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Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures

James H. Davis,* Jesse James Clair, and Janos Juhasz
Department of Physics, University of Guelph, Guelph, Ontario, Canada

ABSTRACT There is broad interest in the question of fluid-fluid phase coexistence in membranes, in particular, whether
evidence for liquid-disordered (ld)-liquid-ordered (lo) two-phase regions or membrane ‘‘rafts’’ can be found in natural membranes.
In model membrane systems, such phase behavior is observed, and we have used deuterium nuclear magnetic resonance spec-
troscopy to map the phase boundaries of ternary mixtures containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), chain-
perdeuterated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC-d62), and cholesterol. For both this ternary model system
and the binary DPPC-d62/cholesterol sytem, we present clear evidence for ld-lo two-phase coexistence. We have selected
sample compositions to focus on this region of fluid-fluid phase coexistence and to determine its temperature and composition
ranges. The deuterium nuclear magnetic resonance spectra for compositions near the ld-lo phase boundary at high cholesterol
concentrations show evidence of exchange broadening or critical fluctuations in composition, similar to that reported by Vist and
Davis. There appears to be a line of critical compositions ranging from 48�C for a DOPC/DPPC-d62/cholesterol composition of
0:75:25, to ~�8�C for the composition 57:14:29. At temperatures below this two-phase region, there is a region of three-phase
coexistence (ld-lo-gel). These results are collected and presented in terms of a partial ternary phase diagram that is consistent
with previously reported results of Vist and Davis.
INTRODUCTION

Plasma membranes generally contain a large variety of lipids

differing in headgroup, chain length, and degree of chain

unsaturation. In model systems, the interactions between

cholesterol and phospholipid molecules strongly favor the

partitioning of cholesterol into domains rich in long saturated

chain lipids rather than into domains having predominantly

unsaturated lipids. It seems plausible that domains rich in

cholesterol and long-chain saturated lipids may exist at least

transiently in plasma membranes (1–3). It is also possible

that these domains may select among the different proteins

found in the plasma membrane, forming membrane rafts

where the cholesterol-rich phase has a significantly higher

degree of molecular order than the bulk membrane. These

coexisting domains are thought to correspond to the liquid-

ordered (lo) and liquid-disordered (ld) phases found in phos-

pholipid/cholesterol binary mixtures (4–6). Membrane rafts

extracted from plasma membranes using various detergents

contain a large proportion of long-chain saturated lipids

and high concentrations of cholesterol. Model membranes

having such lipid and cholesterol compositions are known

to form the liquid-ordered phase; thus, it is strongly believed

that membrane rafts, if they exist in vivo, will be in the lo
phase at physiological temperatures. Our own NMR experi-

ments on detergent-extracted membrane rafts show that these

particles are in the lo phase. Proof of the existence of

membrane rafts in vivo remains difficult. However, studies

of model systems provide a means of investigating the prop-

erties of coexisting ld and lo phases.
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That incorporation of cholesterol into model membranes

induces the formation of domains of two types, differing in

composition (i.e., it induces a lateral phase separation),

was first reported for binary mixtures of 1,2-di-d31-palmi-

toyl-sn-glycero-3-phosphocholine (DPPC-d62)/cholesterol

(4,7,8). In these mixtures, the cholesterol-rich phase has

become known as the lo phase and the cholesterol-poor phase

as the ld phase (the more familiar La or ‘‘fluid’’ phase). The

distinction between these two phases is based on their

different compositions and on the large difference in molec-

ular (hydrocarbon chain) order (4), a result of the well known

‘‘ordering’’ effect of cholesterol (4,9–12). The increased

molecular order results in an increase in membrane hydro-

phobic thickness (13) and membrane rigidity (11,14–16).

These two phases differ from the familiar ‘‘gel’’ solid-

ordered (so) phase primarily through their high degree of

molecular mobility. For example, both axial and lateral diffu-

sion rates are much higher in the ld and lo phases than in the

gel phase (4,5,17–22).

In deuterium (2H) NMR, the quadrupolar splittings are

proportional to the carbon-deuterium (C-D) bond order

parameters, making it easy to distinguish between phases

such as ld and lo on the basis of their very different quadru-

polar splittings. However, if the domains in the ld-lo two-

phase coexistence region in DPPC-d62/cholesterol are very

small, at the rates of phospholipid lateral diffusion character-

istic of these two phases, the molecules effectively sample

both environments on the 2H NMR timescale. In such

a case, rather than seeing distinct 2H spectra for the two

domains at temperatures and compositions within this two-

phase region, an exchange averaged spectrum would be

observed (4,6). On the other hand, as discussed previously

(4,8,12,23–25), it is also possible that the compositions
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showing ld-lo phase coexistence are so close to a critical mix-

ing point that rapid fluctuations in composition lead to broad-

ening of the spectra. The 2H NMR spectra reported here at

higher cholesterol concentrations (near 30 mol %) and at

higher temperatures have shown evidence of one or both

of these effects. Additional careful experimentation and

analysis will be required to distinguish between these two

phenomena.

Recently, fluorescence (26–40) and NMR (24,25,33,

40–43) studies of ternary mixtures such as 1,2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC)/DPPC/cholesterol or

1-palmitoyl,2-oleoyl-sn-glycero-3-phosphocholine/sphingo-

myelin/cholesterol have found evidence for large, stable

domains of coexisting lo and ld phases over wide temperature

and composition ranges. The key requirement for such

mixtures to phase-separate in this manner seems to be a strong

differential interaction between cholesterol and the two lipids.

The preference of cholesterol for saturated chain lipids results

in the formation of a highly ordered, cholesterol-rich phase

containing a large proportion of the saturated lipid and

a much more disordered, cholesterol-poor phase with a corre-

spondingly high concentration of unsaturated lipid. Fluores-

cence microscopy on giant unilamellar vesicles using dyes

that partition preferentially into one phase or the other has

shown that these domains are very large and persist indefi-

nitely (although the domains may slowly aggregate, often

forming two very large domains, one for each of the two co-

existing phases) (28,31,34,38,39). Already a broad range of

experimental and theoretical approaches have been used to

begin to map the phase boundaries in these ternary mixtures,

and the coexistence of lo and ld phases is well established by

fluorescence, NMR, electron paramagnetic resonance (EPR),

x-ray diffraction, and atomic force microscopy measurements

(24,25,27–29,31,33–36,38,42,44–54).

There are limitations associated with each technique, so

it is important to examine these systems from many

different perspectives. Fluorescence microscopy requires

that the domains be large to be visualized. Thus, fluores-

cence microscopy is unable to detect the ld-lo two-phase

region in binary DPPC/cholesterol mixtures. This tech-

nique also requires the use of fluorescence-labeled probes,

which have been shown to influence the phase behavior

being observed (40). The method of preparing giant unila-

mellar vesicles may also result in a heterogeneous distribu-

tion of vesicle compositions, which makes an accurate

description of phase equilibria difficult. EPR also requires

the use of spin-labeled probes, but these are somewhat less

perturbing than the fluorescence probes usually used.

Nonetheless, EPR probes may differentially partition

among the available phases, making quantitative analysis

more difficult. EPR benefits from having a spectroscopic

timescale much shorter than that of NMR (typically 10�9

s for EPR compared to 10�4 s for 2H NMR). Thus, using

EPR allows the observation of more short-lived states,

where NMR would show only an average. 2H NMR makes
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use of the relatively nonperturbing replacement of 1H by
2H, allowing straightforward quantitative analysis of even

multicomponent spectra. Using lipids with perdeuterated

chains results in a shift of the melting (gel-to-ld) transition

to lower temperatures by ~4�C (4,55). This effect must be

taken into account in comparing a phase diagram deter-

mined by 2H NMR of perdeuterated lipids with those

determined by other techniques. The spectroscopic time-

scale of 2H NMR is rather long, so exchange of molecules

between small coexisting domains or local fluctuations in

composition may lead to an averaging of the spectra.

This effect is very pronounced in DPPC-d62/cholesterol

mixtures and, as described below, is observed at higher

temperatures even in the ternary DOPC/DPPC-d62/choles-

terol mixtures discussed here.

In the analysis of the phase equilibria of multicomponent

systems, tie-lines cross regions of two-phase coexistence in

such a way that all compositions along a tie-line are simply

varying proportions of the same two types of single-phase

domains, having compositions given by the endpoints of the

tie-lines. Tie-lines can be determined experimentally in

a number of ways provided that one has at least two

samples with compositions along the tie-line. Determining

tie-line endpoints establishes the phase boundaries of the

two-phase coexistence regions. Because they provide a quan-

titative measure of the amounts of the two phases, spectro-

scopic techniques such as 2H NMR (4,33,56) and EPR (48)

are particularly well suited to determination of tie-line

endpoints.

The coexistence of ld and gel phases is well established in

a wide variety of two-component lipid or lipid/cholesterol

mixtures. The large differences between the spectra (either
2H NMR or EPR) in these two phases makes quantitative

measurement of the amount of each phase straightforward.

Since both the lo and gel phases are characterized by similar

degrees of molecular (chain) order, it is more difficult to

establish and quantitate the coexistence of these two phases.

As discussed above, the primary difference between the

lo and gel phases is in the timescale and symmetry of the

molecular motions. Nonetheless, quantitative analysis of

the spectra can still provide a clear description of this two-

phase coexistence region (4,5).

In two-component systems, such as DPPC-d62/choles-

terol, one can see three phases in equilibrium at only a single

temperature. Such a three-phase line was reported by Vist

and Davis (4). In a three-component system, however, three

phases can coexist over a broad temperature/composition

range. Such a three-phase region should exist in the

DOPC/DPPC-d62/cholesterol mixtures considered here, but

so far there is little direct evidence for three phases in equi-

librium (de Almeida et al. (52) recently reported observing

three coexisting phases, but in only one particular vesicle,

and Veatch et al. (25) attempt to decompose the 2H NMR

spectra into three independent components in an effort to

demonstrate three-phase coexistence).
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Below, we describe our 2H NMR investigations of the

DOPC/DPPC-d62/cholesterol ternary-phase diagram. We

have focused on the composition range where fluorescence

studies have identified regions of stable two-phase ld-lo coex-

istence (31). Our samples consist of mixtures of DOPC, chain

perdeuterated DPPC-d62, and cholesterol, and were studied

over the temperature range from 0 to 50�C. We have also

repeated one of the compositions previously studied by Vist

and Davis (4), that with a DPPC-d62/cholesterol ratio of 3:1,

because the original files have been lost. We have found

that, at that composition, there is a narrow range of tempera-

tures (from 38 to 42�C) where the 2H NMR spectra clearly

show two-phase coexistence. Previously, two-phase coexis-

tence in this binary mixture had to be inferred from the inter-

mediate exchange averaging of the spectra (4).

In the next section we describe the samples, the method of

preparation, and the methods of analysis (including spectral

subtraction and moment analysis). We then present our

experimental results and analyze them in terms of a partial

temperature/composition phase diagram. Finally, we present

suggestions for clarifying some of the unresolved issues

which are raised here.

MATERIALS AND METHODS

Sample preparation

DOPC was obtained from Avanti Lipids (Alabaster, AL) and used without

further purification. DPPC-d62 was synthesized using the procedure of Gupta

et al. (57). Cholesterol was obtained from Sigma-Aldrich (St. Louis, MO) and

twice recrystallized from ethanol before use. Stock solutions of DOPC

(2.5 mg/mL), DPPC-d62 (2.5 mg/mL), and cholesterol (2.5 mg/mL) in ethanol

were used to prepare a set of 18 samples with DOPC/DPPC-d62/cholesterol

molar proportions of 45:45:10, 24:56:20, 32:48:20, 40:40:20, 48:32:20,

56:24:20; 0:75:25, 15:60:25, 22.5:52.5:25, 30:45:25, 37.5:37.5:25,

45:30:25, 52.5:22.5:25; 21:49:30, 28:42:30, 35:35:30, 42:28:30, and

49:21:30. The appropriate volumes of stock solution for each sample were

mixed in a small, round-bottomed flask and the solvent was removed by rotary

evaporation. Residual ethanol was removed under vacuum overnight at

room temperature. Ethanol was chosen as a solvent because of the similar

solubility of all three components in ethanol (4,7). This minimizes the degree

of separation of the three components under solvent evaporation, improving

the homogeneity of the resultant three-component mixture.

It is common practice to mix lipids and cholesterol using chloroform. As

reported by Vist (7) and Vist and Davis (4), the use of chloroform can result

in significant sample heterogeneity upon rotovapping or freeze-drying, espe-

cially at higher cholesterol concentrations (58,59). To quantitate this effect

we carefully prepared mixtures of DPPC and cholesterol for comparison,

using either chloroform or ethanol. 1H solution NMR (at 300 K) was used

to quantitate the cholesterol/DPPC ratios by integrating several separate

peaks arising from the two components. Specifically, these were the choles-

terol methyl resonance at 0.74 ppm, the DPPC glycerol-c2 proton at

5.26 ppm, the cholesterol H-6 peak at 5.36 ppm, and the DPPC g-(CH3)3

peak at 3.24 ppm, all chemical shifts measured with respect to the d4-meth-

anol methyl peak at 3.32 ppm (assignments of cholesterol peaks are from

Muhr et al. (60)).

A mixture of ~75 mg DPPC and cholesterol, having nominally 31.65%

cholesterol, was dissolved in ethanol and another mixture, having nominally

29.48% cholesterol, was dissolved in fresh, dry chloroform. The two

mixtures were separately rotovapped to dryness in pear-shaped flasks and

then placed under vacuum (in a lyophilizer) for at least 8 h to remove all
residual solvent. Samples of the films, deposited on each of the two flasks

by rotary evaporation, were taken from four different locations: 1), the

very bottom (center) of the flask; 2), the thickest portion of the film (corre-

sponding to the last location to be dried); 3), the very edge of the film (the

thinnest part of the film); and 4), an area well separated from the other three

areas. Each of these samples contained ~5 mg of DPPC/cholesterol mixture.

If the two components of the mixture precipitate at the same rate during

solvent evaporation, then all areas of the film will have the same nominal

composition. If the two components partially phase-separate during evapo-

ration, we will see a variation in composition. The resulting heterogeneity

will persist during subsequent hydration.

Each of the four areas sampled from the two films were then redissolved

in d4-methanol for analysis by solution NMR. The samples extracted from

the ethanol solution had compositions of 31.67 5 0.05, 31.68 5 0.05,

30.84 5 0.2, and 30.80 5 0.2% cholesterol. Those from chloroform had

compositions of: 27.74 5 0.3, 27.85 5 0.3, 30.36 5 0.4, and 29.60 5

0.2% cholesterol. The average composition from ethanol is 31.25%, with

a range of 50.44%, whereas from chloroform we found an average compo-

sition of 28.89% and a range of 51.31%. There is a threefold increase in the

width of distribution of sample compositions when chloroform is used

instead of ethanol. Although the small number of samples used, and their

relatively large size, underestimate the full range of sample heterogeneity

in each mixture, the results give a clear indication of the relative merits of

these two solvents. The increased sample heterogeneity when chloroform

is used will broaden the 2H NMR spectra and the phase boundaries observed

in such mixtures and affect the interpretation.

We also observed, in solution NMR experiments in d-chloroform, that

if precautions are not taken to ensure the dryness of the chloroform, the
1H NMR spectra show multiple environments for both cholesterol and

DPPC. It is presumed that these arise from association of small amounts

of water (initially in either the chloroform or the lipid) with the lipid and

cholesterol, leading to formation of colloidal particles (or local microdo-

mains) within the solution. In such a case, the problem discussed above

is much more severe. A solvent such as ethanol, in which water is freely

miscible, will perform much better than one with limited water solu-

bility.

After all the ethanol was removed, the samples were hydrated at room

temperature in a snap-cap centrifuge tube with 50 mM potassium phosphate

buffer, pH 7.0, at a total dry lipid weight to buffer volume ratio of 4:3. The

total amount of lipid (DOPC, DPPC-d62, and cholesterol) was varied to

provide ~20 mg of DPPC-d62 in each sample. The hydrated mixture was

then carefully mixed by hand using a small glass stirring rod. During the

mixing process, samples were routinely heated to 50�C to fluidize the

mixture and speed the mixing process. After stirring, the sample was centri-

fuged back to the bottom of the snap-cap vial and the process was repeated

until the sample was homogeneously hydrated. The mixture was then trans-

ferred to short 4-mm glass NMR tubes by gentle centrifugation. Samples

were sealed using a small red rubber stopper and weighed before and after

use. There was no evidence of any water loss in any of the samples over

the time course of the experiments. Samples were also tested by 1H solution

NMR for any evidence of sample degradation (formation of lyso-PC). We

were unable to detect any sign of lyso-PC in our samples, with an upper limit

of 0.5%. At the beginning of the NMR experiments, each sample was first

heated to at least 50�C, where spectra were taken to assess the homogeneity

of the sample. Only then did we begin the temperature-dependence experi-

ments. These were all performed by sequentially lowering the sample

temperature in small steps to the point desired, taking a new spectrum at

each temperature. For example, a spectrum is taken at 50�C, then the temper-

ature is lowered to 48�C and another spectrum is taken, then the temperature

is lowered to 46�C, etc. The NMR spectra in the fluid phase (see Figs. 3

and 4 for examples) are characteristic of a fluid ld phase and are representa-

tive of all of the samples.

After completing the temperature-dependence experiment on several of

the samples, and freezing the samples for storage, we put the samples

back into the magnet to repeat a few measurements, adding a few new

Biophysical Journal 96(2) 521–539
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temperatures. In doing so, we found that the lineshape had sharpened notice-

ably. Initially, we thought that the freeze-thaw cycle had caused this change,

so we repeated the measurements we had made, and all subsequent samples

were subjected to this single freeze-thaw cycle. Typically, a sample was

stored 1–3 days at �20�C before doing the NMR experiments. (The first

few samples had been stored for as long as 3 months at �20�C.) It turns

out that lengthening of the lineshape is most pronounced for those samples

with the longest exposure to the magnetic field and that in samples for which

the NMR experiments took only 2–3 days there was no noticeable effect.

It is likely that prolonged exposure to the strong magnetic field caused

some slight orientation of some of the samples, resulting in slightly sharper

90� edges and weaker shoulders (61,62). We observed no significant

difference in the quadrupolar splittings or in the phase behavior. Spectral

subtractions performed on spectra obtained before the freeze-thaw cycle

are consistent with those from spectra obtained after the freeze-thaw cycle.

In a separate series of experiments we prepared a series of mixtures of

DOPC and DPPC-d62 in order to obtain the phase boundaries for this

mixture (M. Boudreau, L. Schmidt, J. H. Ziani, and Davis, University of

Gulph, personal communication, 2008). Samples were prepared as described

above at DOPC/DPPC-d62 ratios: 1:19, 1:9, 3:7, 4:6, 5:5, 6:4 and 7:3. The

preliminary results of this study have been incorporated into the phase

diagram presented here.

2H nuclear magnetic resonance

All NMR experiments were performed on a 500-MHz wide-bore Bruker

(Milton, Ontario, Canada) Avance II spectrometer at a 2H NMR frequency

of 76.77 MHz. The quadrupolar echo sequence (55,63) consists of two 90�

pulses, with the second pulse phase-shifted by 90� with respect to the first

pulse. The pulses were 1.8 ms in length and were separated by an echo delay

of 21 ms for all acquisitions. This relatively short echo delay time was used to

minimize the effects of differential relaxation (since components character-

istic of the three phases lo, ld, and gel (so) may have differing T2s). The short

90� pulse length minimizes spectral distortion and loss of intensity of the

broad deuterium NMR lineshapes characteristic of the liquid-ordered and

gel phases (55,64). One cannot overemphasize the importance of short pulse

lengths and short refocusing delays in 2H NMR spectroscopy. Very serious

systematic errors will be made if the pulse lengths are much longer than

those used here. For moment analysis and spectral subtraction, these factors

and the flatness of the baseline are absolutely crucial. Typically, a total of

4096 scans were acquired for each spectrum using a recycle delay of 3 s.

Cyclops phase cycling was used to minimize receiver channel asymmetry

(65,66) and to improve the spectrum baseline by minimizing artifacts occur-

ring after the pulses (55,63,66). The time domain quadrupolar echo signal

was symmetrized (postacquisition) about the echo maximum so that there

was always a data point precisely at the echo maximum (corresponding to

t ¼ 0) (66,67). The data points before the top of the echo were discarded

and the remaining points were Fourier transformed, producing a frequency

domain spectrum with an optimally flat baseline.

Spectral subtractions

In two-component mixtures, tie-lines in two-phase coexistence regions are

isotherms. If, at a given temperature, several sample compositions give two-

component spectra showing the coexistence of two phases, these spectra

consist of differing amounts of two subspectra (or endpoint spectra) character-

istic of the two phases in equilibrium. These samples lie on a tie-line that

crosses the two-phase region and terminates at the phase boundaries

(endpoints). Linear decomposition of the composite spectra, by subtracting

a fraction of one two-component spectrum from another, can yield the endpoint

spectra. Analysis of the amounts of each spectrum that must be subtracted

from another to yield an endpoint spectrum will give the endpoint composi-

tions (4,12,56). To obtain accurate endpoints using such an analysis, it

is crucial to have undistorted, unrelaxed spectra; otherwise, the relative

fractions of the two components deduced by the subtraction process will be

incorrect.
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In three-component mixtures, tie-lines in two-phase coexistence regions

also lie within the isothermal plane, but their direction within that plane

bears no obvious relation to the composition axes and must be determined

experimentally. Furthermore, as the temperature is varied, the direction of

the tie-lines will also vary, reflecting the changing shape of the two-phase

coexistence region with temperature. Even within the isothermal plane,

the tie-lines within a two-phase region need not be parallel (though they

cannot cross). For these reasons, it cannot be expected that any particular

set of samples will lie on a tie-line for a broad range of temperatures.

However, for small temperature ranges it is possible that a well chosen set

of samples will lie approximately on the tie-lines, and that spectral subtrac-

tion techniques can be used to obtain the endpoint spectra and endpoint

sample compositions. Even if two (or more) sample compositions do not

lie precisely on a given tie-line it may still be possible to perform subtrac-

tions and approximately determine the endpoints. Inspection of the spectra

(see below) allows one to determine whether the tie-line through a given

sample lies above (e.g., at higher cholesterol concentration) or below

a second sample composition. Thus, even if the tie-line doesn’t pass directly

through two or more samples, it provides valuable information that can be

used in constructing the phase diagram.

If two or more sample compositions lie precisely on a tie-line, the accu-

racy of the spectral subtraction procedure is determined by the fidelity of

the experimental spectra. Factors such as signal/noise ratio and differential

relaxation among the component spectra lead to uncertainty in the determi-

nation of the endpoint spectra. The estimated uncertainty for the values of K

and K0 are a measure of our ability to tell whether we have subtracted too

much or too little of a given spectrum from another. If the sample composi-

tions are not precisely on a tie-line, the subtraction process itself is imperfect,

which will lead to an increased systematic error in determining the endpoint

spectra and, consequently, the endpoint compositions. This increased uncer-

tainty shows up immediately as an increased difficulty in determining the

values K and K0 (see below) of one spectrum, which must be subtracted

from another to obtain an endpoint spectrum characteristic of either of the

one-phase regions at the boundary with the two-phase coexistence region.

It is clear that if the spectra are not precisely on the same tie-line, but are

close, then using them in subtractions will still provide useful estimates of

the endpoint locations but that there will also be a significant systematic error

that is difficult to determine quantitatively. To help deal with the subjective

nature of the subtraction procedure, we performed two independent sets of

pairwise subtractions (two different individuals) and took the average of

the two determinations, adding the difference between them in quadrature

to the estimated uncertainty.

Scaling, or interpolation, of one or both spectra so that the splittings of one

or the other of the component spectra match more closely (25,37) may make

it seem easier to subtract spectra, but it introduces another systematic error,

since the spectra being subtracted do not contain the appropriate ‘‘amount’’

of each phase (since the distance from each spectrum to the two endpoints

along its own tie-line must be unique). This will give incorrect values for

the endpoint concentrations. Depending on how close the sample whose

spectrum has been scaled is to the phase boundary, and the relative slopes

of the tie-line and the phase boundary, the error introduced by this process

can be substantial. In our view, it is better to use the spectra as they are,

keeping in mind the potential systematic error due to the changes in tie-

line slope with temperature.

For two spectra, SA and SB, from samples of compositions A and B within

an ld-lo two-phase coexistence region, where both spectra lie on the same tie-

line, the spectra can be decomposed as

SA ¼ fA � Sld þ ð1� fAÞ � Slo ; (1)

SB ¼ fB � Sld þ ð1� fBÞ � Slo ; (2)

where fA and fB are the fractions of samples A and B that are in the fluid

or ld phase. We can then easily form linear combinations (subtractions) that

yield the two endpoint spectra



Sld ¼ S
0

A � K � S
0

B; (3)

where S0A and S0B are the experimental spectra normalized to unit area, and

assuming that S0A has a larger ld fraction than S0B, and

Slo ¼ S
0

B � K
0 � S

0

A: (4)

The values of K and K0 are used to determine the endpoint concentrations.

As illustrated in Fig. 1, the position of a given sample composition along the

tie-line and the lever rule are used to determine the amount of sample in each

of the two coexisting phases, where

aA ¼
Xlo � XA

Xlo � Xld

(5)

is the amount of sample A that is in the ld phase and

aB ¼
Xlo � XB

Xlo � Xld

(6)

is the amount of sample B in the ld phase. The fractions are given by the

ratios of the lengths of the line segments along the tie-line, as shown in

Fig. 1. When these line segments are projected onto the composition axes,

we see that the ratios of the composition differences can also be used to

determine these fractions. Thus,

aA ¼
xlo � xA

xlo � xld

¼ ylo � yA

ylo � yld

¼ zlo � zA

zlo � zld

; (7)

where XA ¼ [xA, yA, zA], etc., and xA is the molar concentration of DOPC,

yA is the molar concentration of DPPC-d62, and zA is the cholesterol concen-

tration of sample A.

Of course, the decomposition of the 2H NMR spectra into its component

spectra is determined by the partitioning of the DPPC-d62 between the two

phases. Thus, the component of the spectrum arising from the ld phase in

sample A at any given temperature depends not only on the amount of sample

in the ld phase but also on the concentration of DPPC-d62 in that phase:

fA ¼ aA

yld

yA

: (8)

One could write analogous expressions for the other sample components.

Inserting the expression for fA into Eq. 1 and then solving Eqs. 3 and 4

for K and K0,

K ¼ aAyB

aByA

¼
�
ylo � yA

�
yB�

ylo � yB

�
yA

(9)

and

K
0 ¼ ð1� aBÞyA

ð1� aAÞyB

¼
�
yB � yld

�
yA�

yA � yld

�
yB

: (10)

These expressions can be easily solved to give the endpoint DPPC-d62

concentrations:

ylo ¼
ð1� KÞyAyB

yB � KyA

(11)
and

yld ¼
�
1� K

0�
yAyB

yA � K 0yb

(12)

Using the alternate forms for aA and aB (Eq. 7), we can solve for the

endpoint concentrations of DOPC and cholesterol as well:

xlo ¼
KxByA � xAyB

KyA � yB

xld ¼
xByA � K

0
xAyB

yA � K 0yB

; (13)

and

zlo ¼
KzByA � zAyB

KyA � yB

zld ¼
zByA � K

0
zAyB

yA � K0yB

: (14)

For a three-component system, it is possible for three phases to coexist over

a finite composition and temperature range. At fixed temperature, the phase

boundaries between this three-phase region and the neighboring two-phase

region are two-phase lines. Since these two-phase lines connect endpoint

one-phase regions on either side of the two-phase region, they are tie-lines

(which must be straight lines). Thus, the three-phase region is bounded on

three sides by straight lines and, consequently, is triangular in shape. The

composition of any point within this three-phase region is given by the

center-of-mass rule (68). Thus, an NMR spectrum at a temperature for which

a sample has a composition lying within a three-phase region will consist of

a superposition of three components, each one characteristic of one of the

three phases. If one has spectra from three or more samples that all have

compositions within the three-phase region at a single temperature, then, in

principle, the amount of each of the three components can be determined by

three-way spectral subtractions analogous to the preceding analysis of two-

component spectra. Veatch et al. (40) use a related analysis method to find

the vertices of the three-phase triangle at three temperatures. We will discuss

their results in the concluding section of this article. We will not pursue this

point further at this time, since it will not prove necessary for the analysis.

Moment analysis

The moments of the 2H NMR spectra provide a powerful quantitative means

of characterizing the degree of molecular order under the conditions of the

experiment. The nth moment of the spectrum is defined, for symmetric 2H

NMR spectra, by

Y               (mol %)DPPC

0 20 40 60 80 100

Xld

XloXA

Z               (m
ol %

)

Cholesterol

0

20

40

60

80

100

X   =  [x         , y         , z                ]A DOPC DPPC Cholesterol

X 
   

   
   

   
  (

m
ol

 %
)

D
O

PC

0

20

40

60

80

100

FIGURE 1 Example of the use of tie-lines to define end-point concentra-

tions in two-phase coexistence regions. The intersections of the dashed lines

with the composition axes give the compositions at the endpoints. The

composition of any sample within the three-component triangle is given

by the three mole fractions XDOPC, YDPPC-d62, and Zcholesterol.
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Mn ¼
1

A

Z N

0

unf ðuÞdu; (15)

where f(u) is the function describing the spectrum lineshape, u is the angular

frequency measured relative to the center of the spectrum (i.e., these are

‘‘central moments’’), and

A ¼
Z N

0

f ðuÞdu

is the area of the spectrum (actually, half the area of the symmetric spectrum

(55)). In calculating the moments from the experimental spectrum, we first

determine an upper (lower) limit in frequency beyond which there is no

spectral intensity (uN) and then integrate first from 0 to þuN, i.e., in the

positive direction, then from 0 to –uN, and add the magnitudes of the two

results, giving the average over both halves of the symmetric spectrum.

If the molecules undergo rapid axially symmetric reorientation (i.e., rapid

with respect to the 2H NMR timescale), then the nth moment is proportional

to the average of the nth power of the quadrupolar splitting (or of the nth

power of the C-D bond order parameter SCD) (55). The first moment, M1,

is then proportional to the average C-D bond order parameter, SCD.

M1 ¼
4p

3
ffiffiffi
3
p
�

3e2qQ

4h

��
SCD

�
; (16)

where (3e2qQ/4h) ¼ 126 kHz is the quadrupolar coupling constant for 2H.

Based on this, we have often used the parameter

D2 ¼
M2

1:35M2
1

� 1 ¼
�
S2

CD

�
�
�
SCDi2�

SCDi2
(17)

as a measure of the width of the distribution of quadrupolar splittings. For

example, for a spectrum consisting of a single powder pattern (i.e., having

a single quadrupolar splitting) the quantity D2 would be 0 (55,56,69). This

provides an easy way to detect coexisting phases that have different degrees

of molecular order, since in such a case D2 would differ significantly from 0.

As we will see, a sudden increase in D2 with temperature signals the begin-

ning of a two-phase or three-phase coexistence region.

The C-D bond order parameters can be used to estimate the length of the

lipid chains (70,71) through the relation

�
L
�
¼ 1:25

(
N

2
þ
X

i

Si
CD

)
; (18)

where N is the number of carbon-carbon bonds in the lipid chain and the sum

is over all carbons (except the carbonyl) with C-D bond order parameters

SCD
i. In the all-trans configuration, all of the C-D bond order parameters

are equal to 1/2. In that case, the chain length is just L ¼ 1.25N. If it is

assumed that the molecular volume of a lipid is constant, then changes in

chain length can be related to changes in lipid cross-sectional area. Then

the temperature coefficient of area expansion is given by

KT ¼
1

A

dA

dT
¼ �1:25N

hLi
dhSCDi

dT
: (19)

RESULTS AND DISCUSSION

Ternary mixtures of DOPC, DPPC-d62, and cholesterol,

when fully hydrated, can exist in at least three distinct phases

as temperature and composition are varied. These are the

liquid-disordered (ld or fluid) phase, the liquid-ordered (lo)

phase, and the gel (so) phase. There are likely to be other

Biophysical Journal 96(2) 521–539
phases formed at high cholesterol concentrations (we only

examine samples of up to 30 mol % cholesterol), or at low

hydration (our samples are fully hydrated). The 2H NMR

spectra of chain perdeuterated lipids in these three phases

are quite different, allowing them to be used in determining

phase boundaries and regions of phase coexistence. Fig. 2

shows spectra representative of these three phases. The spec-

trum in Fig. 2 a is typical of the model bilayer ld phase. Each

labeled chain position contributes its own powder pattern to

the spectrum, with a quadrupolar splitting representative of

the local carbon-deuterium bond order parameter, SCD, at

that position. The hydrocarbon chain flexibility gradient

gives rise to the characteristic shape of the perdeuterated

lipid spectrum (55). In the ld phase, the lipid chains have

a relatively high population of gauche conformers and

gauche-trans isomerization is very rapid. The lipid mole-

cules also undergo rapid axially symmetric reorientation

about the bilayer normal (72,73) and rapid lateral diffusion

(20). This high degree of mobility is consistent with the rela-

tively loose packing of the chains within the bilayer, having

a mean spacing of ~4.6 Å and with a relatively broad

a

c

b

FIGURE 2 2H NMR spectra representative of three phases: (a) typical

ld phase of the DPPC-d62 bilayer above 37.75�C; (b) lo phase at 36�C
of DPPC-d62/cholesterol at a molar ratio of 75:25; and (c) gel phase

of DPPC-d62 below 37.75�C.
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distribution of packing distances as shown by x-ray diffrac-

tion methods (42,74).

Fig. 2 b shows a spectrum representative of the lo phase

found at cholesterol concentrations>~20 mol % (this sample

is for a binary mixture of 75 mol % DPPC-d62 and 25 mol %

cholesterol). The overall shape of the spectrum is very

similar to that of the ld phase (Fig. 2 a). The principal differ-

ences between the spectra in the ld and lo phases are that the

quadrupolar splittings for each position on the chain are

considerably larger in the lo phase than in the ld phase and

that the methyl groups on the two chains are inequivalent

in the lo phase (that of the sn-2 chain having a larger quad-

rupolar splitting than that of the sn-1 chain). The methyl

group inequivalence is a useful indication of the presence

of the lo phase. In the lo phase, the lipid chains have a reduced

population of gauche conformers so that the chains are more

extended, approaching the all-trans conformation at low

temperatures (4). The molecules still undergo rapid axially

symmetric reorientation about the bilayer normal, giving

rise to the spectrum’s axially symmetric lineshape (18,75).

The rate of lateral diffusion is significantly reduced, however

(20). Hydrocarbon chain packing in the lo phase varies with

the degree of chain order, being comparable to the ld phase at

higher temperatures but approaching that of the gel phase,

4.2 Å, at lower temperatures (42,76). Both Karmakar and

Ragunathan (76) and Clarke et al. (42) report an increase

in chain packing distance from 4.2 to >4.9 Å as cholesterol

concentration is increased from 20 mol % (gel phase) to

60 mol % (lo phase).

Fig. 2 c shows the spectrum found in the gel phase. The

unusual bell shape arises from the intermediate-timescale

motions characteristic of this phase. In the ld and lo phases,

the molecules undergo rapid axially symmetric reorientation

about the bilayer normal, giving rise to the axially symmetric

powder-pattern lineshapes. In the gel phase, this motion is

significantly slower, leading to the spectrum’s characteristic

shape (8,55,72,73,77). Since the shape of the gel phase
2H NMR spectrum is strongly influenced by the timescale

and nature of the motions in that phase, and since these

motions themselves are sensitive to the temperature and

composition of the sample, it is not surprising that the gel-

phase spectrum changes significantly as the temperature

and sample composition are changed. In addition, it is well

known that the gel phase of pure phospholipid dispersions

(such as DPPC/water) exhibits a transition from a rippled

phase (Pb
0) to a nonrippled, tilted phase (Lb

0) near 28�C
(74) and, at lower temperatures, a ‘‘subtransition’’ to

a more tightly packed subgel phase (78,79). Thus, the phase

behavior observed at low temperature may be somewhat

more complicated than that presented here. When dealing

with the low-temperature ‘‘solid ordered’’ (so) phase, we

will simply refer to it as the gel phase, whether it is Pb
0, Lb

0,
or some other highly ordered, solidlike hydrated lipid bilayer

phase. A more complete phase diagram will have to address

the boundaries between these different gel or solid phases.
Fig. 3 shows the variations that occur in the 2H spectra for

two different sample compositions as the temperature is low-

ered from 40 to 0�C. Fig. 3 a is for the DOPC/DPPC-d62/

cholesterol molar composition 40:40:20, whereas Fig. 3 b is-

for the composition 35:35:30. At 30�C and above, both

samples appear to be in a well defined ld phase. At 28�C,

the sample with 20 mol % cholesterol is clearly in a two-

phase, ld-lo coexistence region. The relative areas of the

two components in the spectrum indicate that roughly equal

amounts of DPPC-d62 are in each of the two phases.

At 28�C, the sample with 30 mol % cholesterol appears to

be still in the ld phase, although one can notice a slight broad-

ening of the component powder patterns (this effect is notice-

able even at higher temperatures for this sample). This broad-

ening suggests that at this sample composition the system is

showing evidence of intermediate-timescale phospholipid

exchange between small domains of differing composition

or, equivalently, of intermediate-timescale fluctuations in

local sample composition (4,6,25). At 26�C, this effect

becomes very clear and we see a spectrum at 30 mol %

cholesterol characteristic of intermediate-timescale fluctua-

tions. At this temperature and composition, we are close to

a b

FIGURE 3 2H NMR spectra of DOPC/DPPC-d62/cholesterol ternary

mixtures at (a) 40:40:20 mol % and (b) 35:35:30 mol % versus temperature

from 0 to 40�C. Notice the appearance and growth of the bell-shaped gel

phase component at lower temperatures.
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(probably slightly below) the boundary between the ld phase

and the two-phase, ld-lo coexistence region.

If the broadening is due to exchange of molecules between

domains due to lateral diffusion (whether of cholesterol or

phospholipid), it is easy to estimate the upper limit on

domain size where this effect would be important. The rele-

vant spectroscopic timescale is determined by the different

quadrupolar splittings in the two types of domain. From

Fig. 3, one can see that the ld phase domains have a typical

quadrupolar splitting of 32 kHz (the main 90� shoulder),

whereas the lo domains have a splitting of ~51 kHz. Half

of this difference (which represents the difference in reso-

nance frequency for lipids in the two domains) is Dn z
6.5 kHz. This defines the timescale as t z 1/2pDn z
25 ms. Using diffusion constants typical of the ld and lo
phases (from 6 � 10�12 to 2 � 10�12 m2/s (77)), from the

relation <r2> ¼ 4Dt, we estimate a maximum domain

size of ~250 nm. Domains that are smaller than this will

show evidence of exchange broadening, whereas domains

significantly larger than this will not. This agrees well with

the results of fluorescence microscopy, which is unable to

detect domains for conditions under which 2H NMR spectra

show evidence of exchange broadening. Whether one wishes

to explain the broadening of the spectra by diffusion between

small domains or local fluctuations in composition (either of

which leads to the molecules sampling different environ-

ments on the spectroscopic timescale), the effect is the

same, a broadened spectrum and an enhanced T2e relaxation

rate (see below).

At 26�C, the sample with 20 mol % cholesterol (Fig. 3 a) is

still within the two-phase coexistence region, but the propor-

tion of lo phase has increased at the expense of that of the ld
phase. This process continues for this sample as the tempera-

ture is lowered to 24�C, and the sample with 30 mol % choles-

terol now also shows a clear two-phase, ld-lo coexistence. For

this sample, the proportion of ld phase is much smaller than for

the sample with 20 mol % cholesterol, as expected, since the

lo phase is rich in cholesterol. As the temperature is lowered

further, the amount of lo phase continues to increase while

that of the ld phase decreases. The persistence of the narrowest

methyl group component in the spectrum, indicative of the

presence of the ld phase, shows that some small fraction of

the DPPC-d62 remains in the ld phase even to quite low

temperatures. Of course, DOPC remains in the fluid or ld
phase until ~�20�C (81,82), and some of the DPPC-d62 parti-

tions into this phase (and we will see that some of the choles-

terol is in this phase as well).

At 16�C and below, the spectra for the 20 mol % choles-

terol sample begin to show evidence of a gel-phase compo-

nent while still containing both ld and lo phase components.

Thus, we may have entered a region of three-phase coexis-

tence, ld-lo-gel. The sample with 30 mol % cholesterol stays

in the two-phase region until ~10�C and below, where it also

appears to enter a three-phase region. Below these tempera-

tures, we continue to see possible three-phase coexistence,

although it is becoming difficult to distinguish visually the

presence of the lo phase. We will see below that a moment

analysis of the spectra can help to more accurately define

the three-phase coexistence region.

It is also useful to inspect the variation in the 2H NMR

spectra with sample composition at a fixed temperature.

For example, Fig. 4 shows the 2H spectra at 26�C for nine

a b c

d e f

g h i

FIGURE 4 2H NMR spectra of nine different sample

compositions at 26�C. DOPC/DPPC-d62/cholesterol molar

proportions: (a) 42:28:30, (b) 35:35:30, (c) 28:42:30, (d)

45:30:25, (e) 37.5:37.5:25, (f) 30:45:25, (g) 48:32:20, (h)

40:40:20, and (i) 32:48:20. The three spectra in the upper

left corner (spectra a, b, and d) show evidence of either

intermediate exchange between ld and lo domains or inter-

mediate-timescale fluctuations in composition.
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different sample compositions. The higher cholesterol

concentrations are at the top of the figure, the higher

DPPC-d62 concentrations are on the right, and the higher

DOPC concentrations are on the left. At this temperature,

the NMR spectra of the sample compositions shown in

Fig. 4 that are on the diagonal (running from lower left to

upper right) or below are well within the two-phase ld-lo
coexistence region. The proportion of the lo phase is larger

for larger cholesterol and larger DPPC-d62 concentrations,

whereas that of the ld phase is larger for larger DOPC and

smaller cholesterol concentrations.

The three spectra above this diagonal show evidence of

intermediate-timescale exchange between small domains or

fluctuations in local composition. It is clear that there is

a phase boundary running close to the sample compositions

that are one above the diagonal at this temperature. Fig. 5

shows the 2H NMR spectra for the same set of samples at

22�C. Now, only the spectrum in the upper left corner of

this array shows signs of exchange broadening; all of the

others are clearly within the two-phase region. The phase

boundary between the ld phase and the two-phase, ld-lo coex-

istence region has moved toward higher DOPC and higher

cholesterol concentrations. As one would expect, as the

temperature is lowered and the DPPC-d62 concentration is

increased, the proportion of lo phase increases.

At 10�C, we see the gel phase forming for samples with

a 20 mol % cholesterol concentration. It is particularly

evident for the two spectra on the right of the bottom row

in Fig. 6. At lower temperatures, the proportion of gel phase

increases, and all samples eventually show at least some gel

phase by 0�C. We will return to the question of three-phase
coexistence below. In this fashion, examining changes in the
2H NMR spectra as a function of temperature and sample

composition, we can define the different phase-coexistence

regions and the boundaries between them, allowing us to

construct a partial phase diagram of this system.

As discussed above, if two or more samples have compo-

sitions that happen to lie on a tie-line within a two-phase

coexistence region in the isothermal plane, it may be possible

to perform pairwise subtractions to obtain spectra in which

there is only a single component corresponding to one of

the two coexisting phases. In general, it is not possible to

predict the direction that a tie-line will take within the

isothermal plane, and so it is more or less by chance if two

or more samples happen to lie on a tie-line. The quadrupolar

splittings observed in these 2H NMR spectra are very sensi-

tive to the cholesterol concentration (a consequence of the

ordering effect of cholesterol). Comparison of the quadrupo-

lar splittings of the component spectra coming from different

sample compositions may reveal sets of spectra that have the

same splittings. If the splittings of the component spectra

match, then the domains that the component spectra repre-

sent must have similar compositions. In other words, if the

only difference between the spectra of two samples of

different composition (both within a two-phase coexistence

region) at the same temperature is the relative amounts of

the two spectral components, then these two sample compo-

sitions lie on a tie-line.

Fig. 7 shows three such two-component spectra at 26�C.

The vertical dotted lines are drawn to indicate that each of

the principal spectral features occur at the same frequency

in each of the three spectra. For example, the very sharp
a b c

d e f

g h i

FIGURE 5 2H NMR spectra at 22�C of the same set of

sample compositions as in Fig. 4. At this lower tempera-

ture, only spectrum a, in the upper left corner, shows

evidence of intermediate-timescale averaging.

Biophysical Journal 96(2) 521–539



530 Davis et al.
a b c

d e f

g h i

FIGURE 6 2H NMR spectra at 10�C of the same set of

sample compositions as in Fig. 4. The spectra along and

below the diagonal from bottom left to top right all show

evidence of some gel-phase component while still exhibit-

ing features indicative of the ld and lo phases. Notice espe-

cially the increasingly sloping shoulders and the growth of

a broad component in the methyl-group region (near the

center of the spectrum). Compare with the gel-phase spec-

trum of Fig. 2 c.
edges of the three methyl group powder patterns all occur at

the same frequency, indicating that they all have the same

quadrupolar splittings. Thus, these three sample composi-

tions happen to lie very nearly along a single tie-line within

the two-phase coexistence region. Any two of these spectra

can be used to generate the endpoint spectra corresponding

to either the boundary between the ld-lo two-phase region

and the ld phase or the boundary between the ld-lo two-phase

region and the lo phase.

When three samples lie along the same tie-line, we can

perform three independent pairwise subtractions, as illus-

trated in Fig. 8 using spectra obtained at 28�C. We then

use Eqs. 11–14 to determine the endpoint compositions. In

Fig. 8 a (upper), the spectrum, S0B, is for the sample with a

DOPC/DPPC-d62/cholesterol composition of 30:45:25 mol %,

whereas in Fig. 8 d, the spectrum, S0A, is for the sample

with a composition of 40:40:20 mol %. Fig. 8 b shows the

result of subtracting a fraction K0 of S0A from S0B, whereas

Fig. 8 c shows the result of subtracting a fraction K of spec-

trum S0B from S0A. The values of K and K0 are used to deter-

mine the endpoint compositions. Although it is clear that the

subtraction method yields spectra that are primarily represen-

tative of the two different phases, it is also evident that the

subtraction process is not perfect. In particular, for this

example, there is a small amount of lo component still

present in the ld endpoint spectrum of Fig. 8 c (arrow).

This is primarily a result of the fact that the sample compo-

sitions used for the subtraction are not precisely located on

the same tie-line, although they are very close. Even so,

the subtraction process works and can be used to give mean-

ingful estimates of the endpoint compositions. At some

Biophysical Journal 96(2) 521–539
temperatures, however, there will be significant systematic

errors, since the same sample compositions will not lie on

the same tie-lines at all temperatures. In fact, with our choice

of sample compositions, the subtractions work better at

higher temperatures, as the slope of the tie-lines more closely

matches our compositions. As the temperature is lowered,

the tie-line slopes change, and the systematic errors in

subtraction increase accordingly.

Fig. 9 shows three different isothermal planes showing the

estimated boundaries of the two- and three-phase regions for

temperatures of 28�C (Fig. 9 a), 22�C (Fig. 9 b), and 18�C
(Fig. 9 c). The endpoints from spectral subtractions are

shown as solid right-pointing triangles (for the freeze-thawed

samples) or open upward-pointing triangles (for the non-

freeze-thawed samples) (ld) and solid left-pointing triangles

(for the freeze-thawed samples) or open downward-pointing

triangles (for the non-freeze-thawed samples) (lo). The error

bars represent our estimated uncertainty in K and K0 added in

quadrature to the difference between two sets of independent

determinations of the endpoint compositions starting from

the same spectra. As indicated by the scatter in the points,

the subtraction method works better at some temperatures

than at others. The blue circles are points determined from

moment analysis (Fig. 10) and partial ternary phase diagrams

(see Fig. 12 below). The red triangle outlines the three-phase

coexistence region.

Besides the determination of the boundary separating the

ld-lo two-phase coexistence region from the ld and lo
single-phase regions, the key step in constructing the phase

diagram is determining the temperature dependence of the

vertices of the three-phase triangle (A–C). The boundaries



of the red triangles are formed by its interface with the

ld-lo two-phase region on the left (line segment BC), the

ld-gel two-phase region below (line segment AB) and

the lo-gel two-phase region on the right (line segment AC).

The gel phase boundaries are shown in green. Estimates of

the critical composition at each of these temperatures are

shown as magenta stars in this figure. A complete discussion

of the determination of these phase boundaries can be found

in the Conclusions section of this article.

Similar diagrams can be built at each temperature studied,

giving us an overall picture of the temperature-composition

phase diagram. One feature that can be expected for such

diagrams is that as the temperature is increased, the three-

phase triangle will approach the DPPC-d62/cholesterol axis

and will collapse into the three-phase line observed for

DPPC-d62/cholesterol mixtures at 37�C (4). In a similar

way, as temperature is raised, the ld-lo two-phase coexistence

region will approach and intersect the DPPC-d62/cholesterol

plane at 37�C and above. The ternary temperature/composi-

tion plot forms a triangular prism and the two-phase regions

found within the body of the prism intersect with the planes

a

b

c

FIGURE 7 2H NMR spectra at 26�C of DOPC/DPPC-d62/cholesterol

molar proportions of (a) 48:32:20, (b) 37.5:37.5:25, and (c) 28:42:30. The

vertical dotted lines are guides to the eye and indicate that each of the prin-

cipal spectral features occur at nearly the same frequency in all three spectra.

These three samples lie close to a common tie-line within the ld-lo two-phase

coexistence region in the ternary phase diagram.

DOPC/DPPC/Cholesterol Phase Equilibria
forming its boundaries, thereby outlining two-phase coexis-

tence regions in the DPPC-d62/cholesterol and DOPC/

DPPC-d62 two-component planes. The three-phase coexis-

tence region that exists within the body of the prism can

only intersect with the boundary plane in an isothermal

line (which for this case occurs at 37�C in the DPPC-d62/

cholesterol plane and runs from ~7.5 to 20 mol % choles-

terol). As temperature is decreased, the three-phase region

eventually terminates within the body of the triangular prism

and does not intersect either the DOPC/DPPC-d62 plane or

the DOPC/cholesterol plane. Thus, the line of critical

compositions also terminates at some critical temperature

below which we cannot distinguish between ld and lo phases.

When a sample having a composition such that it will

enter the ld-lo two-phase region is cooled through the two-

phase region it will eventually enter the three-phase region

that lies below. It does so by crossing line BC, below which

some of the sample will begin to ‘‘solidify’’ into the gel

phase. Thus, the surface traced out by the line BC as temper-

ature is lowered defines the upper surface of the three-phase

region. On continued cooling, the sample will eventually

enter the lo-gel two-phase coexistence region by crossing

line AC, or, if it is close enough to the DOPC/DPPC-d62

plane, it may cross line AB, in which case it enters the

a

b c

d

FIGURE 8 2H NMR difference spectroscopy at 28�C: (a) the spectrum

S0B of the sample with molar proportions 30:45:25 (normalized area); (b)

the spectrum S0B� K0 times the spectrum S0A, with the area of the difference

spectrum renormalized; (c) the spectrum S0A � K times that in S0B, with the

area renormalized; and (d) the spectrum S0A of the sample with composition

40:40:20 (normalized area). The arrows indicate areas of the ld phase differ-

ence spectrum that demonstrate the imperfect subtraction. It is these areas

that we attempt to minimize in the subtraction process.

Biophysical Journal 96(2) 521–539

531



ld-gel two-phase region. Below the lower critical tempera-

ture, the sample will enter a ‘‘fluid’’-gel two-phase region

before eventually solidifying into the gel phase.

The moments of the 2H spectra provide a quantitative

measure of the degree of molecular order, at least for phases

exhibiting rapid axially symmetric motional averaging. Even

a

b

c

FIGURE 9 Isothermal planes of DOPC/DPPC-d62/cholesterol ternary

mixtures at (a) 28�C, (b) 22�C, and (c) 18�C. The different one-, two-,

and three-phase regions are as labeled. The lo phase endpoints obtained

from spectral subtraction at each temperature are shown as left-pointing

solid triangles (from the freeze-thawed samples) or downward-pointing

open triangles (non-freeze-thawed samples), whereas the ld phase endpoints

are shown as right-pointing triangles (freeze-thawed samples) or upward-

pointing open triangles (non-freeze-thawed samples). The error bars shown

for the endpoints include estimated uncertainties of our imperfect subtrac-

tions that are largely due to the fact that our initial spectra do not lie exactly

on the same tie-line (see text). The error bars also include the systematic

differences between two independent determinations of the endpoints. The

blue circles give the compositions where the fitted curves of Figs. 11

and 12 intersect the isothermal plane at that temperature. The estimated posi-

tion of the critical composition at each temperature is shown by a magenta star.
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in the absence of such rapid axial motion, the moments

provide a measure of the degree of motional averaging.

For now, we will concentrate on using the moments to study

the temperature dependence of the distribution of quadrupo-

lar splitting. In particular, M1 gives the mean C-D bond order

parameter, hSCDi, and D2 gives the relative mean-squared

width of the distribution of order parameters, h(SCD –

hSCDi)2i/hSCDi2. Fig. 10 a shows the temperature depen-

dence of hSCDi for four samples with 25 mol % cholesterol.

As the proportion of unsaturated chain lipid (DOPC) is

increased, we see a reduction in the degree of chain order

at all temperatures studied, but the overall variation of hSCDi
with temperature is similar for all four samples. Within the ld,

or fluid, phase, decreasing temperature not only results in an

increase in the average chain order parameter, it also results

in a narrowing of the distribution, D2, as shown in Fig. 10 b.

This reflects the fact that at lower temperatures the ‘‘plateau’’

in the order parameter distribution is becoming more

pronounced as the chains are more tightly packed (the

area/lipid is reduced as the temperature is decreased in the

fluid phase).

As we cross the phase boundary from the ld phase into the

ld-lo two-phase coexistence region, we see an increase in D2,

reflecting the fact that the spectra now are a superposition of

the narrower ld phase spectrum and an lo component that has

much larger quadrupolar splittings. The temperature at which

the change in D2 begins can be used as a measure of the onset

of the two-phase coexistence region. This onset correlates

with the observation of an lo phase component in the NMR

spectra and/or the effect of intermediate timescale fluctua-

tions on the spectrum. Lowering the temperature further

within the two-phase coexistence region increases the

amount of the lo-phase spectral component and decreases

that of the ld phase. Thus, the width of the distribution of

order parameters again begins to decrease, as shown in the

figure. At sufficiently low temperatures, the parameter D2

again begins to increase dramatically. This is characteristic

of the onset of the gel phase and can be used to identify

this phase boundary. In this case, the onset of the gel phase

appears at slightly higher temperatures than is noticed simply

by inspection of the spectra. Small amounts of gel phase

component in the spectra may be masked by the large

lo-phase component, which has comparable quadrupolar

splittings.

The gel-phase component in the 2H spectrum is not char-

acterized by rapid axially symmetric motion. Instead, it

shows clear evidence of intermediate-timescale motions

that lead to increased broadening of the quadrupolar

doublets. This shows up as an increase in the width of the

distribution of quadrupolar splittings. Although the dramatic

increase in D2 that occurs at low temperatures is caused by

the appearance of the gel phase, it is not immediately clear

whether this is proof of the coexistence of three phases, ld,

lo, and gel. Furthermore, the behavior below the three-phase

region remains unclear, and careful consideration of the

Davis et al.
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FIGURE 10 Temperature dependence of quantities derived from the

moment analysis of the spectra for samples of 25 mol % cholesterol. (a)

The average DPPC-d62 chain C-D bond order parameter, hSCDi. (b) The

mean-squared width of the distribution of quadrupolar splittings, D2. (c)

The lipid chain thermal coefficient of area expansion, KT. Samples were

of molar proportions 0:75:25 (squares), 22.5:52.5:25 (upward-pointing

triangles) 37.5:37.5:25 (circles), and 52.5:22.5:25 (downward-pointing
triangles).
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different types of ‘‘gel’’ phase will be needed to complete

this part of the phase diagram.

The distribution of C-D bond order parameters is deter-

mined by the fluctuations in phospholipid chain bond orien-

tations at different positions along the chain. The degree to

which these fluctuations occur is determined by the packing

of the chains within the membrane. The average length of the

lipid chain is proportional to the average C-D bond order

parameter (cf., Eq. 18). Assuming that the molecular volume

is constant allows us to relate the changes in hSCDi to

changes in the cross-sectional area/lipid. The thermal coeffi-

cient of area expansion for these same four samples (having

25 mol % cholesterol) is shown as a function of temperature

in Fig. 10 c. This provides an even more sensitive measure of

the onset of the ld-lo two-phase coexistence region. The

broad maxima in this coefficient occur over the temperature

range where there is ld-lo two-phase coexistence. The area

expansion coefficient is related to the lateral compressibility

(83–86) and to the fluctuations in the chain order parameters.

These properties will be influenced by any density fluctua-

tions occurring near a critical point, so their measurement

is a valuable tool for probing the nature of these fluctuations.

Unfortunately, the width of the distribution of order para-

meters for our perdeuterated lipids is dominated by the vari-

ation of SCD along the chain, so we cannot extract the area

compressibility directly. Studies of the fluctuations of the

C-D bond order parameter for specifically 2H-labeled lipids

could be more directly interpreted in terms of the area

compressibility.

CONCLUSIONS

The sample compositions used in this study were chosen to

cover the region of two-phase ld-lo phase coexistence to

quantify its extent. Without having data over a far broader

range of compositions we will need to make a few assump-

tions and simplifications to construct an approximate partial

phase diagram for the DOPC/DPPC-d62/cholesterol system.

First, we will incorporate the data of Vist and Davis (4) for

the DPPC-d62/cholesterol plane. In doing so, we have rean-

alyzed the original results and will close the ld-lo two-phase

region at a DPPC-d62/cholesterol mole ratio of 75:25 at

48�C. This point will be taken to be the upper critical temper-

ature and one end of a line of critical compositions.

Second, we will include the preliminary results of an inde-

pendent study of the phase equilibria of DOPC/DPPC-d62

mixtures (M. Boudreau, L. Schmidt, J.H. Ziani, and Davis,

University of Guelph, personal communication, 2008) to

define the phase boundaries in the DOPC/DPPC-d62 plane.

We have fit their results for DOPC/DPPC-d62 to simple cubic

polynomials to allow us to define the fluidus and solidus bound-

aries in this plane. Our ternary phase diagram will be required to

agree with each of these two-component phase diagrams.

Next, in the absence of any definitive data for DOPC/

cholesterol mixtures, we assume that above 0�C, DOPC
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and cholesterol are miscible and that there are no phase

boundaries in the DOPC/cholesterol plane below ~35 mol %

cholesterol.

The boundaries for the ld-lo two-phase region are deter-

mined by moment analysis, spectral subtraction (where

possible), and inspection of the spectra. This gives us limits

for the range of this two-phase region both laterally (in

composition) and vertically (in temperature).

As mentioned earlier, we will continue to ignore the differ-

ences between the Pb
0, Lb

0, Lb, and subgel phases and

consider them all as the ‘‘gel’’ phase. Attempting to include

these phases in the description is not possible at this time.

Although the 2H NMR spectra of DOPC/DPPC-d62/

cholesterol samples having the range of compositions

studied here and elsewhere (25,33) are certainly suggestive

of three-phase coexistence over part of the temperature

range, it remains difficult to identify unambiguously three

components in the spectra of these perdeuterated lipids.

Although it is possible in principle to perform three-way

decomposition of the spectra within the three-phase region,

the large uncertainty associated with even two-way subtrac-

tions has prevented us from attempting this type of analysis

(although an attempt at a similar sort of analysis has been

reported by Veatch et al. (25), see below). The moment anal-

ysis discussed above supports our interpretation of three-

phase coexistence and provides a means of identifying the

range of temperature over which it occurs. In addition, the

rules for constructing phase diagrams in such systems lead

us to predict a significant region of three-phase coexistence

that intersects the DPPC-d62/cholesterol plane at the three-

phase line at 37�C reported by Vist and Davis (4).

At any given sample composition, cooling through the

ld-lo two-phase region into the three-phase region that lies

below it, we pass the interface between the three-phase and

two-phase regions at line segment BC. The surface that

this line segment traces out as temperature is varied forms

the bottom surface of the two-phase region and the upper

surface of the three-phase region. Thus, we may identify

from the spectra and their moments the temperature at which

we pass this interface. In a similar way, the surface traced out

by line segment AC forms the bottom (lower-temperature)

surface of the three-phase region and the upper surface of

the two-phase lo-gel coexistence region that lies below.

However, this part of the phase diagram remains unclear.

One complicating factor is that below ~þ8�C, DPPC-d62

and DOPC/DPPC-d62 mixtures undergo a kinetically slow

phase transition into a subgel phase, making the acquisition

of equilibrium spectra very difficult. Since the kinetics of this

phase transition depend on composition, it is difficult to be

certain that all samples have adequately equilibrated below

þ8�C, and the large changes in lineshape that occur in the

subgel phase, among other things, make spectral subtractions

unreliable. In any case, analysis of our spectra and their

moments shows that the three-phase region collapses into

a two-phase phase line at the temperature corresponding to
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the other end of the line of critical concentrations, where

line segment BC (Fig. 9) is reduced to a point and line

segments AB and AC coincide. From our analysis, this

occurs at ~�8�C.

At any given temperature (between �8 and þ48�C), the

critical concentration will occur when the compositions of

the ld and lo phases become equal, i.e., when the tie-line

joining them is reduced to a point. At 48�C, this occurs at

a composition of roughly ~XCf
¼ ½0; 0:75; 0:25� and at

�8�C it occurs roughly at ~XCi
¼ ½0:57; 0:14; 0:29�. These

are the endpoints of the line of critical concentrations.

Beyond these critical compositions at any given temperature

the ld and lo phases are indistinguishable.

In the absence of detailed data concerning the limits of

two-phase ld-gel and lo-gel coexistence regions within the

body of the ternary triangular prism, we will simply join

the vertices of our three-phase triangles (at any given temper-

ature) to the corresponding phase boundaries on the DPPC-

d62/cholesterol and DOPC/DPPC-d62 planes with straight

line segments. We do have one sample, with molar propor-

tions 45:45:10, which lies between the ld-lo coexistence

region and the DOPC/DPPC-d62 plane. At this composition,

there is no evidence for an lo phase, but the sample does

display a broad ld-gel two-phase coexistence region (see

Fig. 11 b). Later experimental data can be used to define

the curvature of these two-phase surfaces more accurately.

The curves traced out by the vertices of the three-phase

region begin in the DPPC-d62/cholesterol plane at 37�C
(4). The curve corresponding to vertex A begins at

~7.5 mol % cholesterol, the lower limit of cholesterol

concentration on the three-phase line of Vist and Davis (4).

The curve corresponding to vertex B begins at the DPPC-

d62/cholesterol eutectic point, at ~9 mol % cholesterol, and

the curve corresponding to vertex C begins at ~20 mol %

cholesterol, the upper limit on cholesterol concentration of

the three-phase line. For temperatures between ~50 and

0�C we are able to estimate the extent of the ld-lo two-phase

region, either through spectral subtraction or by inspection of

the spectra, and to determine the location of vertices B and C.

We further estimate that the three-phase region, and therefore

the line of critical compositions, must persist till ~�8�C,

because we observe an ld component to the spectra of several

samples down to �7�C. A least-squares fit is performed to

determine the path followed by curves B and C using the

starting points above and these estimates as a function of

temperature. The curves B and C meet at the lower critical

temperature, �8�C.

The curve traced out by vertex A is much more difficult to

determine experimentally using the data available to us. We

have only been able to assume that it tracks the lower temper-

ature limit (the solidus curve) for the DOPC/DPPC-d62

mixtures, and that it terminates at the chain-melting transi-

tion for pure DOPC/water at ~�20�C. Thus, there is a great

deal of uncertainty in the variation of this vertex with temper-

ature. Careful measurement of the extent of lo-gel and ld-gel

Davis et al.
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FIGURE 11 Titration diagrams showing the phase boundaries at constant

ratios of DOPC/DPPC-d62 as cholesterol concentration is varied. DOPC/

DPPC-d62 ratios were 7:3 (a), 1:1 (b), and 3:7 (c). The square data points

give the onset temperatures for ld-gel phase coexistence. The downward-

pointing triangles show the upper limit of the ld-lo two-phase coexistence

region determined from the 2H NMR spectra, either from direct observation

of two distinct components in the spectra, from the appearance of interme-
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two-phase coexistence is required before we can accurately

determine the location of this phase boundary. We do

know, however, that the vertices of the three-phase region

must move with decreasing temperature in a way consistent

with the rules for the construction of ternary phase diagrams.

To help define the upper surface of the ld-lo two-phase

region we used the B and C vertex values corresponding to

each of the five different DOPC/DPPC-d62 ratios (3:7, 2:3,

1:1, 3:2, and 7:3) used in the cholesterol titration experi-

ments and the upper temperature limits estimated at each

cholesterol concentration used (20, 25, and 30 mol %). We

fit each set of points at fixed DOPC/DPPC-d62 ratio to a cubic

polynomial to obtain a smooth curve. The results of these fits

are shown in Fig. 11, with points B and C labeled on each

curve. We also performed fits at fixed cholesterol concentra-

tion to obtain another set of boundary curves. These curves

are all shown in dark blue on the phase diagram in Fig. 12.

A similar analysis was performed at fixed temperature, start-

ing again with the values of B and C at that temperature and

including the estimates of the lateral (composition) limits of

the ld-lo two-phase region (cf. Fig. 9). All of these results

were then combined to yield the partial phase diagram shown

in Fig. 12. In this figure, the three-phase region is outlined by

the red triangles and the dark blue boundary curves tracing

out the temperature variation of vertices B and C. The ld-lo
two-phase region is outlined above by the dark blue curves

determined from the analysis of Figs. 9 and 11 and below

by the line segments BC of the three-phase triangles. The

estimated extent of the gel phase is outlined by green curves

in the DOPC/DPPC-d62 plane, the DPPC-d62/cholesterol

plane, and the curve for vertex A of the three-phase triangle.

The DOPC/DPPC-d62 fluidus is shown in light blue. The

results of Vist and Davis (4) are included on the DPPC-

d62/cholesterol plane along with our reanalysis of the extent

of their ld-lo two-phase coexistence region. The estimated

line of critical compositions is shown in magenta in

Fig. 12. The upper and lower temperature limits of the ld-lo
two-phase region are shown as black diamonds.

Veatch et al. (25) have published a phase diagram for the

same three-component system. We are in broad agreement

regarding the lateral extent of the ld-lo two-phase region

below ~30�C, and these data agree with the fluorescence

work as well (24,31). As previously mentioned, these

authors perform a three-way decomposition of the 2H NMR

spectra in the three-phase region and determine the vertices

of the three-phase triangles at three temperatures: 20, 15,

diate-timescale averaging effects in the spectra, or from moment analysis.

The upward-pointing triangles show the boundary between the two-phase

region above and the ld-lo-gel three-phase coexistence region below. These

points were determined from the appearance of a gel-phase component in the

spectrum and/or from moment analysis. The other phase boundaries show

the locus of points at the intersection of the phase boundaries from the phase

diagram in Fig. 12, with the plane at a given DOPC/DPPC-d62 ratio. The

estimated positions of the critical composition are shown by stars.
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and 10�C (see the supplementary material provided in the

work by Veatch et al. (25)). There are, unfortunately, some

inconsistencies in the supplementary data provided with

that article, so that it is difficult to associate some of the spectra

with the sample compositions used (see Veatch et al. (25),

Supplementary Fig. 6). Nonetheless, despite these inconsis-

tencies, the authors have demonstrated the potential of using

spectral subtraction approaches in three-phase regions.

The principal difference between the phase diagram pre-

sented here and that presented by Veatch et al. (25) lies

above 30�C. Eight of our samples (those having the highest

cholesterol and DPPC-d62 concentrations) show evidence of

two-phase coexistence above 30�C. Fig. 13 shows an expan-

sion of the methyl group region for two of these samples.

Fig. 13 a shows the methyl group spectrum for the sample

with molar proportions 0:75:25 (25 mol % cholesterol in
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FIGURE 12 Approximate partial phase diagram for the DOPC/DPPC-

d62/cholesterol ternary system. The data on the DPPC-d62/cholesterol face

(at the back of the figure) are from Vist and Davis (4), except that the

boundary with the two-phase ld-lo region has now been closed. The black

squares show the upper and lower limits of the ld-lo two-phase region, as

shown in Fig. 11. The dark blue curves are fits to the data described in

Figs. 9 and 11 and show the upper surface of the ld-lo two-phase region.

The red triangles represent the isothermal-plane cross sections of the

three-phase coexistence region. The green lines indicate the approximate

limits of the gel-phase region and the light blue lines mark the boundaries

between the ld phase and the ld-gel two-phase coexistence region. The

magenta line gives the approximate location of the line of critical composi-

tions, running from ~�8 to 48�C.
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DPPC-d62) for temperatures from 36 to 46�C. Between 38

and 42�C, we see clear evidence for two-phase coexistence,

even for this two-component mixture, as predicted by Vist

and Davis (4). As shown in the figure, the range of temper-

atures over which one observes two phases in coexistence is

very narrow. In addition, the difference between the split-

tings in the two phases is very small compared to the differ-

ence observed in the three-component systems (see Fig. 13 b).

Presumably, the large proportion of DOPC in the ld domains

in the three-component mixtures leads to the much smaller

splittings. If the signal/noise ratio is poor or the line widths

a little larger than those shown here, the two-phase coexis-

tence in the two-component system may be difficult to

observe, which may explain why it has not been noticed

previously. Fig. 13 b shows spectra from the sample with

molar proportions 21:49:30. Here, we see clear ld-lo two-

phase coexistence above 30�C, with resolved resonances

up to 33�C and evidence of intermediate-timescale fluctua-

tions or exchange at 35�C and above. Furthermore, while

Veatch et al. (25) choose to ignore the results of Vist and Da-

vis (4) and Scheldt et al. (87), we have explicitly included the

results of Vist and Davis in our ternary phase diagram.

Veatch et al. (25) also investigate the influence of possible

critical fluctuations in composition on the decay of the quad-

rupolar echo, described by the relaxation time T2e. Such

measurements will be important in determining the nature

of the intermediate-timescale averaging occurring at the

high cholesterol limit of the ld-lo two-phase coexistence

region (near the line of critical compositions). However,

contrary to the claims of Veatch et al. (25), comparison of

the quadrupolar echo relaxation rate to the linewidth of
2H MAS spectra (see Fig. 4 e in Veatch et al. (25) says nothing

about any inhomogeneous distribution of quadrupolar split-

tings that may exist. The quadrupolar echo sequence (63)

refocuses the static quadrupolar interaction, and the decay

of the echo itself, characterized by T2e, is the result of fluctu-

ations in the quadrupolar interaction that occur during the time

interval between the first pulse and the formation of the echo.

Magic-angle spinning removes the quadrupolar splittings, as

well as any inhomogeneous distribution of those splittings

that may be caused by sample heterogeneity. That T2e should

be able to account for the 2H MAS line width is expected.
2H NMR powder-pattern spectra are, by definition,

strongly inhomogeneously broadened by the residual quad-

rupolar interaction. This gives rise to the observed quadrupo-

lar splittings and the powder-pattern lineshape. Another

source of ‘‘inhomogeneous’’ broadening is the distribution

of quadrupolar splittings along the chains. Hole-burning

experiments (88) demonstrated that the DPPC 2H powder

pattern was inhomogeneously broadened but that lateral

diffusion would provide a mechanism (albeit slow) for filling

in the hole burned in the spectrum. This effect explained why

spin-lattice relaxation, T1, appears to be nearly uniform over

the entire powder-pattern lineshape, but transverse spin

relaxation, T2e, is found to depend on orientation. It is also

Davis et al.



widely known that T2e varies strongly with position on the

chain (from ~0.5 ms near the carbonyl group to nearly

2 ms for the methyl group) (66). Measurement of a single

T2e representing the chain positions in the order parameter

plateau region, and using that single value to simulate

a complex, multicomponent 2H powder spectrum is an

a

b

FIGURE 13 Variation of the methyl-group region of the 2H NMR spectra

with temperature (shown in �C in the figure) for two different sample DOPC/

DPPC-d62/cholesterol compositions with, molar proportions of (a) 0:75:25

and (b) 21:49:30. Both of these examples clearly show the effects of inter-

mediate-timescale averaging at higher temperatures, and two-phase coexis-

tence at temperatures >30�C.
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oversimplification. Of course, either fluctuations in local

composition, as may occur near a critical composition, or

intermediate-timescale exchange of DPPC-d62 molecules

between regions with substantially different degrees of local

order (such as domains of ld and lo phases), will lead to

enhanced transverse relaxation, so such measurements are

potentially very useful in defining the nature of the fluctua-

tions occurring in these systems.

This phase diagram demonstrates that ternary mixtures of

DOPC/DPPC-d62/cholesterol exhibit a broad region of ld-lo
two-phase coexistence both as a function of temperature

and composition. The coexisting domains vary in size and

relative proportion depending on temperature and composi-

tion. There is compelling evidence for fluctuations in the

observed quadrupolar splittings arising either from exchange

of molecules between domains or from fluctuations arising

as a result of being close to a line of critical compositions.

To answer some of the questions raised in the analysis of

the results presented here, which were obtained using chain

perdeuterated DPPC-d62, we are using specifically labeled

DPPC. This will greatly simplify the interpretation of the

spectra, especially at low temperatures (in the gel-phase

region) and in situations where there is more than one phase.

We are also trying to develop a more robust method of deter-

mining the endpoint compositions of both two- and three-

phase coexistence regions. Further work that more precisely

defines any phase boundaries present in both DOPC/choles-

terol and DOPC/DPPC mixtures will be important to our

efforts to refine the phase diagram.
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