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Green’s Function in Some Contributions
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Many questions in mathematical physics lead to a solution in terms of a harmonic function in a closed
region with given continuous boundary values. This problem is known asDirichlet’s problem, whose
solution is based on an existence principle—the so-calledDirichlet’s principle. However, in the second
half of the 19th century many mathematicians doubted the validity of Dirichlet’s principle. They used
direct methods in order to overcome the difficulties arising from this principle and also to find an explicit
solution of the Dirichlet problem at issue. Many years before, one of these methods had been developed
by Green in 1828, which consists in finding a function—called aGreen’s function—satisfying certain
conditions and appearing in the analytical expression of the solution of the given Dirichlet problem.
Helmholtz, Riemann, Lipschitz, Carl and Franz Neumann, and Betti deduced functions similar to
Green’s function in order to solve problems in acoustics, electrodynamics, magnetism, theory of heat,
and elasticity. C© 2001 Academic Press

Molte questioni fisico matematiche conducono a una soluzione in termini di una funzione armonica
in una regione chiusa con dati valori continui al contorno. Questo problema è noto comeproblema
di Dirichlet, la cui soluzione si basa su un principio di esistenza, il cosiddettoprincipio di Dirichlet.
Tuttavia, nella seconda metà del diciannovesimo secolo, molti matematici cominciarono a mettere in
dubbio la validità del principio di Dirichlet. Sia per superare le difficoltà sorte da tale principio, sia per
trovare una soluzione esplicita del problema di Dirichlet dato, essi presero ad adoperare metodi diretti.
Molti anni prima, uno di questi metodi era stato sviluppato da Green nel 1828 e consiste nel trovare
una funzione, dettafunzione di Green, che soddisfa certe condizioni e mediante la quale si rappresenta
analiticamente la soluzione del problema di Dirichlet in questione. Helmholtz, Riemann, Lipschitz, Carl
e Franz Neumann, e Betti dedussero delle funzioni simili alla funzione di Green allo scopo di risolvere
problemi di acustica, elettrodinamica, magnetismo, teoria del calore ed elasticità.C© 2001 Academic Press

Nombreuses questions de physique mathématique mènent à une solution en termes d’une fonction
harmonique dans une région fermée avec des valeurs continus donnés sur la frontière. Ce problème
est connu commeproblème de Dirichlet, la solution duquel est fondée sur un principe d’existence, le
principe de Dirichlet. Cependant dans la seconde moitié du dix-neuvième siècle plusieurs mathémati-
ciens mirent en doute la validité du principe de Dirichlet. Alors ils employèrent des méthodes directes
soit pour surmonter le difficultés nées de ce principe, soit pour déduire une solution explicite du
problème de Dirichlet en question. Avant plusieurs années une de ces méthodes a ét´e développée par
Green en 1828 et consiste à trouver une fonction, ditefonction de Green, qui satisfait certaines conditions
et moyennant laquelle on représente analytiquement la solution du problème de Dirichlet donné.
Helmholtz, Riemann, Lipschitz, Carl et Franz Neumann, et Betti déduisirent des fonctions semblables
à la fonction de Green pour résoudre de problèmes d’acoustique, électrodynamique, magnétisme,
théorie de la chaleur et élasticité.C© 2001 Academic Press

MSC 1991 subject classifications: 01A55, 31-03.
Key Words: George Green; Rudolf Lipschitz; Carl Neumann; Franz Neumann; Enrico Betti; potential

theory; Dirichlet’s problem; Green’s function.
232

0315-0860/01 $35.00
Copyright C© 2001 by Academic Press
All rights of reproduction in any form reserved.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82731271?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


HMAT 28 GREEN’S FUNCTION IN THE 19TH CENTURY 233

1. INTRODUCTION

In his lectures on potential theory held during the academic year 1856/57 and published
posthumously, by F. Grube in 1876, Peter Gustav Lejeune Dirichlet (1805–1859) [Dirichlet
1876] tried to find a harmonic function in a closed region with given continuous boundary
values. A functionV is harmonic in a domainR if in the interior region ofR, V satisfies
Laplace’s equation:

∇2V = ∂2V

∂x2
+ ∂

2V

∂y2
+ ∂

2V

∂z2
= 0.

Such a problem, later called Dirichlet’s problem, plays an important role in potential theory;
its solution is based on an existence principle, actually referred to as Dirichlet’s principle,
which states that the integral

I (V) =
∫
R

[(
∂V

∂x

)2

+
(
∂V

∂y

)2

+
(
∂V

∂z

)2
]

dv (1.1)

has a minimum value, whereR is a connected space andV(x, y, z) is a function in C1(R)
taking the given continuous values on the boundary ofR. Moreover, the functionV making
(1.1) minimum is the solution of the Dirichlet problem.1 The Dirichlet principle, which was
considered one of the most important criteria of existence in mathematics, was put in doubt
during the second half of the 19th century. In 1870, Weierstrass exhibited a counterexample
to a similar variational problem by constructing a lower bounded functional that does not
assume a minimal value. Many years later, Hilbert [1904, 1905] “brought back the Dirichlet
principle to life”—as he wrote. By using variational methods, he indeed proved that in the
bidimensional case the functional (1.1) has a harmonic function assuming given boundary
values as a minimum, under the hypotheses that the boundary is sufficiently regular and the
given function is piecewise analytical.

Before the counterexample of Weierstrass—which was published only in 1895—many
mathematicians realized that difficulties arose from the Dirichlet principle. Leopold
Kronecker (1823–1891), Ludwig Schläfli (1814–1895), Heinrich Weber (1842–1913),
Felice Casorati (1835–1890), Hermann Amandus Schwarz (1843–1921) and Carl
Gottfried Neumann (1832–1925) tried to put this principle on a rigorous footing (see [Monna
1975, Tazzioli 1994a]). Many of them aimed to re-prove Riemann’s mapping theorem in
a rigorous way, since in hisInauguraldissertationRiemann [1851] had used the Dirichlet
principle as an argument in his proof. They realized that the crucial point of Riemann’s
proof could be reduced to the solution of a particular Dirichlet problem, and constructed its
solution without referring to the Dirichlet principle.

Schwarz [1869a, 1869b, 1870a, 1870b, 1870c], one of Weierstrass’s students, developed
his own method—called the “alternating method”—of proving Riemann’s mapping theorem
for convex bidimensional domains. Schwarz’s proof was independent of the validity of the
Dirichlet principle, so that “the well-grounded objections against such a principle could not
be raised” [Schwarz 1869a, 83].

1 Before Dirichlet, Green [1835], and Gauss [1839] had faced such a problem in a similar way.
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The Dirichlet problem for three-dimensional convex domains was studied and solved
by Carl Neumann. He used a method of approximate solutions, the so-called “method of
arithmetic mean” (see [Archibald 1996]), which he developed in two papers published in
1870 [Neumann 1870]. C. Neumann studied problems of conformal mapping and questions
of stationary heat and of electrostatic and electrodynamic equilibrium without using the
much discussed Dirichlet principle. His method was adirect one which allowed him to
explicitly exhibit the solution. Moreover, in such a way C. Neumann could “avoid [. . .]
Dirichlet’s principle,” as he was proud to notice in thePrefaceof his celebratedLectures
on logarithmic and Newtonian potential[C. Neumann 1877].

In Italy, in 1868 Felice Casorati (1835–1890) published hisTheory of functions of complex
variables[Casorati 1868], a work which was to be—at least in his intentions—in two parts.
However, the second part of the work has never been published. It was to contain the
theory of Abelian functions, treated according to a Riemannian approach, that is to say
by using the Dirichlet principle. Doubts about the validity of Dirichlet’s principle stopped
Casorati from finishing his original plan. He discussed these difficulties with Weierstrass,
Kronecker, and Schläfli (see [Neuenschwander 1978, Bottazzini 1986, 261–164]) and in
1869 wrote to Giuseppe Battaglini (1826–1894) that “the Dirichlet principle contributes
not a little to my delay [in the publication of the second volume of theTheory of functions]”
[in Neuenschwander 1978, 29].

Enrico Betti (1823–1892) also took part in the discussion about the validity of Dirichlet’s
principle and showed different attitudes towards it in his works on potential theory, namely in
his papers published inNuovo Cimentobetween 1863 and 1864 [Betti 1863–1864], and in his
treatise published in 1879 [Betti 1879]. In his 1863–1864 papers, Betti assumed Dirichlet’s
principle as valid, while in his book, published 15 years later, he made some changes, of
which the most important concerns the use of Dirichlet’s principle. Indeed in thePrefaceof
his treatise Betti [1879, V–VI] expressly questioned the validity of the Dirichlet principle:
“In the theory published onNuovo CimentoI had founded the methods of electrostatics
on Dirichlet–Riemann’s theorem on the existence of a bounded and continuous function
together with its first derivatives, satisfying the Laplace equation in a space of any shape and
taking some given values on the boundary [that is to say, Dirichlet problem has one and only
one solution].” And he goes on: “After critical remarks about the proofs of that theorem in
all its generality, I thought that it is better to renounce this kind of method. We shall be able
to build again on that theorem when we rigorously state when and where it is valid.” Indeed
in his book he never used Dirichlet’s principle and did not propose any alternative proof of
the existence of the solution for the general Dirichlet problem. Therefore, he exhibited the
solution of the given Dirichlet problem case by case and used direct methods only.

If the Dirichlet principle is not valid, the solution for a given Dirichlet problem is not
generally ensured. Therefore, mathematicians tried to find other alternative methods, which
do not use any existence principle. In his 1828 paper, George Green (1793–1841) [Green
1828] developed a direct procedure for solving the Dirichlet problem involving the search
for a particular function, named Green’s function (see Section 2). Many 19th-century math-
ematicians aimed to find the solution of a given Dirichlet’s problemdirectly, by following
Green’s method and by showing the existence of the appropriate Green’s function for the
problem at issue. They deduced functions similar to Green’s function for solving problems
in acoustics, theory of heat, magnetism, electrodynamics, and elasticity, which involve
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differential equations of elliptic, hyperbolic, and parabolic type. Such a method—of find-
ing the suitable Green’s function—is a very modern approach and leads to the solution of
various types of differential equations.

2. THEESSAYBY GREEN

Green was an audodidact and an outsider in his contemporary academic world. He made
remarkable contributions to analysis and mathematical physics, in particular to electrostat-
ics, elasticity, and potential theory. In 1828 Green publishedAn Essay on the Application
of Mathematical Analysis to the Theories of Electricity and Magnetism[Green 1828], a
memoir full of new ideas and results in potential theory. He proposed to draw upon the
historical development of the theories of electricity and magnetism, but only quoted some
works of Cavendish and Poisson. Green noticed that general mathematical methods could
be very useful for treating problems in electricity and magnetism, and to this aim he usually
employed the “potential function,” whose partial derivatives equal the components of the
force. “The consideration of this function”—he [Green 1828, 9] wrote—“is of great impor-
tance in many inquiries, and probably, there are none in which its utility is more marked
than in those about to engage our attention.” Indeed, in theGeneral Preliminary Resultsof
his Essay, he deduced important theorems and formulae in potential theory involving the
potential function.

Green proved the well-known Green’s formulae and other results valid for harmonic
functions. IfU , V are function ofx, y, z, which are tacitly supposed by Green to be finite
and continuous, together with their derivatives, on a regular regionR with boundaryσ , the
following theorem (calledGreen’s second identity),2∫

σ

V
∂U

∂ν
dσ +

∫
R

V∇2U dv =
∫
σ

U
∂V

∂ν
dσ +

∫
R

U∇2V dv, (2.1)

is valid if ν is the internal normal to the surface. As a corollary, ifU andV are harmonic
and continuously differentiable in the closed regular domainR, then∫

σ

(
U
∂V

∂ν
− V

∂U

∂ν

)
dσ = 0. (2.1a)

Green assumed that ifU takes given continuous values onσ , then one and only one solution
of the Laplace equation∇2U = 0 will exist; then as a consequence, the Dirichlet problem
has a unique solution.

In Green’s second identity (2.1), letP be a fixed interior point ofR, Q any point ofR, r
the distance (variable withQ) betweenP andQ, andV = 1/r . Since 1/r tends to infinity

2 If U and V are continuous inR together with their partial derivatives of the first order, andU have also
continuous derivatives of the second order inR, then the following formula, referred to asGreen’s first identity,∫

R

V · ∇2U dv +
∫
R

(gradU · gradV) dv =
∫
σ

V
∂U

∂ν
dσ

is valid, where gradU = ( ∂U
∂x ,

∂U
∂y ,

∂U
∂z ) and gradU · gradV means the scalar product of the gradients ofU andV .
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asr → 0, formula (2.1) cannot be valid forall the regionR. So we consider a small sphere
with center atP and radiusr, and remove fromR the interior of the sphere. The second
identity (2.1) can then be applied to the resulting region, and by calculating the limit for
r → 0 one obtains the so-calledGreen’s third identity:

U (P) = − 1

4π

∫
R

∇2U

r
dv +

∫
σ

(
U
∂

∂ν

1

r
− 1

r

∂U

∂ν

)
dσ. (2.2)

If U is harmonic inR, then

U (P) = − 1

4π

∫
σ

(
− 1

r

∂U

∂ν
+U

∂

∂ν

1

r

)
dσ. (2.3)

Generally speaking, Green wished to express any harmonic function in terms of its
boundary values and then to eliminate the normal derivative ofU, ∂U

∂ν
in the formula (2.3).

If a harmonic functionV can be found such that1
r + V vanishes at all points ofσ , then the

normal derivative ofU can be eliminated by adding the equations (2.3) and (2.1a) together:

U (P) = − 1

4π

∫
σ

(
U
∂

∂ν

1

r
+U

∂V

∂ν

)
dσ. (2.4)

Such a functionV represents the potential of the charge, which is induced on a grounded
sheet conductor with the shape ofσ by a unit charge atP. The functionG = 1

r + V is the
value atQ of the potential of the inducing charge atP and the induced charge together. This
function is known asGreen’s functionfor the regionR and the poleP. In terms of Green’s
function, (2.4) becomes

U (P) = − 1

4π

∫
σ

U (Q)
∂

∂ν
G(P, Q) dσ. (2.5)

Some authors later in the century—such as Betti, Rudolph Lipschitz (1832–1903), and Carl
and Franz Ernst Neumann (1798–1895)—designatedV, instead ofG, as Green’s function.

Incidentally, Green claimed that Green’s function exists for physical reasons, because
the static charge on the surfaceσ always exists. Nevertheless, there are regions where
Green’s function does not exist, as Lebesgue [1913] noticed, by showing a particular region
whose boundary contains one “irregular” point—that is to say a point in which the bound-
ary behaviour of the harmonic function fails. In another paper, Green [1835] changed his
approach. He deduced some results on potential theory by following a procedure similar to
that used by Gauss in his [1839] memoir. Their methods were based on the validity of the
Dirichlet principle and therefore were easily attacked when this principle was put in doubt.

Though Green’s 1828 paper was fundamental for the development of potential theory, it
remained unknown to most mathematicians for many years. Thomson rediscovered it and
mentioned it in a note to an article published in 1842 [Thomson 1842]. Green’s memoir
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was then published in the renownedJournal f̈ur die reine und angewandte Mathematikin
1850.

Dirichlet’s problem and Green’s function are closely connected. In fact, in order to
establish the existence of Green’s functionG, one has to solve a special Dirichlet’s problem,
namely to deduce a harmonic function taking on the boundary values as− 1

r and then to
verify thatG gives the right solution. Conversely, a given Dirichlet’s problem has a solution
if the appropriate Green’s function exists. Dirichlet’s principle also plays an important role
in both questions; indeed, its validity implies that any Dirichlet problem is solvable and,
consequently, the suitable Green’s function can be exhibited, at least in principle. In reality,
it is often difficult to explicitly deduce Green’s function from the mathematical point of
view, and mathematical difficulties arising from the original problem are just shifted to the
physical setting.

3. ACOUSTICS

Hermann von Helmholtz (1821–1894) published fundamental works concerning both
mathematics and physics. In a paper published in 1860, he [Helmholz 1860] studied the
partial differential equation,

∇2U (x, y, z)+ k2U (x, y, z) = 0 (3.1)

(k constant)3, which regulates stationary propagations in acoustics, elasticity, and electric-
ity. It is the analogue of the Laplace equation for a volume distribution with Newtonian
potential functionU. After drawing a historical outline of the contributions to acoustics from
D. Bernoulli and Euler on, Helmholtz turned to the problem of gas diffusion in a bounded
regionR with boundaryσ , where there are excitation points (Erregungspunkten) spread
with continuous density.

Helmholtz [1860, 6] remarked that “the extension of Green’s theorem to the given question
shows its usefulness.” Ifk2

∫
R U V dv is added to the two sides of Green’s theorem (2.1),

then∫
σ

V
∂U

∂ν
dσ +

∫
R

V(∇2U + k2U ) dv =
∫
σ

U
∂V

∂ν
dσ +

∫
R

U (∇2V + k2v) dv. (3.2)

Helmholtz proved that the functionV = coskr
r satisfies the partial differential equation

∇2V + k2V = 0 in all the space and, in the case that also∇2U + k2u = 0, he got

U = − 1

4π

∫
σ

U
∂

∂ν

(
coskr

r

)
dσ + 1

4π

∫
σ

coskr

r

∂U

∂ν
dσ. (3.3)

This is analogous to Green’s formula (2.2), where the role of Green’s function is here
played byV = coskr

r . Therefore, as Helmholtz pointed out [1860, 22], the procedure due
to Green allows one to deduce the solution for the considered problem, by applying

3 The problem of integrating equation (3.1) in two dimensions—namely,U = U (x, y)—was faced by Weber
[1869] and Mathieu [1872, 271].
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“the so extremely fruitful Green’s theorem [. . .] to the [potential] functions at issue with
the greatest advantage.”

In a handwritten note, taken from his lectures on mathematical physics of the academic
year 1866/67,4 Betti followed Helmholtz’s approach and introduced Green’s function for
the acoustic problem by using the same method. “Therefore∇2U = 0 is a particular case
of the equation (3.1), since it is deduced from it by posingk = 0,” Betti remarked. As it
will be pointed out (see Sections 6, 7), Betti also used a similar approach in his research on
heat theory and theory of elasticity.

Bernhard Riemann (1826–1866), who wrote fundamental papers in several fields of math-
ematics, also made important contributions to the theory of partial differential equations.
In a memoir published in 1860, he applied the method of Green’s function in order to
integrate the differential equation of hyperbolic type describing the diffusion of acoustic
waves [Riemann 1860]. He quoted Helmholtz’s [1860] paper, where, however, elliptic dif-
ferential equations are treated—instead of those of hyperbolic type considered by Riemann.
Riemann [1860, 156] solved the problem of gas propagation only for “the case, where the
initial motion is the same along each direction, and speed and pressure are constant on each
plane orthogonal to these directions.” The solutions of more general problems had not been
deduced yet.

Riemann posed the following hypotheses, derived from physical and experimental laws
due to Boyle and Gay-Lussac and from contributions by Regnault, W. Thomson, and
Clausius: the pressure of gas depends on its densityρ only, and the direction of propa-
gation is along a straight line, for example along thex-axis, ifx,y are the coordinates. Then,
Riemann defined the characteristic lines,r ands:

2r = f (ρ)+ w, 2s= f (ρ)− w,

if w is the speed of propagation of the gas, andf (ρ) is a function of the pressure, which is
deduced from the physical structure of the gas. Therefore, the characteristic lines depend
on some experimental data, which can be found from physical considerations. In order to
solve his problem of wave propagation, Riemann was led to consider the partial differential
equation of hyperbolic type

∂2U

∂r ∂s
−m

(
∂U

∂r
+ ∂U
∂s

)
= 0, (3.4)

wherem is a function of the pressure, andU must satisfy the initial conditions. In order
to integrate (3.4), Riemann introduced a functionV, which plays the same role as Green’s
function did for the Laplace equation and is today calledGreen’s function for the hyperbolic
problem. The functionV has to be deduced and its existence was not proved by Riemann.
Even though Green’s results are never quoted in the paper, Riemann was clearly aware of
them and applied Green’s theorem (2.1) to the functionsU, V in the regionSbounded by
the characteristic linesx = r, y = s, and by a given curvec cutting the characteristic lines
once only.

4 Betti’s notes are contained in “Fondo Betti” at the “Archivio della Biblioteca della Scuola Normale Superiore”
in Pise.
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FIGURE 1

By means of Green’s theorem, Riemann could reduce the original problem to the calcu-
lation of three curvilinear integrals depending onU, V and on their partial derivatives, and
extended on the three pieces of the boundary ofS. Then, the mathematical development of
the proof led Riemann to pose some conditions for the functionV.5

Riemann deduced the value of the solutionU at the pointP = (r, s),

U (P) = (U V)(P1)+
∫
c

V

(
∂U

∂s
−mU

)
ds+

∫
c

U

(
∂V

∂r
+mV

)
dr, (3.5)

whereP1 is the intersection point between the curvec and the linex = r (see Fig. 1).
In the last part of the paper, Riemann showed the relevance of his theory by applying

the formula (3.5) to a particular acoustic problem, wherem= const.
r+s follows from Poisson’s

law. In that case, he introduced a functionV, and then proved that it is the suitable Green’s
function. He indeed could explicitly derive the solutionU of the problem for given initial
conditions from (3.5), by using Fourier’s series.

4. LIPSCHITZ’S PAPER ON ELECTRODYNAMICS

Lipschitz is best known for his contributions to real analysis and number theory; never-
theless, he worked for a long time on topics concerning mathematical physics. Lipschitz
extended the principles of mechanics—such as the motion equations of a point and the
Euler-Lagrange differential equations—to a Riemannian manifold with constant curvature
(see [Tazzioli 1994b]) and also studied questions in electrostatics and electrodynamics. In
order to determine the electrodynamic propagation in a homogeneous conductor, he in-
troduced a function similar to Green’s function in a paper published in 1861 [Lipschitz
1861].

5 Such conditions are∂2V/∂r ∂s+ ∂mV/∂r + ∂mV/∂s= 0 in S; ∂V/∂s+mV = 0 whenx = r ; ∂V/∂r +
mV = 0 wheny = s; V = 1 along the linesx = r, y = s.
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In his paper, Lipschitz applied the theory of a double distribution (Doppelbelegungor
Doppelschicht) deeply studied by Kirchhoff [1848] and Helmholtz [1853] several years
before. Classical treatises on potential theory usually devote many pages to the theory
of double sheets (or double distributions). A double distribution on a connected regular
surfaceσ can be regarded as the limiting form of a set of magnetic particles—or doublets—
distributed overσ with their axes normal to the surface and pointing to one side, as the
particles are more and more densely distributed and their magnetic moment decreases.
Therefore, a double distribution is the natural representation of a magnetic distribution on a
surface. But not only that; indeed, since any closed circuit can be replaced by the magnetic
double sheet of that surface, whose boundary is the circuit itself, electrodynamic problems
can be studied by means of the theory of double sheet.

In order to deduce theorems and results in the theory of double sheet, one is led to define
the potential of a double distribution. The following classical procedure also allows one to
grasp the physical meaning of the potential. Letσ andσ ′ be two connected regular surfaces
with normalν, distantλ (λ is the infinitely small thickness of the sheet), having densityζ

andζ ′ respectively; two “corresponding points” or two “corresponding surface elements”
on the surfacesσ andσ ′ are defined as belonging to the same normal (see Fig. 2). Thenσ

andσ ′ are two infinitely close surfaces; an attractive and a repulsive Newtonian force onσ

andσ ′ respectively—having the same intensity—are assumed to originate from any pair of
corresponding points. Therefore these surfaces represent the so-called double sheet.

The masses of any pair of corresponding points are then equal; that is to say, the formula

ζ dσ = ζ ′ dσ ′ (4.1)

is valid, wheredσ anddσ ′ are two corresponding surface elements. Therefore, the potential
U of the double sheet at any pointP is expressed by

U =
∫
σ

(−ζ dσ

r
+ ζ

′dσ ′

r ′

)
(4.2)

FIGURE 2
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(r, r′ are the distances betweenP anddσ, dσ ′ respectively), and from (4.1):

U =
∫
σ

(
1

r
− 1

r ′

)
ζ dσ. (4.3)

Sinceλ is infinitely small, 1
r ′ can be replaced by

1

r
+ λ∂

1
r

∂ν
,

and (4.3) becomes

U =
∫
σ

∂ 1
r

∂ν
λζ dσ =

∫
σ

∂ 1
r

∂ν
µ dσ, (4.4)

whereµ = λζ is called themomentof the double sheet.
By using the theory of the double sheet, Lipschitz [1861] aimed to formulate an elec-

trodynamic theory similar to the well-known electrostatic theory. He proved the existence
theorem (I):

Let σ be a closed regular surface, and letµ be a finite function onσ ; then one and
only one functionU exists such thatU = Ui in the internal region ofσ,U = Ue in the
external region ofσ , andUe→ 0 whenr →∞; moreover,Ue−Ui = 4πµand ∂Ui

∂ν
= ∂Ue

∂ν

on σ . Since Helmholtz [1853] had already proved that such conditions forU completely
characterize potential functions of a double sheet,U is the potential function of the double
distribution on the surfaceσ .

Lipschitz reduced the previous problem to the following one (I′):
To find a potential function of a double sheetU—called “electrodynamic potential”—

such that∂U
∂ν
= g, whereg is a given continuous function on the surfaceσ .

Let us remark thatg must satisfy
∫
σ

g dσ = 0, sinceU is harmonic inR. Lipschitz
was aware that the problem (I′) for the potential of a double sheet—which we refer to
asLipschitz’s problem—is analogous to the Dirichlet problem for the usual potential. In
particular, Lipschitz’s problem is the natural extension to electrodynamics of the Dirichlet
problem valid in electrostatics. Lipschitz proved that this problem has a unique solution
by using Dirichlet’s principle. Nevertheless Dirichlet’s principle is only a criterion of ex-
istence, which does not give any information about the expression of the solution. Since
Lipschitz aimed to find the solution explicitly, he applied Green’s theory to his electrody-
namic problem, by looking for a function playing the same role as Green’s function played
in electrostatics.

In order to do this, Lipschitz split the potential functionU into two parts—the external
potentialUe and the internal potentialUi —and expressed each part of it by means of a
suitable Green’s function. In particular, in order to deduce the external potentialUe, he
looked for the Green’s functionG = − 1

r + V , which equals 4πλ on the surfaceσ (λ is
the moment ofV). The functionV must be found; it must be harmonic inR and such
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that

∂V

∂ν
= ∂ 1

r

∂ν
onσ, (4.5)

wherer is the distance between a point on the surfaceσ and a fixed point outside ofσ .
Moreover,Vsatisfies

∫
σ
∂V
∂ν

dσ = 0, since
∫
σ

∂ 1
r
∂ν

dσ = 0. Lipschitz then found the following
expression for the external potential:Ue =

∫
σ
(−1

r + V) ∂Ue
∂ν

dσ .
For the internal potentialUi Lipschitz had to findanotherGreen’s function. In fact, let

G′ be thenewGreen’s function,G′ = V ′ − 1
r , whereV ′ is the harmonic function to be

deduced; since

∂V ′

∂ν
= ∂ 1

r

∂ν

(see eq. (4.5)),V ′ should satisfy the formula∫
σ

∂V ′

∂ν
dσ =

∫
σ

∂ 1
r

∂ν
dσ = −4π

by Gauss’s theorem. But, on the other hand,∫
σ

∂V ′

∂ν
dσ = 0

sinceV ′ is harmonic inR.
As a consequence, Green’s function for the internal potentialUi must have an expression

which is different from the previous expressionG′. Lipschitz was led to considerG′′ =
V ′′ − 1

r , which equals 4πλ onσ , and the normal derivative ofV ′′ differs from that of1r by
a constant,κ. Lipschitz derived the following expression for the internal potential:

Ui =
∫
σ

(
− 1

r
+ V ′′

)
∂Ui

∂ν
dσ −

∫
σ

κ Ui dσ. (4.6)

The moment3 producing the potentialU is then deduced by the formula 4π3=Ue−Ui .
The function denoted byG′′ is nowadays usually named theGreen’s function of the second
kind, and for the so-called Neumann problem it is the analogue of Green’s function for a
Dirichlet’s problem. The Neumann problem is the problem of finding a function harmonic
in a region and having normal derivatives equal to the function given on the boundary. It is
evident that the Lipschitz problem (I′) is equivalent to the Neumann problem. Therefore,
the Neumann problem represents the natural extension to electrodynamics of the Dirichlet
problem which is valid in electrostatics; and it is then legitimate to ask whether or not there
is a function playing the same role as Green’s function. Such a function indeed exists and
is the so-called Green’s function of the second kind.
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5. FRANZ NEUMANN’S LECTURES ON MAGNETISM

Franz Neumann is considered a physicist more than a mathematician; he worked on
electricity, magnetism, and electromagnetism. His physical theories are based on the concept
of “action-at-a-distance” and are close to the ideas developed by Helmholtz and Weber.

Franz Neumann introduced a particular function analogous to Green’s function in his
lectures on the theory of magnetismVorlesungen̈uber die Theorie des Magnetismus na-
mentlichüber die Theorie der magnetischen Induktion, held during the summer semester
1857 at the University of Königsberg, and published by his son Carl Neumann only in 1881
[F. Neumann 1881].

Franz Neumann proposed to study the magnetic induction in a magnet due to an external
magnetic force. From results connected with Green’s theorem, he proved that the magnetic
induction in the magnet could be described by means of a function similar to Green’s
function in electrostatics. Neumann defined the magnetic moment induced by the external
force as a vectorm = (α, β, γ ), α = 6iµi xi , β = 6iµi , yi , γ = 6iµi zi ,where the sums
are extended to all the magnet, andµi is the magnetic massconcentrated at the point
Pi = (xi , yi , zi ). If ϕ is the potential of the induced magnetic momentm (m = grad(ϕ)),
then Neumann deduced that

ϕ = −W − κ
∫
σ

W
∂ψ

∂ν
dσ, (5.1)

whereW is the potential of the external magnetic force,κ a constant,σ the boundary
of the magnet,ν the internal normal to the surface, andψ a function which has to be
determined. Such a functionψ represents the potential of the induced magnetic moment in
a magnet having the shapeσ , which is produced by a unit magnetic mass;ψ has here a role
similar to that played in electrostatics by the potential function we had denominated byV in
Section 2 and that Neumann called Green’s function. As we read in Neumann’s lectures on
magnetism:

“By means of formula (5.1) the problem of magnetic induction for a given homogeneous
body is reduced to finding a functionψ depending only on the surface of the body.Therefore
Neumann named this functionψ thecharacteristic functionof the surface or of the given
body respectively. Formagneticinduction that function plays, as it is evident, a role similar
to the one played by the well-knownGreen’s functionin electric induction or in problems
of stationary heat respectively” [F. Neumann 1881, 112].

6. THE THEORY OF HEAT IN BETTI’S WORK

Betti played an important role in the development of Italian mathematics in the period
just after national unification. In 1857 he became professor at the Scuola Normale of Pise,
whose he was the director from 1864 until his death—save two years (1874–1876) (see
[Bottazzini 1982]). Betti’s scientific research concerned the solution of algebraic equations
of fifth degree, the theory of functions of a complex variable, the theory of elliptic functions,
and several fields in mathematical physics. He investigated topics in mathematical physics
for more than 20 years and his works were also connected with the validity of the Dirichlet
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principle. The role of physics in his mathematical work is very important; in this regard, Vito
Volterra (1860–1940) remarks: “Ceux qui ont connu Betti, non seulement par ses travaux,
mais aussi par sa conversation, savent que s’il parlait Mathématiques, bien souvent il pensait
Physique” [Volterra 1902, 8].

Betti and some of his students tried to solve problems in mathematical physics leading
to elliptic or parabolic differential equations by defining functions similar to the ordinary
Green’s function. In potential theory Betti expressed the solution of a given Dirichlet’s
problem by means of the suitable Green’s function and, in his lectures on mathematical
physics, he approached the problem of gas diffusion by finding a function similar to Green’s
function, as Helmholtz had already done (see Section 3). Betti also used Green’s fruitful
method in order to solve other questions in mathematical physics, in particular in heat
theory6 and elasticity (see Section 7). In heat theory, Betti solved a more general problem
than the problem considered by Carl Neumann.

C. Neumann’s earliest works on potential theory were devoted to the Dirichlet prob-
lem, which he considered closely connected with electrostatics and theory of heat (see
Section 1). In some papers published from 1861 to 1863 [C. Neumann 1861, 1862, 1863],
Neumann had applied Green’s method to some problems in the theory of stationary heat.
In his [1862] paper, Neumann had explicity noticed that the two following questions are
equivalent from a mathematical point of view:

I. “To determine the state of stationary heat in a body, whose surface is everywhere in
contact with given and constant sources of heat”;

II. “To determine the electric distribution in a body, which is subjected to given and
constant electric forces” [C. Neumann 1862, V].

It is sufficient to find a potential function harmonic inR taking continous values onσ , that
is to say to solve a particular Dirichlet’s problem. To this aim, Neumann used the method of
Green’s function and deduced a functionGwhich is harmonic inRand such thatG = 1/r on
the boundary, wherer is the distance between (x, y, z) and a fixed point inR. “The function
G is such that it only depends on geometric relations,” he remarked [C. Neumann 1862,
82]. Indeed, the potential functions of problems (I) and (II) satisfy the same differential
equation; that is to say, they are both harmonic functions and their Green’s functions are
the same.

As a consequence of his results, C. Neumann determined the Green’s function for the
Dirichlet problem of two nonconcentric spheres. In his [1863] paper, he deduced results
very similar to those contained in his 1862 work. In a previous note, C. Neumann [1861]
had introduced the suitable Green’s function in order to solve the Dirichlet problem for a
sphere, and had deduced the so-called Poisson integral. As already mentioned in Section 1,
about 1870 he realized that many difficulties arose from Dirichlet’s principle and felt some
urgency in avoiding its use in mathematics.

Betti also devoted himself to the theory of heat and examined problems more general
than those considered by C. Neumann. In particular, in a paper published in 1868, Betti
[1868a] tried to solve the following general problem in heat theory, which he reduced to a
question of analysis:

6 For parabolic differential equations regulating heat propagation, see [Sommerfeld 1894].
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To determine a function—the temperature,U = U (x, y, z, t) (x, y, z being points of a
connected spaceRandt time)—which satisfies the equation of heat propagation in a body,

∂U

∂t
− k∇2U = 0 (6.1)

(k = internal conductivity
caloric× density

), is equal to a given functionV = V(x′, y′, z′, t) on a portionσ ′ of σ (σ
is the boundary ofR), and satisfies the equation

∂U

∂ν
= h(U − ζ ) (6.2)

onσ ′′ = σ − σ ′ (ν is the internal normal toσ ′′, h = external conductivity
internal conductivity

, andζ = ζ (x′′, y′′, z′′, t)
is an arbitrary function ofx′′, y′′, z′′ in σ ′′). Moreover,U must verify the initial condition
U = U0 for t = 0,with U0 = U0(x, y, z), x, y, z in R.

If U andζ are independent oft, thenU = U0. In fact, such a functionU satisfies the
foregoing conditions and is called the function of stationary heat. This is the case of station-
ary heat already considered by C. Neumann. In his proof, Betti used an argument similar
to Dirichlet’s principle; indeed, he constructed a functionalÄ, which depends onU0 and
on its first derivatives and is equal to or greater than zero. “It is evident,” Betti [1868a,
219] wrote, “that [. . .] there exists a function which makesÄ minimum.” This function
represents the temperature of the body and solves the above problem in heat propagation;
by applying variational methods, he then proved that such a function is unique, is harmonic
in R, and satisfies the required conditions. (It is interesting to remark that in his later treatise
on potential theory, Betti [1879] changed his mind. Here, he clearly expressed his opinion
against the use of Dirichlet’s principle—or of similar arguments—in mathematical proofs
(see Section 1)).

In the more general case whereU0 does not satisfy the equation∇2U0 = 0, but only (6.2),
the solution of the problemU will depend on timet. By means of physical considerations
and using procedures depending on the validity of Dirichlet’s principle, Betti proved that
the functionU exists and is unique and then sought a method to explicitly describe it. This
method consists of finding a functionG similar to Green’s function: he aimed to express the
solutionU by means of the functionG, which, however, he could explicitly deduce only in
particular cases.

Betti found the formula

U (x′, y′, z′) = − 1

4π

∫
σ ′

U
∂G

∂ν
dσ ′ − 1

4π

∫
σ ′′

G

(
G
∂U

∂ν
− hU

)
dσ ′′, (6.3)

whereG = 1
r + V, r is the distance between (x′, y′, z′) and (x, y, z) onσ , G is harmonic,

G = 0 on σ′, ∂G
∂ν
= hG onσ ′′, andV is a harmonic function to be determined.

As a consequence of (6.3), Betti [1868a, 225–226] wrote: “G represents the stationary
temperatures in a homogeneous solid body having constant temperature on an infinitely
small sphere with center at (x′, y′, z′), that is to say [. . .] having a constant source of heat [at
(x′, y′, z′)]. [Moreover] the temperature of the body vanishes on a portion of [σ , denoted by]
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σ ′, and the portion of the bodyσ ′′[= σ − σ ′] is in contact with free air whose temperature
is also zero.” The physical interpretation of Green’s function given by Betti in heat theory
is in line with what happens in electrostatics and magnetism, as Green and Franz Neumann
had already pointed out (see Section 2, Section 5).

The problem of heat propagation in a body is then reduced to the deduction of the suitable
Green’s function, in order to express the solutionU. Nevertheless, the latter problem is not
easy at all; Betti could in fact deduce Green’s functions for particular cases only, such as
if R is a sphere (or a half-sphere) and its surfaceσ has a constant temperature, and ifR
is a parallelepiped and the temperatures are given on each face. In a paper published the
same year, Betti [1868b] used an analogous method in order to solve the problem of heat
propagation in a cylinder.

7. BETTI’S RECIPROCAL THEOREM

For several years Betti investigated the theory of elasticity and made some remarkable
discoveries. In a series of papers on elasticity, published inNuovo Cimentoin 1872 and
1873, he deduced his well-known reciprocal theorem, whose proof and applications to
physics can be found in another paper published a year later [Betti 1874]. The relevance of
the reciprocal theorem was openly noticed by Marcolongo [1907] in his compendium on the
development of mathematical physics in Italy from 1870 to 1907: “In potential theory the
importance of a certain identity—called Green’s formula—is well known. Betti discovered
a famous theorem, the reciprocal theorem, which plays the same role as Green’s formula
[see (2.1)] for the equations of elasticity.”

Betti considered a solid, elastic, and homogeneous bodyR with boundaryσ and density
ρ, and proved that if (u, v, w), (u′, v′, w′) are two systems of displacements produced
by the volume forces (X,Y, Z), (X′,Y′, Z′) and by the pressures (L ,M, N), (L ′,M ′, N ′)
respectively, the formula

∫
σ

(L ′,M ′, N ′) · (u, v, w) dσ + ρ
∫
R

(X′,Y′, Z′) · (u, v, w) dv

=
∫
σ

(L ,M, N) · (u′, v′, w′) dσ + ρ
∫
R

(X,Y, Z) · (u′, v′, w′) dv (7.1)

is valid. This formula is actually referred to as the reciprocal theorem; it shows that the two
systems of forces and displacements cannot be independent one of the other, but change
according to the relation (7.1). As Gustavo Colonnetti (1886–1968) pointed out in his
classical treatise [1928], the reciprocal theorem is usually used in construction engineering.
“There is no problem in all construction engineering,” Colonnetti remarked [1928, 261], “to
which this very elegant principle of mathematical physics cannot be successfully applied.”
He indeed showed that Betti’s theorem includes, as a particular case, the celebrated Maxwell
reciprocal theorem [Maxwell 1864] for frames: “The extension inBC due to the tension
alongDE is always equal to the extension inDEdue to the tension inBC” if all the members
of the frame are extensible (see Fig. 3).
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FIGURE 3

From the reciprocal theorem, Betti deduced some functions, similar to Green’s functions,
which allowed him to describe fundamental properties of elastic bodies. Indeed, if an elastic
and isotropic body is considered and (u, v, w) are the components of its displacement, then
Betti expressed its rotation (p,q, r ) and dilatation2 by means of the given forces acting
on the body—where

p = 1

2

(
∂w

∂y
− ∂v
∂z

)
, q = 1

2

(
∂u

∂z
− ∂w
∂x

)
, r = 1

2

(
∂v

∂x
− ∂u

∂y

)
,

and 2 = ∂u

∂x
+ ∂v
∂y
+ ∂w
∂z
.

To this aim, he considered the particular displacement (u, v, w) given by

u = ∂ 1
r

∂x
+ ξ ; v = ∂ 1

r

∂y
+ η; w = ∂ 1

r

∂z
+ ζ, (7.2)

wherer is the distance between (x, y, z) and a point (x′, y′, z′) of R, and the functions
ξ, η, ζ have to be determined; they must be continuous and single-valued, together with
their derivatives, and satisfy the equations of elastic equilibrium for the body. It follows that
u, v, w satisfy the same equations onRand are single-valued and continuous, together with
their derivatives onR′, which is the portion of the bodyR obtained by subtracting fromR
a space as small as one likes containing (x′, y′, z′) inside, where the function 1/r and its
derivatives become infinite. Moreover, the displacement(

∂ 1
r

∂x
,
∂ 1

r

∂y
,
∂ 1

r

∂z

)

defines a system of forces which acts onR′ and satisfies the reciprocal theorem together
with the forces produced by the displacement (ξ, η, ζ). By applying the reciprocal theorem
to two appropriate systems of forces and displacements onR′, and by calculating the limit
for r → O, Betti found certain conditions which allowed him to explicitly deduceξ, η, ζ .
Therefore, from (7.2) Betti could easily deduce the displacement (u, v, w). As a consequence
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of these results, he could express the elastic dilation2 of the body by means of known
quantities, the displacement (u, v, w) and the given forces (X,Y, Z) and (L ,M, N) acting
on the bodyR with boundaryσ ,

2 = c0

∫
σ

[(L ,M, N) · (u, v, w)] dσ + c1

∫
R

[(X,Y, Z) · (u, v, w)] dv (7.3)

(c0, c1 constants). Betti [1874, 386] noticed that “the three functionsξ, η, ζ [see (7.2)],
which play here the same role as Green’s function in the expressions of potential func-
tions, have a physical meaning, just as Green’s function does in electrostatics.” In fact,
“they express the components of the displacements of an elastic and isotropic body, which
equilibrates forces acting only on the surface of the body. The action of the forces is
[. . .] equal to that produced by a magnetic element placed at the point(x′, y′, z′), having
[. . .] axis parallel to the normal to the surface[. . .], and acting on a magnetic pole at
that point.” Green’s function and the functionsξ, η, ζ are all unknown and are useful in
order to express the solution of the given Dirichlet problem. Moreover, at least in prin-
ciple, they can be deduced from experimental data, since they have a definite physical
meaning.

Betti then considered another particular displacement and, as in the previous case, from
the reciprocal theorem he deduced some conditions onξ, η, ζ which led him to express the
components of the rotation by means of the given forces and other known quantities.

Betti’s method, leading to the expressions of elastic dilatation and rotation from the
reciprocal theorem, is analogous to the procedure already employed by Green in his [1828]
paper. As Cataldo Agostinelli [1961–1962, 43–44] pointed out, “Betti thought to adapt
these [Green’s] methods to the theory of elastic equilibrium, then to the theory of heat and,
as a foundation of his calculations, formulated the reciprocal theorem, which plays the same
role as Green’s formula and is now named Betti’s theorem.”

Valentino Cerruti (1850–1910) and Carlo Somigliana (1860–1956) closely followed
Betti’s approach to the theory of elasticity. Cerruti [1882] simplified Betti’s procedure
for integrating the elastic equations of equilibrium and elaborated a method, which is nowa-
days well known as theBetti-Cerruti method. Somigliana [1890] deduced some equations
describing the displacements of an elastic body by means of the given forces and the dis-
placements on the surface of the body. These equations, actually referred to asSomigliana’s
formulae, were found by applying Betti’s reciprocal theorem together with arguments usu-
ally employed in potential theory, and are analogous to formulae and theorems proved by
Green for harmonic functions.

8. CONCLUSIONS

Many 19th-century mathematicians employed the method of Green’s function to express
the solution of a given Dirichlet problem in an explicit way. Moreover, many of them
believed that if the Green’s function is exhibited, then the solution of the Dirichlet problem
exists. Such a procedure allowed them to avoid the use of any existence criterion and, in
particular, to overcome the difficulties arising from the Dirichlet principle. But the existence
of a Green’s function is a statement as well, which has to be proved. According to some
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authors, among them Green himself, the Green’s function existsa priori from physical
evidence; other mathematicians, for example Betti [1879] in his treatise on potential theory,
constructed such a function case by case. Indeed, one cannot develop a general method
leading to the derivation of a suitable Green’s function for any Dirichlet problem.

The introduction of Green’s function for the integration of differential equations was a
procedure also followed by some of Betti’s students. In a paper published in 1872 Ulisse
Dini (1845–1918) [1871–1872], who studied with Betti in Pise, considered the so-called
generalizedDirichlet problem,

∇2u = f in the regionR; u = v on the boundary ofR, namedσ, (8.1)

whereu is continuous together with its first and second derivatives, andf , v are continuous
functions. For such a problem, Dini deduced the appropriate Green’s function, by means
of which he expressed the solution of (8.1). Nevertheless, he believed that the existence
of u is not generally guaranteed by Green’s function and checked every time thatu is the
right solution. In another paper, by following a similar method, Dini [1876] formulated and
solved thegeneralizedNeumann problem

∇2u = f in the regionR;
∂u

∂ν
= v on σ (ν is the normal toσ drawn inwards). (8.2)

He found a function similar to Green’s function, which he explicitly deduced for some
particular cases—circle, sphere, and two circles.

Gregorio Ricci Curbastro (1853–1925), who was one of Betti’s students, studied the
generalized Dirichlet’s problem and published a paper on it [Ricci Curbastro 1885]. Ricci is
well-known for his theory of tensor calculus, but he was interested in mathematical physics
too. The subjects of his first works on mathematical physics were suggested by Betti and
dealt with electrostatics, electrodynamics, mechanical interpretation of Mawell’s equations,
and potential theory.

In his [1885] paper, Ricci considered the problem (8.1) and remarked that “the existence
of the solutionu has not yet been proveda priori.” Indeed, from the explicit expression
of u by means of Green’s function one cannot conclude that such a solution reallyexists.
Dini [1871–1872] had already pointed out that the existence ofu must always be verified.
Ricci went further; he posed certain conditions onu and its derivatives which ensure the
solvability of the problem (8.1)a priori and the consequent existence of the functionu. The
Dirichlet principle is then simply replaced by another existence criterion.

The method of Green’s function was not only connected with Dirichlet’s problem and
Dirichlet’s principle; it also helped in the development of the theory of partial differen-
tial equations. In fact, 19th-century mathematicians often tried to find functions similar
to Green’s function, in order to solve problems involving partial differential equations—
elliptic, hyperbolic, or parabolic. Riemann and Helmholtz in acoustics, Lipschitz in elec-
trodynamics, Franz Neumann in magnetic induction, Betti in heat theory and elasticity, all
tried to extend the method of Green’s function to solve their particular problems and showed
that this procedure is fruitful in many fields of mathematical physics and in the solution of
partial differential equations.
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Green’s method is often hard to follow. In principle, the identification of a suitable Green’s
function—or a function generalizing Green’s function—is sufficient in order to express the
solution of the Dirichlet problem, if such a solution exists; no existence principle, but just
a constructive procedure is employed. Nevertheless, Green’s function is often difficult to
find from a mathematical point of view, without appealing to physical considerations. The
original difficulties are then removed only partly; generally, they are shifted to the derivation
of Green’s function.
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Burkhardt, H., & Meyer, W. F. 1900. Potentialtheorie. InEnzyklop̈adie der mathematischen Wissenschaften,
Vol. 2, No. I, pp. 466–503. Leipzig: Teubner.

Casorati, F. 1868.Teoria delle funzioni di variabili complesse. Pavia.

Cerruti, V. 1882. Ricerche intorno all’equilibrio dei corpi elastici isotropi.Memorie dell’Accademia dei Lincei
(3) 13, 81–123.

Colonnetti, G. 1928.La statica delle costruzioni. Torino: UTET.



HMAT 28 GREEN’S FUNCTION IN THE 19TH CENTURY 251

Dini, U. 1871–1872. Sulla integrazione della equazione12u = 0. Annali di matematica pura ed applicata (2)
5, 305–345, or [Dini 1953–1959 II, 264–310].

Dini, U. 1876. Su una funzione analoga a quella di Green.Atti della R. Accademia dei Lincei (2)3, 129–137,
or [Dini 1953–1959 II, 311–322].

———1953–1959.Opere, U. M. I., Ed., 5 vols. Rome: Cremonese.
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Entfernung wirkenden Anziehungs- und Abstossungs-Kräfte. Leipzig, or inWerke, Königliche Gesellschaft der
Wissenschaften zu Göttingen, Ed., 12 vols. Göttingen, 1863–1933, 5: 194–242.

Green, G. 1828.An Essay on the Application of Mathematical Analysis to the Theories of Electricity and
Magnetism. Nottingham, or [Green 1871, 1–115].

———1835. On the Determination of the Exterior and Interior Attractions of Ellipsoids of Variable Densities.
Transactions of the Cambridge Philosophical Society(Read May 6, 1833), or [Green 1871, 187–222].

———1871.Mathematical Papers, N. M. Ferrers, Ed. London: Macmillan.

Helmholtz, H. 1853. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlicher Leitern mit
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———1863.Über das Gleichgewicht der Wärme und das der Elektricität in einem Körper, welcher von zwei
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