
Annals of Pure and Applied Logic 152 (2008) 148–160
www.elsevier.com/locate/apal

Cut elimination for a simple formulation of epsilon calculus
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Abstract

A simple cut elimination proof for arithmetic with the epsilon symbol is used to establish the termination of a modified epsilon
substitution process. This opens a possibility of extension to much stronger systems.
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1. Introduction

The substitution method for first-order arithmetic introduced by Hilbert [6] employs a formulation where quantifiers
are defined

∃x F[x] := F[εX F[x]]; ∀x F[x] := F[εx¬F[x]]

in terms of the ε-symbol εx F[x] read as “the least x satisfying F[x]”. The corresponding axioms are critical formulas

F[t] → F[εx F[x]]. (1.1)

The essential part of an arithmetical proof is a finite sequence

Cr = Cr0, . . . , CrN (1.2)

of critical formulas. The goal of the substitution process (or H-process of D. Hilbert) is to find a solving ε-substitution
of numbers n1, . . . , nk for ε-terms e1, . . . , ek

S ≡ (e1, n1), . . . , (ek, nk)

making Cr true: |Cr|S ↪→ TRUE, where |Cr|S is the result of iteratively replacing ei by ni . The substitution method
generates successive substitutions

∅ ≡ S0, S1, . . . , Sn, . . . . (1.3)
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If Sn := S is non-solving then one of the critical formulas (1.1) is false, that is

|F[εx F[x]]|S ↪→ FALSE and |F[t]|S ↪→ TRUE.

Then Sn is corrected by adding a component (up to more technical details below)

(εx F[x], n) with the least n ≤ |t |S such that F[n] ↪→S TRUE, (1.4)

which produces Sn+1 := H(Sn). The ε-term e added at the H-step from Sn to Sn+1 and the number v are the H-term
and H-value of the substitution Sn .

The first termination proof for the substitution method for the first-order arithmetic PA was given by W. Ackermann
[2] after the failed attempt [1]. The definition and termination proof were extended to stronger systems in [11,12,3,
10,4,14]. The goal of the present paper is to simplify the termination proof for the epsilon substitution method (cf. [6,
11]) to make possible its extension to much stronger systems.

Simplification is achieved due to a slight modification of the substitution method. The standard reduction step
introduced by W. Ackermann not only replaces the default value 0 of the term εx F[x] by the “correct” value n in
(1.4), but also deletes from S all values of complexity (rank) greater than r = rk(εx F). This corresponds to the rule

(e, n),Θ≤r

(e, ?),Θ
He,n

which is replaced here by the rule H′

e,n , cf. Section 4:

(e, n),Θ ′

(e, ?),Θ
H′

e,n,

where Θ ′ is obtained from Θ≤r by dropping several (possibly zero) components of rank r .
In fact these are components that depend on the default value (e, ?) of e, but the exact formulation of dependence

is too complicated and too difficult to trace through all transformations we need, as the referee pointed out and
convincingly illustrated. Instead we define an indeterministic H′-process where an arbitrary number of values of rank
r can be dropped at each step. It is turned into a deterministic H′-process in a standard way by an exhaustive breadth-
first search. The proof that the H′-process terminates in a solving substitution uses the general schema from [9,11].

(1) A Tait-style ε-calculus P Aε is defined and for every system Cr of critical formulas a derivation of the empty
sequent ∅ (original derivation, Section 5) is constructed. It depends on Cr and proves the existence of a solution
for Cr.

(2) Cut elimination (normalization) theorem for P Aε is proved in a standard way.
(3) An additional structure is introduced into the same cut elimination process in such a way that a cut-free proof of

∅ becomes (after deleting redundant steps) a non-deterministic H′-process terminating in a solving substitution.

The main difference with [9,11] is the simplification of the cut elimination procedure in the stage 2 of the proof. It
becomes very close to a standard method for the first-order arithmetic with the ω-rule. Since the statement of the
existence of a solving substitution is Σ 0

1 , say

∃e1 . . . ∃ek∃n1 . . . ∃nkSOLUTION[e1, . . . , ek, n1, . . . , ek],

its cut-free proof in a standard formulation of PA (with quantifiers) consists of a finite number of ∃-instantiations.
Moreover, since SOLUTION is primitive recursive, it is possible to choose a solution among them, so in fact one
instantiation is enough. This explains the fact that any cut-free proof of ∅ in the system P Aε of Section 3 is an axiom
providing a substitution solving Cr.

Richer structure introduced into the same cut elimination procedure in Section 4 uses many technical aspects of
the earlier work (cf. [11]) simplified and provided with a new interpretation. The CutFr rule used in the earlier work
is avoided. The new system P Aε′ has in addition to cut only two rules: H′ for making H′-steps and Fr for marking the
beginning of a “history”. Fr-inference replaces a cut which is eliminated. In this role it is similar to the repetition rule
Rep in continuous cut elimination see [7,5].

The termination of the non-deterministic process is a trivial consequence of the termination of the H-process [2,9,
11]. The non-deterministic H′-process is introduced since it is connected more closely (than H-process) to the standard
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cut elimination procedure. To model the H-process we introduced [9,11] additional cut elimination steps that may look
unnatural for a Gentzen-style calculus and are not guaranteed to apply to second-order systems where the role of rank
is not so distinct. It may turn out that for such systems a non-deterministic version is preferable or even constitutes the
only manageable approach.

As an adaptation of an example given by the referee shows, making the H′-process too deterministic may lead to
divergence. Consider two critical formulas

E[1] → E[e], F[1] → F[ f ], with e = εx E, f = εx F

where E[1], F[1] are quantifier-free sentences such that

1 = min{n ≥ 0 : E[n]} = min{n ≥ 0 : F[n]}

and an H′-process when all existing non-default components of rank r are deleted at the H′-step of rank r . Then the
H′-process oscillates:

S0 = ∅, S1 = (e, 1), S2 = ( f, 1), . . . , S2k = (e, 1), S2k+1 = ( f, 1).

In Section 2 we recall standard notions and elementary results concerning ε-calculus, cf. [9,11]. The only new points
are Definitions 2.14 and 2.15 of H′-process and obviously Lemma 2.4. Section 3 contains cut elimination proof for
the arithmetic P Aε given in detail for future reference. Together with the construction of the original derivation in
Section 5 it establishes the existence of a solving substitution by induction on ε0. Sections 4 and 5 provide realization
of the steps 1–3 above leading to a termination proof for the ε-substitution process (Theorem 5.2) by induction on ε0.

The results of this paper were presented at the workshop WOLLIC’06, Florianopolis, Brazil. The preliminary draft
was published as [13].

2. Language of ε-calculus; H-process

2.1. The Language of ε-substitutions

Definition 2.1. Variables x, y, z, . . . represent natural numbers. Numerical terms are variables, 0, St and εx F for all
formulas F . There are many (as much as needed) primitive recursive predicates including =. Formulas are constructed
from atomic formulas by propositional connectives: ∧FG, → FG, ¬F, . . . written as (F ∧ G), (F → G), . . . .

Quantifiers can be defined from ε in a standard way.
Critical formulas:

(pred) s 6= 0 → s = Sεx(s = Sx)

(ε) F[t] → F[εvF].

Definition 2.2. An ε-term is canonical if it is closed and contains no proper closed ε-subterms. An expression e is
simple if it is closed and contains no ε. TRUE (FALSE) denotes the set of all true (false) simple formulas. [A simple
formula contains no variables and is constructed from computable atomic formulas by Boolean connectives. Every
simple term is a numeral].

N is the set of natural numbers.

Definition 2.3. An ε-substitution is a function from canonical ε-terms into the set {?} ∪ N.
A finite ε-substitution will be written as a finite list consisting of components of the form

(e, ?), (e, n).

Definition 2.4. Two ε-substitutions Σ ,Θ are multiplicable if Θ ∪ Σ is a function. In this case we write Θ ∗ Σ for
Θ ∪ Σ , and say that Θ ∗ Σ is defined.

The set FV (e) of free variables of an expression e is defined in the standard way: εx binds x . An expression e is
closed iff FV (e) = ∅.

We identify expressions which are equivalent modulo renaming of bound variables; e[x/u] denotes the result of
substituting u for each free occurrence of x in e, where bound variables in e are renamed if necessary. If x is known
from the context we write e[u] for e[x/u].
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We assume as always a fixed system

Cr = {Cr0, . . . , CrN }

of closed critical formulas.

2.2. Computations with the ε-substitutions

Definition 2.5. An ε-substitution S is total if dom(S) is the set of all canonical ε-terms.
S := S ∪ {(e, ?) : e is a canonical ε-term 6∈ dom(S)} is called the standard extension of S.

(1) If (e, u) ∈ S and u 6=?, then e ↪→1
S u

(2) If (e, ?) ∈ S, then e ↪→1
S 0

(3) If 0 ≤ i ≤ n, ei ↪→1
S e′

i then e0e1 . . . en ↪→1
S e0 . . . ei−1e′

i ei+1 . . . en

(4) If F ↪→1
S F ′ then εx F ↪→1

S εx F ′.

Definition 2.6. e is S-reducible if there exists an e′ with e ↪→1
S e′. Otherwise e is S-irreducible or in S-normal form.

↪→S denotes the transitive and reflexive closure of ↪→1
S .

The unique S-irreducible expression e∗ with e ↪→S e∗ is called the S-normal form of e and denoted by |e|S .

Definition 2.7. Let S be an ε-substitution.
An expression e is S-computable if |e|S does not contain closed ε-terms.
S computes a set Φ of closed formulas iff all formulas in Φ are S-computable.
For a pair (εx F[x], n) ∈ S define

Cr(e, S) := F[[n]] := F[x/n] ∧ ¬F[x/0] ∧ · · · ∧ ¬F[x/(n − 1)].

If t is not a numeral, then F[[t]] := F[t]. Let

F(S) := {Cr(e, S) : (e, n) ∈ S for n ∈ N}.

S is computationally inconsistent (ci) if A ↪→S FALSE for some A ∈ F(S). Otherwise S is computationally
consistent (cc).

S is correct if ∧F(S) ↪→S TRUE.
Let

CR(S) := {F[[|t |S]] : critical formula F[t] → F[εx F[x]] is in Cr.}

S is computing iff all formulas A ∈ F(S) are S-computable.
S is deciding iff S is computing and the critical formulas Cr0, . . . , CrN are S-computable.
S is solving iff S is correct, deciding and Cr ↪→S >.

Lemma 2.1. Let S′
⊇ S be substitutions. Then

e ↪→S e′ implies e ↪→S′ e′.

In particular e ↪→S v for v ∈ ω ∪ {TRUE, FALSE} implies e ↪→S′ v;
If S is c.i., then S′ is c.i.

Proof. Every S-computation is an S′-computation. a

2.3. The rank function

The rank is a measure of nesting of bound variables. For closed expressions it will be the same as in [6] and [11].
Note that an arbitrary closed ε-term εx F can be written as

εx F ≡ εx F ′
[x1/t1, . . . , xn/tn], n ≥ 0 (2.1)

where εx F ′ is canonical, and t1, . . . , tn are closed ε-terms.
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Definition 2.8. If e does not contain ε, then rk(e) := 0.
If εx F is canonical, then

rk(εx F) := max{rk( f ) : f is a closed ε-subterm of F[x/0]} + 1.

In particular, if F does not contain ε, then rk(εx F) = 1.
If (2.1) holds with a canonical εx F ′, then

rk(εx F) := max{rk(εx F ′
[x1/0, . . . , xn/0], rk(t1), . . . , rk(tn)}.

For an arbitrary closed expression e,

rk(e) := max{rk(t) : t is a closed ε-subterm of e}.

Definition 2.9 (Truncation to a Given Rank). For each ε-substitution S and r < ω we set

S≤r := {(e, u) ∈ S : rk(e) ≤ r}.

Analogously we define S≥r , S<r , S>r .

Lemma 2.2. If S, S′ are ε-substitutions with S≤r = S′
≤r then |e|S = |e|S′ holds for all closed expressions e of rank

≤ r . a

2.4. H-term and H-value

Definition 2.10. Let S be an ε-substitution such that S is non-solving. (Then |CrI |S ∈ FALSE for some I ≤ N .)
Set rI := rk(εx |F |S), where CrI = F0 → F[εx F].
Cr(S) := CrI , where I ≤ N is such that

|CrI |S ∈ FALSE & ∀J ≤ N [ |CrJ |S ∈ FALSE ⇒ rI < rJ ∨ (rI = rJ ∧ I ≤ J )].
Let Cr(S) = F0 → F[εx F]:
εx |F |S is called the H-term of S.
The H-value v of S is defined as follows
a) if F0 = (s 6= 0), and F = (s = Sx) then v := |s|S − 1,
c) if F0 = F[t] then v := the unique n ∈ N with |F |S[[n]] ↪→S TRUE.

Definition 2.11. The H-rule applies to an ε-substitution S if S is cc, deciding, non-solving and computes |F[[|t |S]]|S ,
where Cr(S) is F[t] → F[εx F].

2.5. H-process and H′-process

Definition 2.12 (The Step of the ε-Substitution Process). If S is nonsolving then

H(S) := (S \ {(e, ?)})≤rk(e) ∪ {(e, v)},

where e is the H-term and v the H-value of S.

The following properties of H(S) are well known (cf. [6,11]).

Lemma 2.3 (Properties of H(S)). Let S be an ε-substitution such that S is correct and non-solving, and let e be the
H-term, v the H-value of S. Then the following holds:

(a) (e, ?) ∈ S,
(b) |e|H(S) = v 6= 0,
(c) H(S) is correct. a

Let us recall the definition of the ε-substitution process used by Ackermann and in almost all previous work on the
ε-substitution.
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Definition 2.13. The H-process for the system Cr of critical formulas Cr0, ..., CrN with an initial substitution S0 is
defined as follows:

Sn+1 :=

{
H(Sn) if Sn is non-solving,

∅ otherwise.

The H-process terminates iff there exists an n ∈ N such that Sn is solving.
If the initial substitution is not mentioned (as mostly the case will be), it is assumed that S0 ≡ ∅.

Now we adjust the previous definition.

Definition 2.14. Let the H-rule apply to S, e be the H-term, v the H-value of S. Then H′(S, S′) means that
{(e, v)} ∪ S<rk(e) ⊆ S′

⊆ H(S),
An indeterministic H′-process for Cr with an initial substitution S0 is an arbitrary sequence (Sn)n<n0≤ω of

substitutions such that for every n < n0 − 1, if Sn is non-solving then H′(Sn, Sn+1).

We define below an H′-step as an application of all possible versions of the H′-rule. After the very first step the
H′-process works in parallel with a finite number of ε-substitutions.

Definition 2.15. Let S1, . . . , Sm be correct substitutions such that S1, . . . , Sm are all non-solving. For every i ≤ m
let Si1, . . . , Si pi be a complete list of substitutions S′ such that H′(S, S′). Define

H′(S1
; . . . ; Sm

; ) := S11
; . . . ; S1p1; . . . ; Sm1

; . . . ; Smpm .

The deterministic H′-process for Cr with an initial substitution S0 is defined by

S0 := S0; Sn+1 := H′(Sn),

if Sn is not a solution, that is it does not contain a solving component.

Lemma 2.4. If an indeterministic H′-process of length n ends in a solution, then the deterministic H′-process
terminates after at most n steps.

Proof. Obvious induction on n. a

3. The system PAε

3.1. Axioms and the inference rule of PAε

The system PAε is the arithmetical part of the infinitary system εE A from [11] with the only inference rule, Cut.
Derivable objects or sequents of PAε are finite ε-substitutions.

Definition 3.1. Let Θ and Θ ′ be sequents that agree on their domain:
if (e, v) ∈ Θ and (e, w) ∈ Θ ′ then v = w.
Then Θ ∗ Θ ′

= Θ ∪ Θ ′, and we say that Θ ∗ Θ ′ is defined.

In other words, ∗ amounts to contracting repetitions.

Definition 3.2. Let Θ,Ξ be a correct and deciding sequent, rk(A) ≤ rk(F) for all formulas A ∈ Θ, F ∈ Ξ .

(1) Ξ is an S-completion of Θ iff Θ,Ξ is solving
(2) Ξ is an He,v-completion of Θ iff the H-rule applies to Θ,Ξ , (e, ?) ∈ Θ , e is the H-term, and v is the H-value of

Θ,Ξ .

The completion rank is the minimal rank of formulas in Ξ .
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Axioms:

AxF(Θ) Θ is c.i.
AxS(Θ) S-completion of Θ is given.

AxHe,v(Θ) He,v-completion of Θ is given.

Rule of inference:

(e, ?),Θ . . . (e, n),Θ . . . (n ∈ N)

Θ Cute.

We call e the main term, (e, v) the side components, rk(e) the rank of the Cute.

Definition 3.3. A derivation d ∈ P Aε is defined in a standard way with an additional
Proviso:
the completion rank of every axiom is ≥ maximal rank of cuts in d.

3.2. Simple properties of derivations

Definition 3.4. The cut rank rk(d) of a derivation d is the maximal rank of cut formulas in d.

The following obvious observation is used repeatedly.

Lemma 3.1. Let d be a derivation of a sequent Θ . Then every sequent in d has a form

Θ,Σ

where Σ consists of the side components of all Cut rules in d below this sequent.
In particular, if rk(Θ), rk(d) < r then all components in d have ranks < r .

Proof. Bottom-up induction on the derivation d . Induction base is the endsequent Θ .
The induction step assumes Θ ′

≡ Θ,Σ , rk(Σ ) < r for the conclusion Θ ′ of a rule Cute, then concludes
Θ ′′

≡ Θ,Σ , (e, v) for the premises with rk(Σ , (e, v)) < r , since rk(e) < r . a

The following statements are used in the cut elimination proof below.

Lemma 3.2. Let (e, ?),Π with a completion Ξ be an AxSor AxH f,m with f 6= e and rk(e) ≥ rk(Π ).
Then Π is an axiom of the same kind with the completion (e, ?),Ξ .

Proof. The Definition 3.2 is to be checked for one and the same sequent Π , (e, ?),Ξ . The rank condition for
completion follows from rk(e) ≥ rk(Π ). In the case of AxH f,n we have ( f, ?) ∈ Π , since ( f, ?) ∈ (e, ?),Π and
f 6= e. a

Lemma 3.3. Let

(e, n),Θ,∆ with a completion Ξ

be an AxH or AxS and let Γ be a sequent such that

rk(Θ,∆,Γ ) ≤ r = rk(e), (3.1)

(dom Γ )=r ∩ (dom Ξ )=r = ∅, (3.2)

((e, n),Θ,∆) ∗ Γ is a sequent , e 6∈ dom Γ (3.3)

and

F((e, n),Θ,Γ ) ↪→Θ,Γ TRUE. (3.4)

Then

(Θ,∆) ∗ Γ is AxH or AxS with a completion (e, n),Ξ (3.5)

or (Θ,∆) ∗ Γ is AxF.
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Proof. Assume that (Θ,∆) ∗ Γ is c.c., since otherwise this sequent is AxF.
Case 1. Given sequent (e, n),Θ,∆ is AxH f,m . Then the sequent

S ≡ (e, n),Θ,∆,Ξ

is cc, deciding, non-solving and computes |F[[|t |Si ]]|S , where Cr(S) is F[t] → F[εx F]. The H-term and H-value of
S are f and m and Θ,∆ contains ( f, ?). We have to verify similar relations for (3.5). Consider

S′
≡ (Θ,∆) ∗ Γ , (e, n),Ξ .

By (3.3), S′ is a sequent unless dom Γ ∩ dom Ξ 6= ∅, which is excluded by (3.1), rk(Ξ ) ≥ r and (3.2).
Since Cri ↪→S FALSE for the critical formula Cri corresponding to the term f , and S′

⊇ S, we have
Cri ↪→S′ FALSE, so S′ is non-solving. Similarly S′

⊇ S implies that S′ computes all necessary formulas and by
(3.4), S′ computes Cr(S′). Moreover all numerical and truth values computed by S are preserved by S′. In particular
f and m are still the H-term and H-value of S′. The rank condition for completion follows from (3.1).

Case 2. Given that the sequent is AxS: Since S′
⊇ S, we only have to check the correctness of S′. This follows

from the correctness of S and (3.4). a

3.3. Cut reduction

Recall that rk(Θ) = max{rk(F) : F ∈ Θ}. We describe a cut reduction of one Cut:

(e, ?),Θ . . . (e, n),Θ . . .

Θ Cute. (3.6)

Consider a derivation d ending in a cut of maximal rank r with rk(Θ) ≤ r and containing no other cuts of the rank
≥ r .

(e, ?),Θ,Γ
...

(e, ?),Θ,Σ
...

d0 : (e, ?),Θ

(e, n),Θ,∆
...

(e, n),Θ,Π
...

. . . dn : (e, n),Θ . . .

d : Θ Cute.

d is transformed as follows:

Θ,∆ ∗ Γ
...

Θ,Π ∗ Γ (dn − {(e, n)}) ∗ Γ
...

Θ,Γ
...

Θ,Σ d0 − {(e, ?)}
...

Θ .

(3.7)

The lower part d0 − {(e, ?)} is obtained by deleting the component (e, ?) from all sequents in d0. If the upper sequent
of some branch in d0 is not of the form AxHe,n nothing further is done with that sequent except adding (e, ?) to the
completion.

If some upper sequent (e, ?),Θ,Γ is AxHe,n , then the component (e, ?) is deleted and the figure

(dn − {(e, n)}) ∗ Γ
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obtained from dn by deleting the component (e, n) and “multiplying” by Γ (Definition 4.1) is superimposed. In case
when a Cut f with ( f, v) ∈ Γ is encountered, all premises except the vth are deleted. Both the premise and conclusion
of the cut

. . . ( f, v),Θ,Π
Θ,Π

Cut f

become the sequent ( f, v),Θ,Π ∗ Γ and the cut is deleted.

Lemma 3.4. The figure (3.7) is a derivation.

Proof. First, every line in (3.7) is a sequent. This is evident for lines in d0 − {(e, ?)}, and is proved by the bottom-up
induction for lines in (dn − {(e, n)}) ∗Γ . Indeed, by Lemma 3.1 rk(Γ ) < r and Π consists of the side formulas ( f, v)

of cuts Cut f in dn . But then v (that is the premise of the Cut f to be retained in (dn − {(e, n)}) ∗ Γ is chosen so that
( f, v) ∈ Γ if f ∈ dom Γ . Moreover, for every axiom AxS(Π ), AxH(Π ) in dn with a completion Ξ the expression
(Π ,Ξ ) ∗ Γ is a sequent, since rk(Γ ) < r = rk(e) ≤ rk(F) for every formula F ∈ Ξ .

It remains to check that all non-deleted axioms except AxHe,n go into axioms after we move (e, n) to completion
if necessary. The rank condition for the new completion will be satisfied, since rk(e) = r .

(1) The axioms from d0.
(a) AxS, AxH f,v for f 6= e. Use Lemma 3.2.
(b) AxF((e, ?),Θ,Γ ). We have a computation

F[[m]] ↪→ FALSE

for some ( f, m) ∈ Θ with f = εx F[x]. Since the ranks of all formulas in Θ are ≤ r , the deleted formula (e, ?) of
rank r cannot take part in the computation by Lemma 2.2, hence F[[n]] ↪→Θ FALSE as required for AxF(Θ,Γ ).

(2) The axioms from (dn − {(e, n)}) ∗ Γ .
(a) AxS,AxH f,v, f 6= e. Use Lemma 3.3.
(b) AxF((e, n),Θ,∆). Since rk(e) ≥ rk((e, n),Θ,∆) the component (e, n) is not used in the computation on

the contradiction unless e = εx F[x] and

F[[n]] ↪→Θ,∆ FALSE

despite

F[[n]] ↪→Θ,Γ TRUE.

This is impossible. Indeed, consider the shortest term f that reduces differently under Θ,∆ and Θ,Γ . We have
( f, u) ∈ Θ,∆ and ( f, v) ∈ Θ,Γ with u 6= v, hence Θ,∆ ∗ Γ is not a sequent.

This concludes the proof. a

Theorem 3.5. Cut elimination holds for P Aε.

Proof. Standard induction on cut degree. a

Note. A cut-free proof of the empty sequent ∅ in P Aε consists only of a single axiom. Since AxF, AxH are
non-empty, it should be AxS. In other words, the cut elimination accumulates a solution.

4. System P Aε′

4.1. Axioms and rules of P Aε′

Derived objects or sequents of the system P Aε′ are of the form

Γ ;Ξ ,

where Γ ,Ξ is a substitution such that

rk(Γ ) ≤ rk(F) for every formula F ∈ Ξ .

Γ is the fixed part, Ξ is the completion. For T ≡ Γ ,Ξ we write T f
:= Γ , T c

:= Ξ .
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Definition 4.1. Let Θ;Ξ and Θ ′
;Ξ ′ be sequents of P Aε′ that agree on their domain:

if (e, v) ∈ Θ,Ξ and (e, w) ∈ Θ ′,Ξ ′ then v = w.
Then (Θ;Ξ ) ∗ (Θ ′

;Ξ ′) := Θ ∪ Θ ′
;Ξ ∪ Ξ ′, and we say that (Θ;Ξ ) ∗ (Θ ′,Ξ ′) is defined.

In other words, ∗ amounts to contracting repetitions.
The cut rule and axioms are changed very little compared to P Aε: now completions are shown explicitly. Two new

rules are added: Fr and H′. Both change only completion.
Axioms:

AxF(Θ;Ξ ) Θ is c.i.
AxS(Θ;Ξ ) Θ,Ξ is solving.

AxHe,v(Θ;Ξ ) Ξ is an He,v-completion of Θ .

Rules of inference:
(e, ?),Θ;Ξ . . . (e, n),Θ;Ξ . . . (n ∈ N)

Θ;Ξ Cute

Θ; (e, ?),Ξ
Θ;Ξ

Fre
Θ; (e, n),Ξ ′

Θ; (e, ?),Ξ
H′

e,n

where H-rule applies, e, n are H-term and H-value of cc and deciding sequent Θ, (e, ?),Ξ and Ξ<r ⊆ Ξ ′
⊆ Ξ≤r .

The main term, the side components, the rank of a Cut are defined as before.

Definition 4.2. A derivation d in P Aε′ is defined in a standard way with the following
Proviso:

(1) The completion rank of every H-axiom is ≥ maximal rank of cuts in d.
(2) Fre, H′

e,n do not occur below a cut of rank ≥ rk(e) or in a derivation containing cuts of rank > rk(e).

The first proviso is the same as that in P Aε (Definition 3.3) , the second proviso replaces the machinery of r -deriva-
tions and r+-derivations from [11].

The rank of the derivation is as before the maximal rank of Cut.

4.2. Cut elimination in P Aε′

Definition 4.3. If d is a derivation in P Aε′ let dfix be the result of retaining only fixed parts of sequents. More
precisely, replace Θ;Ξ by Θ retaining completion Ξ only in axioms, and delete all Fr,H-inferences.

The following propositions are similar to the corresponding propositions in the previous section.

Lemma 4.1. Let d be a derivation in P Aε′ of rank < r of a sequent Θ;Ξ . Then

(1) dfix is a derivation of Θ in P Aε.
(2) Every sequent in d has a form Θ,Σ ;Ξ ′ where Σ consists of the side components of Cut rules in d. In particular,

if rk(Θ) < r ,then rk(Θ,Σ ) < r .

Proof. (1) Rules Fr, H become repetitions after completions are deleted. Cut inferences and axioms are preserved.
(2) Immediate by Lemma 3.1 (or by induction on d). a

The following two statements are easy consequences of Lemmas 3.2 and 3.3 respectively.

Lemma 4.2. Let (e, ?),Π ;Ξ be an AxS or AxH f,m with f 6= e and rk(e) ≥ rk(Π ).
Then Π ; (e, ?),Ξ is an axiom of the same kind with the completion (e, ?),Ξ . a

Lemma 4.3. Let (e, n),Θ,∆;Ξ be an AxH or AxS and let Γ be a sequent such that rk(Γ ) < r = rk(e),
((e, n),Θ,∆) ∗ Γ is a sequent and F((e, n),Θ,Γ ) ↪→Θ,Γ TRUE. Then (Θ,∆) ∗ Γ ; (e, n),Ξ is AxHor AxSor
or (Θ,∆) ∗ Γ is AxF.
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Before describing the reduction of the uppermost cut of the maximal rank r let us recall a transformation from
[11], Lemma 6.4 that supplements a new H′-rule by inserting Fr and H′-rules copied from the path leading from the
endsequent ∅ to the conclusion of the reduced cut.

Definition 4.4. A deduction is a tree that proceeds by inference rules, but may begin with arbitrary sequents (not
axioms).

Lemma 4.4. Let π := (S0, . . . , Sn) be a path in a correct derivation d of cut rank r leading from the endsequent
S0 = ∅ to a conclusion Sn ≡ Θ;Ξ of an uppermost cut Cute with rke = r . Assume that rk(Γ ) < r and Θ,Γ , (e, n)

is a correct sequent.

Then there is a correct deduction (called below FH(π,Γ , e, n)) of Θ,Γ ; (e, n) from Θ,Γ ; (e, n),Ξ consisting
exactly of Fr and H′-inferences in π , all of them of ranks > r .

Proof. Let T := Θ,Γ ; (e, n). Since the cut rank is r , all Fr, H′-inferences in the given path have ranks > r . Hence
for all i ≤ n, Sc

i consists of some side components of such inferences of ranks > r , while S f
i ≤ r and consists of all

side components of Cut inferences in the path (S0, . . . , Si ). So for all i ≤ n,

Si ∗ T = S f
i ,Θ,Γ ; Sc

i , (e, n).

We prove that Sn ∗ T, . . . , S0 ∗ T with repetitions removed is the required deduction.

Let 1 ≤ k ≤ n and Sk−1 = Θ ′
;Ξ ′. Consider the inference from Sk to Sk−1.

(1) Cut f . Since rk f ≤ r , a side formula ( f, u) belongs to Θ , hence to Sk−1 ∗ T , hence the Cut becomes a repetition
and is removed.

(2) Fr f . We have e 6∈ dom(( f, ?),Ξ ′) and since rk f > r , the inference before and after multiplication by T looks as
follows:

Θ; ( f, ?),Ξ ′

Θ;Ξ ′
Fr f

Θ,Γ ; ( f, ?),Ξ ′, (e, n)

Θ,Γ ;Ξ ′, (e, n)
Fr f

.

(3) H′

f,m .

Θ; ( f, m),Ξ ′

≤r ′ − ∆′

Θ; ( f, ?),Ξ ′
H ′

f,m

Θ,Γ ; (e, n), ( f, m),Ξ ′

≤r ′ − ∆′

Θ,Γ ; (e, n), ( f, ?),Ξ ′
H ′

f,m
.

The H′-rule still applies to the new conclusion and is correct. a

The subderivation ending with an uppermost cut of maximal rank has a form:

(e, ?),Θ,Γ ;Ξ2
...

(e, ?),Θ,Σ ;Ξ1
...

d0 : (e, ?),Θ;Ξ

(e, n),Θ,∆;Ξ4
...

(e, n),Θ,Π ;Ξ3
...

. . . dn : (e, n),Θ;Ξ . . .

d : Θ;Ξ Cute
.

(4.1)

We assume that rk(Θ) ≤ r = rk(e) and di are derivations containing no cuts of rank ≥ r . This implies
rk(Ξ ), rk(Ξi ) ≥ r . Now d is transformed similarly to Section 3.3, but Fr and H-inferences are added to account
for completions.
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Θ,∆ ∗ Γ ; (e, n),Ξ4
...

Θ,Π ∗ Γ ; (e, n),Ξ3 (dn → {(e, n)}) ∗ Γ
...

Θ,Γ ; (e, n),Ξ
... FH(π,Γ , e, n)
Θ,Γ
Θ,Γ

;

;

(e, n)

(e, ?),Ξ2
H′

e,n

...

Θ,Σ ; (e, ?),Ξ1 d0 → {(e, ?)}
...

Θ
Θ

;

;

(e, ?),Ξ
Ξ Fre

.

(4.2)

The lower part d0 → {(e, ?)} is obtained by moving the component (e, ?) in all sequents in d0 from the fixed part
into the completion. If the upper sequent of some branch in d0 is not of the form AxHe,n nothing further is done with
that sequent.

If some upper sequent (e, ?),Θ,Γ ;Ξ2 is AxHe,n , then the figure denoted by (dn → {(e, n)}) ∗ Γ is superimposed.
This figure is obtained from dn by moving the component (e, n) to the completion part and “multiplying” by Γ
(Definition 4.1).

Definition 4.5. The figure (4.2) is denoted by R(d). R is called the cut reduction transformation.

Lemma 4.5. The figure R(d) is a derivation.

Proof. The proof is similar to Lemma 3.4. Since the Cute is the uppermost cut of rank r = rk(e), all cuts above it are
of rank < r , hence rk(Γ ) < r by Lemma 4.1. Now by the same induction as before, every line in (4.2) is a sequent. We
note that the explicitly shown figure H′

e,n is indeed an application of the H′-rule and that other H′-inferences present
in the derivation are preserved by our transformation.

The rank conditions for the new completion will be satisfied, since rk(e) = r . Let us check the axioms.

(1) The axioms from d0.
(a) AxS, AxH f,v for f 6= e. Use Lemma 4.2.
(b) AxF((e, ?)Θ,Γ ). We have a computation

F[[m]] ↪→ FALSE

for some ( f, m) ∈ Θ with f = εx F[x]. Since the ranks of all formulas in Θ are ≤ r , the deleted formula (e, ?)
of rank r cannot take part in the computation, hence F[[n]] ↪→Θ FALSE as required for AxF(Θ,Γ ).

(2) The axioms from (dn → {(e, n)}) ∗ Γ . Using rk(Γ ) < r and Lemma 4.3, the proof is as before. a

Theorem 4.6. Every derivation of ∅ in P Aε′ can be transformed into a cut-free derivation of ∅ by cut reduction
transformations.

Proof. Standard by induction on cut rank. a

5. Original derivation and termination of the H′-process

Lemma 5.1. For every finite system Cr of critical formulas one can construct (primitive recursively in Cr) a derivation
of ∅ in P Aε′ consisting of axioms and Cut inferences of rank ≤ r0 = rk(Cr) with the ordinal height < ω · r0 + ω

Proof. The proof is given in detail in [11], Section 6.3. First (Lemma 6.11 in [11]) the empty sequent is expanded by
bottom-up applications of the cut rule to compute all closed subterms of Cr . In particular every sequent has an empty
completion, so the provisos in Definition 4.2 are obviously satisfied.
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If for example Cr contains a subterm εx A[x, εy B[x, y, εvD[v]]], the cuts are applied from the bottom up in the
following order:

. . . (εy B[ua, y, ud ], ub), (εx A[x, εy B[x, y, ud ]], ua), (εvD, ud) . . .

. . . (εx A[x, εy B[x, y, ud ]], ua), (εvD, ud) . . .
Cut

. . . (εvD, ud) . . .
Cut

∅
Cut

.

This stage leads to a tree of finite height bounded by the number of subterms of Cr.
After that each upper sequent [(εx A[x, ub], ud), (εy B[x, ud ], ub), (εvD, ud) in our example] is similarly extended

by the cuts upwards so that for every component (εzC[z], n) present in the sequent all subterms of the formulas C[[n]]

have values. This is done first for terms of rank r0, then for rank r0 − 1, etc. Reduction of rank by 1 increases the
ordinal height by (at most) ω leading to a tree of height < ω · r0 + ω. Each of the uppermost sequents of this tree is
either c.i., hence an AxF, or a solution, hence AxS, or AxH. a

Theorem 5.2. The H′-process terminates in a solution.

Proof. Take the original derivation of ∅, transform it into a cut-free derivation d of ∅. It contains only rules Fr, H′,
hence all sequents have empty fixed parts and there is only one branch. Since the derivation is well founded, this
branch is finite. The top sequent of the branch is AxS, since AxF,AxH have non-empty fixed parts. Hence the result
of erasing all Fr-inferences from d (as in [9,11]) is an indeterministic H′-process. Apply Lemma 2.4. a
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