/U%— da—i—/UVZVdv, (2.1)
v 1%
R o R

a

is valid if v is the internal normal to the surface. As a corollaryJiindV are harmonic
and continuously differentiable in the closed regular donkithen

/ (Uﬂ —V&> do =0. (2.1a)
ov av

o

Green assumed thatiif takes given continuous values @nthen one and only one solution
of the Laplace equatioW?U = 0 will exist; then as a consequence, the Dirichlet problen
has a unique solution.

In Green’s second identity (2.1), IBtbe a fixed interior point oR, Q any point ofR, r
the distance (variable wit) betweenP andQ, andV = 1/r. Since 1t tends to infinity

21f U andV are continuous irR together with their partial derivatives of the first order, anchave also
continuous derivatives of the second ordeRjthen the following formula, referred to &reen’s first identity,

/v - V2U dv +/(gradU - gradV) dv :/vaa—U do
v
R

o

is valid, where gradd = (32, % 2J)and gradU - gradV means the scalar product of the gradientd aindV .
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asr — 0, formula (2.1) cannot be valid faidl the regionR. So we consider a small sphere
with center atP and radiug, and remove fronR the interior of the sphere. The second
identity (2.1) can then be applied to the resulting region, and by calculating the limit |
r — 0 one obtains the so-call€reen’s third identity:

V2 1 1
U(P) = ——/—Udv /(Ui———y> do. (2.2)
ovr r ov
If U is harmonic inR, then
18U 01
P S — B ———— 2.
U(P) = /( r8v 8vr>da (2:3)

Generally speaking, Green wished to express any harmonic function in terms of
boundary values and then to eliminate the normal derivative, d(‘# in the formula (2.3).
If a harmonic functiorV can be found such thét+ V vanishes at all points af, then the
normal derivative ofJ can be eliminated by adding the equations (2.3) and (2.1a) togeth

U(P) = ——/( ir} a\]f)do. (2.4)

Such a functiorV represents the potential of the charge, which is induced on a grounc
sheet conductor with the shapewoby a unit charge a. The functionG = % + V isthe
value atQ of the potential of the inducing chargeRnd the induced charge together. This
function is known a$reen’s functiorfor the regionR and the pold®. In terms of Green’s
function, (2.4) becomes

1
U(P) = I / U(Q)%G(P, Q) do. (2.5)

Some authors later in the century—such as Betti, Rudolph Lipschitz (1832-1903), and
and Franz Ernst Neumann (1798-1895)—designstédstead ofs, as Green’s function.
Incidentally, Green claimed that Green’s function exists for physical reasons, becs
the static charge on the surfasealways exists. Nevertheless, there are regions whe
Green’s function does not exist, as Lebesgue [1913] noticed, by showing a particular re
whose boundary contains one “irregular” point—that is to say a point in which the bour
ary behaviour of the harmonic function fails. In another paper, Green [1835] changed
approach. He deduced some results on potential theory by following a procedure simil:
that used by Gauss in his [1839] memoir. Their methods were based on the validity of
Dirichlet principle and therefore were easily attacked when this principle was put in dou
Though Green’s 1828 paper was fundamental for the development of potential theor
remained unknown to most mathematicians for many years. Thomson rediscovered it
mentioned it in a note to an article published in 1842 [Thomson 1842]. Green’s men
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was then published in the renowndolurnal fir die reine und angewandte Mathemaitik
1850.

Dirichlet’s problem and Green’s function are closely connected. In fact, in order
establish the existence of Green’s functi®yone has to solve a special Dirichlet’s problem,
namely to deduce a harmonic function taking on the boundary vaIue# amd then to
verify thatG gives the right solution. Conversely, a given Dirichlet’s problem has a solutic
if the appropriate Green’s function exists. Dirichlet’s principle also plays an important ro
in both questions; indeed, its validity implies that any Dirichlet problem is solvable an
consequently, the suitable Green’s function can be exhibited, at least in principle. In rea
it is often difficult to explicitly deduce Green’s function from the mathematical point o
view, and mathematical difficulties arising from the original problem are just shifted to tl
physical setting.

3. ACOUSTICS

Hermann von Helmholtz (1821-1894) published fundamental works concerning b
mathematics and physics. In a paper published in 1860, he [Helmholz 1860] studied
partial differential equation,

V2U(X,y,2) +k2U(X,y,2) =0 (3.1)

(k constant), which regulates stationary propagations in acoustics, elasticity, and electr
ity. It is the analogue of the Laplace equation for a volume distribution with Newtonie
potential functiorlJ. After drawing a historical outline of the contributions to acoustics fror
D. Bernoulli and Euler on, Helmholtz turned to the problem of gas diffusion in a bound
region R with boundaryo, where there are excitation point&regungspunkten) spread
with continuous density.

Helmholtz [1860, 6] remarked that “the extension of Green’s theorem to the given quest
shows its usefulness.” K [, UV dv is added to the two sides of Green’s theorem (2.1)
then

au Vv
/va—do+fV(v2U +k2U)dv=fU8—do+/U(V2V+k2v)dv. (3.2)
v 1%
R

o R o

Helmholtz proved that the functiokl = CO%'“ satisfies the partial differential equation
V2V +k?V = 0in all the space and, in the case that &t + k?u = 0, he got

U=

1 d [ coskr 1 coskr oU
U ( )d +

This is analogous to Green’s formula (2.2), where the role of Green’s function is he
played byV = CO%"’ Therefore, as Helmholtz pointed out [1860, 22], the procedure dt
to Green allows one to deduce the solution for the considered problem, by apply

3 The problem of integrating equation (3.1) in two dimensions—nantély; U (x, y)—was faced by Weber
[1869] and Mathieu [1872, 271].
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“the so extremely fruitful Green’s theorem.[] to the [potential] functions at issue with
the greatest advantage.”

In a handwritten note, taken from his lectures on mathematical physics of the acade
year 1866/67, Betti followed Helmholtz’s approach and introduced Green’s function fo
the acoustic problem by using the same method. “Thereéfété = 0 is a particular case
of the equation (3.1), since it is deduced from it by poding 0,” Betti remarked. As it
will be pointed out (see Sections 6, 7), Betti also used a similar approach in his researc
heat theory and theory of elasticity.

Bernhard Riemann (1826—1866), who wrote fundamental papers in several fields of m
ematics, also made important contributions to the theory of partial differential equatio
In a memoir published in 1860, he applied the method of Green’s function in order
integrate the differential equation of hyperbolic type describing the diffusion of acous
waves [Riemann 1860]. He quoted Helmholtz’s [1860] paper, where, however, elliptic
ferential equations are treated—instead of those of hyperbolic type considered by Riem
Riemann [1860, 156] solved the problem of gas propagation only for “the case, where
initial motion is the same along each direction, and speed and pressure are constant or
plane orthogonal to these directions.” The solutions of more general problems had not |
deduced yet.

Riemann posed the following hypotheses, derived from physical and experimental
due to Boyle and Gay-Lussac and from contributions by Regnault, W. Thomson, ¢
Clausius: the pressure of gas depends on its depsitgly, and the direction of propa-
gation is along a straight line, for example alongxhaxis, ifx, y are the coordinates. Then,
Riemann defined the characteristic lineands:

2r =f(p)+w, 2= f(p)—w,

if w is the speed of propagation of the gas, difgd) is a function of the pressure, which is
deduced from the physical structure of the gas. Therefore, the characteristic lines dej
on some experimental data, which can be found from physical considerations. In orde
solve his problem of wave propagation, Riemann was led to consider the partial differer
equation of hyperbolic type

92U ou  ouU
aras (E)r + as> (34)

wherem is a function of the pressure, atbimust satisfy the initial conditions. In order
to integrate (3.4), Riemann introduced a functibrwhich plays the same role as Green'’s
function did for the Laplace equation and is today cafl@den’s function for the hyperbolic
problem. The functiofV has to be deduced and its existence was not proved by Riema
Even though Green’s results are never quoted in the paper, Riemann was clearly awa
them and applied Green'’s theorem (2.1) to the function¥ in the regionS bounded by
the characteristic lines =r, y = s, and by a given curve cutting the characteristic lines
once only.

4 Betti's notes are contained in “Fondo Betti” at the “Archivio della Biblioteca della Scuola Normale Superior
in Pise.



HMAT 28 GREEN’'S FUNCTION IN THE 19TH CENTURY 239

y

 \

y=$ P(r,s)

> x

FIGURE 1

By means of Green’s theorem, Riemann could reduce the original problem to the cal
lation of three curvilinear integrals dependingdnV and on their partial derivatives, and
extended on the three pieces of the boundary.afhen, the mathematical development of
the proof led Riemann to pose some conditions for the funatién

Riemann deduced the value of the solutidat the pointP = (r, s),

U(P)=(UV)(P1)+/V(%—mU> ds+/U(%—\r/+mV> dr,  (3.5)

whereP; is the intersection point between the cuovand the linex = r (see Fig. 1).

In the last part of the paper, Riemann showed the relevance of his theory by apply
the formula (3.5) to a particular acoustic problem, wirare: %"SS‘ follows from Poisson’s
law. In that case, he introduced a functidnand then proved that it is the suitable Green'’s
function. He indeed could explicitly derive the solutionof the problem for given initial
conditions from (3.5), by using Fourier’s series.

4. LIPSCHITZ'S PAPER ON ELECTRODYNAMICS

Lipschitz is best known for his contributions to real analysis and humber theory; nev
theless, he worked for a long time on topics concerning mathematical physics. Lipscl
extended the principles of mechanics—such as the motion equations of a point and
Euler-Lagrange differential equations—to a Riemannian manifold with constant curvat
(see [Tazzioli 1994b]) and also studied questions in electrostatics and electrodynamic:
order to determine the electrodynamic propagation in a homogeneous conductor, he
troduced a function similar to Green’s function in a paper published in 1861 [Lipschi
1861].

5Such conditions ar@?V/ards + amV/ar + damV/ds =0 in S;9V/ds+ mV = 0 whenx =r;9V/ar +
mV =0wheny =s;V =1alongthelinex =r,y=s.
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In his paper, Lipschitz applied the theory of a double distributidboppelbelegungr
Doppelschicht) deeply studied by Kirchhoff [1848] and Helmholtz [1853] several yee
before. Classical treatises on potential theory usually devote many pages to the th
of double sheets (or double distributions). A double distribution on a connected regt
surfaces can be regarded as the limiting form of a set of magnetic particles—or doublets
distributed overs with their axes normal to the surface and pointing to one side, as t
particles are more and more densely distributed and their magnetic moment decre
Therefore, a double distribution is the natural representation of a magnetic distribution ¢
surface. But not only that; indeed, since any closed circuit can be replaced by the magt
double sheet of that surface, whose boundary is the circuit itself, electrodynamic probl
can be studied by means of the theory of double sheet.

In order to deduce theorems and results in the theory of double sheet, one is led to d
the potential of a double distribution. The following classical procedure also allows one
grasp the physical meaning of the potential. £&indo’ be two connected regular surfaces
with normalv, distanti (1 is the infinitely small thickness of the sheet), having density
and¢’ respectively; two “corresponding points” or two “corresponding surface element
on the surfaces ando’ are defined as belonging to the same normal (see Fig. 2).d her
ando’ are two infinitely close surfaces; an attractive and a repulsive Newtonian force ol
ando’ respectively—having the same intensity—are assumed to originate from any pai
corresponding points. Therefore these surfaces represent the so-called double sheet.

The masses of any pair of corresponding points are then equal; that is to say, the fort

tdo =¢'do’ (4.1)

is valid, wheredo anddo’ are two corresponding surface elements. Therefore, the potent
U of the double sheet at any poiRts expressed by

uz/(ﬁw+§?> 4.2)

o

FIGURE 2
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(r, r’ are the distances betweBranddo, do’ respectively), and from (4.1):

U= / G - %); do. (4.3)

a

Sincea is infinitely small,rl, can be replaced by

Ly xa%
r v’
and (4.3) becomes
PE g1
u :/—rkg do :/—ruda, (4.4)
av av

whereu = A¢ is called thenomenbf the double sheet.

By using the theory of the double sheet, Lipschitz [1861] aimed to formulate an ele
trodynamic theory similar to the well-known electrostatic theory. He proved the existen
theorem (I):

Let o be a closed regular surface, and jebe a finite function orv; then one and
only one functionU exists such that) = U; in the internal region of, U = Ug in the
external region o, andUe — 0 whenr — oo; moreoverUe — U; = 4mu and% = aa_uve
ono. Since Helmholtz [1853] had already proved that such conditiont)foompletely
characterize potential functions of a double sh&és the potential function of the double
distribution on the surface.

Lipschitz reduced the previous problem to the following onge (I

To find a potential function of a double shégt—called “electrodynamic potential”—
such that% = ¢, whereg is a given continuous function on the surface

Let us remark thag must satisfyfa gdo = 0, sinceU is harmonic inR. Lipschitz
was aware that the problenT)(for the potential of a double sheet—which we refer to
asLipschitz’s problem—is analogous to the Dirichlet problem for the usual potential.
particular, Lipschitz's problem is the natural extension to electrodynamics of the Dirichl
problem valid in electrostatics. Lipschitz proved that this problem has a unique soluti
by using Dirichlet’s principle. Nevertheless Dirichlet’s principle is only a criterion of ex
istence, which does not give any information about the expression of the solution. Sil
Lipschitz aimed to find the solution explicitly, he applied Green'’s theory to his electrod
namic problem, by looking for a function playing the same role as Green’s function play
in electrostatics.

In order to do this, Lipschitz split the potential functibhinto two parts—the external
potentialUe and the internal potentidl;—and expressed each part of it by means of ¢
suitable Green’s function. In particular, in order to deduce the external potéhtidle
looked for the Green’s functios = —% + V, which equals #x on the surfacer (1 is
the moment ofV). The functionV must be found; it must be harmonic Rand such
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that
av ot
— = -1 ono, (4.5)
ov av

wherer is the distance between a point op the surfacand a fixed point outside af.
Moreoveeratlsflesf ® do =0, smcef == do = 0. Lipschitz then found the following
expression for the external potentidl = f (—— + V)aue do.

For the internal potentidl; Lipschitz had to flndanotherGreen’s function. In fact, let
G’ be thenewGreen’s functionG' = V' — rl whereV’ is the harmonic function to be
deduced; since

V' df
v v

(see eq. (4.5))V’ should satisfy the formula

Vv’ 9
/ do = / L do = —-4n
ov ov

o o

by Gauss’s theorem. But, on the other hand,

EAVA
/ do =0
ov

o

sinceV’ is harmonic inR.

As a consequence, Green'’s function for the internal potddtiaiust have an expression
which is different from the previous expressi@i. Lipschitz was led to consided” =
VvV — Fl which equals #X ono, and the normal derivative &f” differs from that ofrl by
a constanty. Lipschitz derived the following expression for the internal potential:

Ui = /( ! +V”> 88U' do — fxui do. (4.6)
V

[ o

The momentA producing the potentid) is then deduced by the formulad = U — U;.
The function denoted b§” is nowadays usually named tl@een’s function of the second
kind, and for the so-called Neumann problem it is the analogue of Green'’s function fc
Dirichlet’s problem. The Neumann problem is the problem of finding a function harmor
in a region and having normal derivatives equal to the function given on the boundary. |
evident that the Lipschitz problem’)lis equivalent to the Neumann problem. Therefore
the Neumann problem represents the natural extension to electrodynamics of the Diric
problem which is valid in electrostatics; and it is then legitimate to ask whether or not th
is a function playing the same role as Green'’s function. Such a function indeed exists
is the so-called Green'’s function of the second kind.
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5. FRANZ NEUMANN'S LECTURES ON MAGNETISM

Franz Neumann is considered a physicist more than a mathematician; he workec
electricity, magnetism, and electromagnetism. His physical theories are based on the cor
of “action-at-a-distance” and are close to the ideas developed by Helmholtz and Webe

Franz Neumann introduced a particular function analogous to Green’s function in
lectures on the theory of magnetisvorlesungeruber die Theorie des Magnetismus na-
mentlichiber die Theorie der magnetischen Induktibeld during the summer semester
1857 at the University of Konigsberg, and published by his son Carl Neumann only in 18
[F. Neumann 1881].

Franz Neumann proposed to study the magnetic induction in a magnet due to an exte
magnetic force. From results connected with Green’s theorem, he proved that the magr
induction in the magnet could be described by means of a function similar to Gree
function in electrostatics. Neumann defined the magnetic moment induced by the exte
forceasavectan = (o, 8, ¥), @ = Ziui Xi, B = Ziui, Vi, v = Ziij z,wherethesums
are extended to all the magnet, andis the magnetic massoncentrated at the point
P = (X, Vi, z). If ¢ is the potential of the induced magnetic momen{m = grad(y),
then Neumann deduced that

ad
(p:—W—K\/‘Wa—de', (51)
V

whereW is the potential of the external magnetic foreea constantg the boundary
of the magnety the internal normal to the surface, agida function which has to be
determined. Such a functiah represents the potential of the induced magnetic moment |
a magnet having the shapewhich is produced by a unit magnetic magshas here a role
similar to that played in electrostatics by the potential function we had denominatéih by
Section 2 and that Neumann called Green’s function. As we read in Neumann'’s lecture:
magnetism:

“By means of formula (5.1) the problem of magnetic induction for a given homogenec
body is reduced to finding a functigndepending only on the surface of the bottyerefore
Neumann named this functigfh the characteristic functiorof the surface or of the given
body respectively. Fanagnetidnduction that function plays, as it is evident, a role similar
to the one played by the well-knowBreen’s functiorin electricinduction or in problems
of stationary heat respectively” [F. Neumann 1881, 112].

6. THE THEORY OF HEAT IN BETTI'S WORK

Betti played an important role in the development of Italian mathematics in the peri
just after national unification. In 1857 he became professor at the Scuola Normale of P
whose he was the director from 1864 until his death—save two years (1874—-1876) (
[Bottazzini 1982]). Betti's scientific research concerned the solution of algebraic equatic
of fifth degree, the theory of functions of a complex variable, the theory of elliptic function
and several fields in mathematical physics. He investigated topics in mathematical phy
for more than 20 years and his works were also connected with the validity of the Dirich



244 ROSSANA TAZZIOLI HMAT 28

principle. The role of physics in his mathematical work is very important; in this regard, Vi
Volterra (1860-1940) remarks: “Ceux qui ont connu Betti, non seulement par ses travz
mais aussi par sa conversation, savent que s'il parlait Mathematiques, bien souvent il pe
Physique” [Volterra 1902, 8].

Betti and some of his students tried to solve problems in mathematical physics leac
to elliptic or parabolic differential equations by defining functions similar to the ordinai
Green’s function. In potential theory Betti expressed the solution of a given Dirichle
problem by means of the suitable Green’s function and, in his lectures on mathema
physics, he approached the problem of gas diffusion by finding a function similar to Gree
function, as Helmholtz had already done (see Section 3). Betti also used Green’s fru
method in order to solve other questions in mathematical physics, in particular in h
theory? and elasticity (see Section 7). In heat theory, Betti solved a more general probl
than the problem considered by Carl Neumann.

C. Neumann'’s earliest works on potential theory were devoted to the Dirichlet prc
lem, which he considered closely connected with electrostatics and theory of heat
Section 1). In some papers published from 1861 to 1863 [C. Neumann 1861, 1862, 18
Neumann had applied Green’s method to some problems in the theory of stationary |
In his [1862] paper, Neumann had explicity noticed that the two following questions &
equivalent from a mathematical point of view:

I. “To determine the state of stationary heat in a body, whose surface is everywher
contact with given and constant sources of heat”;

Il. “To determine the electric distribution in a body, which is subjected to given ar
constant electric forces” [C. Neumann 1862, V].

It is sufficient to find a potential function harmonichitaking continous values an, that

is to say to solve a particular Dirichlet’s problem. To this aim, Neumann used the metho
Green’s function and deduced a funct®mhich is harmonic irRand such tha® = 1/r on
the boundary, whereis the distance betweer,(y, z) and a fixed pointirR. “The function

G is such that it only depends on geometric relations,” he remarked [C. Neumann 1¢
82]. Indeed, the potential functions of problems (I) and (Il) satisfy the same different
equation; that is to say, they are both harmonic functions and their Green’s functions
the same.

As a consequence of his results, C. Neumann determined the Green'’s function for
Dirichlet problem of two nonconcentric spheres. In his [1863] paper, he deduced res
very similar to those contained in his 1862 work. In a previous note, C. Neumann [18!
had introduced the suitable Green’s function in order to solve the Dirichlet problem fo
sphere, and had deduced the so-called Poisson integral. As already mentioned in Sect
about 1870 he realized that many difficulties arose from Dirichlet’s principle and felt sor
urgency in avoiding its use in mathematics.

Betti also devoted himself to the theory of heat and examined problems more gen
than those considered by C. Neumann. In particular, in a paper published in 1868, E
[18684a] tried to solve the following general problem in heat theory, which he reduced t
question of analysis:

6 For parabolic differential equations regulating heat propagation, see [Sommerfeld 1894].
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To determine a function—the temperatute= U (X, v, z,t) (X, Y, zZ being points of a
connected spade andt time)—which satisfies the equation of heat propagation in a bod

au
— —kvU =0 (6.1)
at

(k = memalconducthity i equal to a given functiod = V(x', Y/, Z, t) on a portiorns’ of o (o

caloric X density

is the boundary oR), and satisfies the equation

aa_u =h(U —¢) (6.2)
v

ono” = o — o’ (visthe internal normalte”, h = %mj and; = ¢(x",y", 72/, 1)
is an arbitrary function ok”, y”, Z’ in ¢”). Moreover,U must verify the initial condition
U =Ugfort =0, withUy = Up(X, Y, 2), X,V,zinR.

If U and¢ are independent df thenU = Uy. In fact, such a functiotd satisfies the
foregoing conditions and is called the function of stationary heat. This is the case of stati
ary heat already considered by C. Neumann. In his proof, Betti used an argument sirr
to Dirichlet’s principle; indeed, he constructed a functiofialwhich depends oty and
on its first derivatives and is equal to or greater than zero. “It is evident,” Betti [1868
219] wrote, “that [..] there exists a function which mak&s minimum.” This function
represents the temperature of the body and solves the above problem in heat propag:
by applying variational methods, he then proved that such a function is unique, is harmc
in R, and satisfies the required conditions. (Itis interesting to remark that in his later trea
on potential theory, Betti [1879] changed his mind. Here, he clearly expressed his opin
against the use of Dirichlet’s principle—or of similar arguments—in mathematical proo
(see Section 1)).

In the more general case whefgdoes not satisfy the equati®fUg = 0, but only (6.2),
the solution of the probler will depend on timd. By means of physical considerations
and using procedures depending on the validity of Dirichlet’s principle, Betti proved th
the functionU exists and is unique and then sought a method to explicitly describe it. Tt
method consists of finding a functi@similar to Green’s function: he aimed to express the
solutionU by means of the functio®, which, however, he could explicitly deduce only in
particular cases.

Betti found the formula

U(x,y, z)_——/ —d ’——/ (G——hU)da”, (6.3)

whereG = % + V,r is the distance betweer/(y’, Z') and §, y, z) ono, G is harmonic,
G=0o0nd, % = hGong”, andV is a harmonic function to be determined.

As a consequence of (6.3), Betti [1868a, 225-226] wroBerépresents the stationary
temperatures in a homogeneous solid body having constant temperature on an infin
small sphere with center at'( y', Z), thatis to say [. .] having a constant source of heat [at
(X', ¥, 2)]. [Moreover] the temperature of the body vanishes on a portion af¢noted by]



246 ROSSANA TAZZIOLI HMAT 28

o', and the portion of the body”’[= o — ¢'] is in contact with free air whose temperature
is also zero.” The physical interpretation of Green’s function given by Betti in heat thec
is in line with what happens in electrostatics and magnetism, as Green and Franz Neur
had already pointed out (see Section 2, Section 5).

The problem of heat propagation in a body is then reduced to the deduction of the suit
Green'’s function, in order to express the solutidrNevertheless, the latter problem is not
easy at all; Betti could in fact deduce Green'’s functions for particular cases only, suct
if Ris a sphere (or a half-sphere) and its surfackas a constant temperature, andif
is a parallelepiped and the temperatures are given on each face. In a paper publishe
same year, Betti [1868b] used an analogous method in order to solve the problem of
propagation in a cylinder.

7. BETTI'S RECIPROCAL THEOREM

For several years Betti investigated the theory of elasticity and made some remark
discoveries. In a series of papers on elasticity, publisheduavo Cimentan 1872 and
1873, he deduced his well-known reciprocal theorem, whose proof and application:
physics can be found in another paper published a year later [Betti 1874]. The relevanc
the reciprocal theorem was openly noticed by Marcolongo [1907] in his compendium on
development of mathematical physics in Italy from 1870 to 1907: “In potential theory tl
importance of a certain identity—called Green'’s formula—is well known. Betti discover:
a famous theorem, the reciprocal theorem, which plays the same role as Green'’s forr
[see (2.1)] for the equations of elasticity.”

Betti considered a solid, elastic, and homogeneous IBodith boundarys and density
p, and proved that ify, v, w), (U, v, w’) are two systems of displacements producet
by the volume forcesX, Y, Z), (X', Y’, Z') and by the pressuret (M, N), (L', M’, N)
respectively, the formula

/(L/, M’, N) - (u, v, w)do + p /(X/, Y',Z")-(u, v, w)dv

o R

= /(L, M, N) - (U, v, w)do + p /(X, Y,Z)-(U,v,w)dv (7.1)
o R

is valid. This formula is actually referred to as the reciprocal theorem; it shows that the t
systems of forces and displacements cannot be independent one of the other, but ct
according to the relation (7.1). As Gustavo Colonnetti (1886—-1968) pointed out in |
classical treatise [1928], the reciprocal theorem is usually used in construction engineel
“There is no problem in all construction engineering,” Colonnetti remarked [1928, 261], *
which this very elegant principle of mathematical physics cannot be successfully applit
He indeed showed that Betti’'s theorem includes, as a particular case, the celebrated Ma:
reciprocal theorem [Maxwell 1864] for frames: “The extensiorBit due to the tension
alongDE is always equal to the extensiond due to the tension iBC” if all the members

of the frame are extensible (see Fig. 3).
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FIGURE 3

From the reciprocal theorem, Betti deduced some functions, similar to Green’s functio
which allowed him to describe fundamental properties of elastic bodies. Indeed, if an ela
and isotropic body is considered and ¢, w) are the components of its displacement, ther
Betti expressed its rotatiorp(q, r) and dilatation® by means of the given forces acting
on the body—where

_ 1/0w Ov _ 1/0u ow . 1/0v odu
P=3 ay az)’ 9=3\5z " ax ) "7 2\ex ay )’
au Jdv Jw

and © = — + — 4+ —.
3x+8y+az

To this aim, he considered the particular displacement,(w) given by

R EE 9l
 TE gy T W=t (7.2)

wherer is the distance betwee,(y, z) and a point X', y', Z) of R, and the functions
&, n, ¢ have to be determined; they must be continuous and single-valued, together v
their derivatives, and satisfy the equations of elastic equilibrium for the body. It follows th
u, v, w satisfy the same equations Brand are single-valued and continuous, together witl
their derivatives orR’, which is the portion of the bodRR obtained by subtracting froR

a space as small as one likes containingy/, Z') inside, where the function t/and its
derivatives become infinite. Moreover, the displacement

1 1 1
o of o}
ox’ ay’ 9z

defines a system of forces which acts Rhand satisfies the reciprocal theorem togethe
with the forces produced by the displacement (&, )3 By applying the reciprocal theorem
to two appropriate systems of forces and displacemeni® gand by calculating the limit
forr — O, Betti found certain conditions which allowed him to explicitly dedéce, ¢.
Therefore, from (7.2) Betti could easily deduce the displacenuent w). As aconsequence
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of these results, he could express the elastic dilatioof the body by means of known
guantities, the displacement, (@ w) and the given forcesX, Y, Z) and L, M, N) acting
on the bodyR with boundaryo,

0= Co/[(L, M, N) - (u, v, w)] do + le[(X, Y, Z)-(u, v, w)]dv (7.3)
o R

(co, C1 constants). Betti [1874, 386] noticed that “the three functiong, ¢ [see (7.2)],
which play here the same role as Green’s function in the expressions of potential f
tions, have a physical meaning, just as Green’s function does in electrostatics.” In f
“they express the components of the displacements of an elastic and isotropic body, w
equilibrates forces acting only on the surface of the body. The action of the forces
[...] equal to that produced by a magnetic element placed at the fding’, z), having
[...] axis parallel to the normal to the surfade..], and acting on a magnetic pole at
that point.” Green’s function and the functiofisn, ¢ are all unknown and are useful in
order to express the solution of the given Dirichlet problem. Moreover, at least in pr
ciple, they can be deduced from experimental data, since they have a definite phy:
meaning.

Betti then considered another particular displacement and, as in the previous case,
the reciprocal theorem he deduced some conditiorgs gn¢ which led him to express the
components of the rotation by means of the given forces and other known quantities.

Betti's method, leading to the expressions of elastic dilatation and rotation from f
reciprocal theorem, is analogous to the procedure already employed by Green in his [1
paper. As Cataldo Agostinelli [1961-1962, 43—44] pointed out, “Betti thought to ade
these [Green’s] methods to the theory of elastic equilibrium, then to the theory of heat ¢
as a foundation of his calculations, formulated the reciprocal theorem, which plays the s;
role as Green'’s formula and is now named Betti’s theorem.”

Valentino Cerruti (1850-1910) and Carlo Somigliana (1860-1956) closely follow
Betti's approach to the theory of elasticity. Cerruti [1882] simplified Betti’s procedul
for integrating the elastic equations of equilibrium and elaborated a method, which is no
days well known as thBetti-Cerruti method. Somigliana [1890] deduced some equatiol
describing the displacements of an elastic body by means of the given forces and the
placements on the surface of the body. These equations, actually referr&broigdiana’s
formulae, were found by applying Betti’s reciprocal theorem together with arguments u
ally employed in potential theory, and are analogous to formulae and theorems prove
Green for harmonic functions.

8. CONCLUSIONS

Many 19th-century mathematicians employed the method of Green’s function to expr
the solution of a given Dirichlet problem in an explicit way. Moreover, many of ther
believed that if the Green’s function is exhibited, then the solution of the Dirichlet proble
exists. Such a procedure allowed them to avoid the use of any existence criterion an
particular, to overcome the difficulties arising from the Dirichlet principle. But the existen
of a Green’s function is a statement as well, which has to be proved. According to sc
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authors, among them Green himself, the Green’s function eaigtsori from physical
evidence; other mathematicians, for example Betti [1879] in his treatise on potential thec
constructed such a function case by case. Indeed, one cannot develop a general m
leading to the derivation of a suitable Green'’s function for any Dirichlet problem.

The introduction of Green'’s function for the integration of differential equations was
procedure also followed by some of Betti's students. In a paper published in 1872 Uli
Dini (1845-1918) [1871-1872], who studied with Betti in Pise, considered the so-call
generalizedirichlet problem,

V2u = f inthe regionR; u = v on the boundary ofR, namedo, (8.1)

whereu is continuous together with its first and second derivatives,fandare continuous
functions. For such a problem, Dini deduced the appropriate Green’s function, by me
of which he expressed the solution of (8.1). Nevertheless, he believed that the existe
of u is not generally guaranteed by Green'’s function and checked every time ih#ie
right solution. In another paper, by following a similar method, Dini [1876] formulated an
solved thegeneralizedNeumann problem

. . au . .
V2u = f in the regionR; 3 = v ono (v is the normal tos drawn inwards). (8.2)
v

He found a function similar to Green’s function, which he explicitly deduced for somnr
particular cases—circle, sphere, and two circles.

Gregorio Ricci Curbastro (1853-1925), who was one of Betti’'s students, studied
generalized Dirichlet’s problem and published a paper on it [Ricci Curbastro 1885]. Ricc
well-known for his theory of tensor calculus, but he was interested in mathematical phys
too. The subjects of his first works on mathematical physics were suggested by Betti
dealt with electrostatics, electrodynamics, mechanical interpretation of Mawell’s equatio
and potential theory.

In his [1885] paper, Ricci considered the problem (8.1) and remarked that “the existel
of the solutionu has not yet been proveal priori.” Indeed, from the explicit expression
of u by means of Green'’s function one cannot conclude that such a solution ezgsity.
Dini [1871-1872] had already pointed out that the existenaerofist always be verified.
Ricci went further; he posed certain conditionswand its derivatives which ensure the
solvability of the problem (8.13 priori and the consequent existence of the functiofhe
Dirichlet principle is then simply replaced by another existence criterion.

The method of Green’s function was not only connected with Dirichlet’s problem ar
Dirichlet’s principle; it also helped in the development of the theory of partial differer
tial equations. In fact, 19th-century mathematicians often tried to find functions simil
to Green’s function, in order to solve problems involving partial differential equations-
elliptic, hyperbolic, or parabolic. Riemann and Helmholtz in acoustics, Lipschitz in ele
trodynamics, Franz Neumann in magnetic induction, Betti in heat theory and elasticity,
tried to extend the method of Green’s function to solve their particular problems and shov
that this procedure is fruitful in many fields of mathematical physics and in the solution
partial differential equations.
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Green’s method is often hard to follow. In principle, the identification of a suitable Greel
function—or a function generalizing Green'’s function—is sufficient in order to express t
solution of the Dirichlet problem, if such a solution exists; no existence principle, but jt
a constructive procedure is employed. Nevertheless, Green’s function is often difficul
find from a mathematical point of view, without appealing to physical considerations. T
original difficulties are then removed only partly; generally, they are shifted to the derivati
of Green’s function.
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