
brought to you by COREView metadata, citation and similar papers at core.ac.uk

er Connector 

Available online at www.sciencedirect.com

Cdk-counteracting phosphatases unlock mitotic exit
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Entry into mitosis of the eukaryotic cell cycle is driven by rising

cyclin-dependent kinase (Cdk) activity. During exit from

mitosis, Cdk activity must again decline. Cdk downregulation

by itself, however, is not able to guide mitotic exit, if not a

phosphatase reverses mitotic Cdk phosphorylation events. In

budding yeast, this role is played by the Cdc14 phosphatase.

We are gaining an increasingly detailed picture of its regulation

during anaphase, and of the way it orchestrates ordered

progression through mitosis. Much less is known about protein

dephosphorylation during mitotic exit in organisms other than

budding yeast, but evidence is now mounting for crucial

contributions of regulated phosphatases also in metazoan

cells.
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Introduction
Mitotic exit involves an intricately ordered series of

events, leading from the splitting of sister chromatids

at anaphase onset to the completion of cell division by

cytokinesis. During the course of these events, the mito-

tic spindle elongates to segregate sister chromatids, the

cytokinetic furrow is assembled at the future site of cell

division, and once the chromosome segregation is com-

plete, the spindle disassembles again in preparation for

cytokinesis. Anaphase onset is triggered when the ana-

phase promoting complex with its activator Cdc20

(APCCdc20) ubiquitinates, and thereby leads to degra-

dation of securin, an inhibitor of the protease separase

that cleaves the cohesive link between sister chromatids.

At the same time, APCCdc20 begins to target mitotic

cyclins for destruction, thereby initiating Cdk downregu-

lation.
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In addition to cyclin destruction, the essential budding

yeast Cdc14 phosphatase has long been recognised as a

key regulator of mitotic exit. cdc14 mutants arrest in a

telophase-like mitotic state, with an elongated mitotic

spindle and bilobed anaphase nucleus [1]. Execution

point analysis placed CDC14 function after nuclear

division but before cytokinesis [2], consistent with a role

of the phosphatase in spindle disassembly and cytokinesis

during mitotic exit. Budding yeast cells in which mitotic

Cdk activity cannot be downregulated during mitotic

exit, owing to expression of undegradable mitotic cyclin,

display an arrest phenotype reminiscent of cdc14 mutant

cells [3]. The first well-characterised role of Cdc14, there-

fore, became its contribution to Cdk downregulation by

dephosphorylation, and thereby activation of the Cdk

inhibitor Sic1, its transcription factor Swi5, and a second

APC activator Cdh1 [4]. Consistent with its apparent

execution point after nuclear division, circumstantial

evidence linked activation of the Cdc14 phosphatase to

elongation of the anaphase spindle [5,6]. In this way,

Cdc14-dependent mitotic exit would not set in before

successful chromosome segregation.

Meanwhile it has become clear that Cdc14 is activated

already earlier, as soon as sister chromatids split at ana-

phase onset, and that Cdc14 activation is indeed a pre-

requisite for successful chromosome segregation. Cdc14

promotes stabilisation of microtubules of the elongating

anaphase spindle, assembly of a spindle midzone struc-

ture and resolution of late segregating regions of the

budding yeast genome, notably of the rDNA locus [7–
10,11�,12�]. These roles of Cdc14 during early anaphase

had gone largely unnoticed before, probably because they

require relatively little Cdc14 activity that was still pro-

vided by conditional Cdc14 mutant proteins even at the

restrictive temperature. Cdk substrates that are depho-

sphorylated at this time include the microtubule regula-

tors Ase1, Ask1, Fin1 and Sli15 [7,10,11�,12�]. How

relatively little Cdc14 dephosphorylates these early tar-

gets at anaphase onset and promotes completion of Cdk

downregulation and mitotic exit only afterwards is so far

not understood. Cdc14 targets that must be dephosphory-

lated for cytokinesis are as yet largely elusive.

Here we review recent advances of our understanding

about how Cdc14 phosphatase is activated during ana-

phase. We suggest a quantitative explanation for the

existence of at least two pathways, the Cdc Fourteen

Early Anaphase Release (FEAR) and the Mitotic Exit

Network (MEN) that activate Cdc14 during states of high

and low Cdk activity, respectively. We will then compare

our knowledge from budding yeast to what is known
Current Opinion in Cell Biology 2008, 20:661–668

https://core.ac.uk/display/82731182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:equeralt@iconcologia.net
mailto:frank.uhlmann@cancer.org.uk
http://dx.doi.org/10.1016/j.ceb.2008.09.003
http://creativecommons.org/licenses/by-nc-nd/3.0/


662 Cell division, growth and death
about Cdk-counteracting phosphatases in other eukar-

yotes, where exciting discoveries have recently been

made. To gain a fuller understanding of regulated mitotic

progression, we have to consider the activities of numer-

ous mitotic kinases in addition to Cdk. Likewise, sequen-

tial APC-dependent proteolysis of mitotic regulators is

likely to make important contributions to ordered mitotic

progression [13]. These topics fall outside the reach of

this short review, in which we will focus on the regulation

of Cdk-counteracting phosphatases during mitotic exit.

Regulation of the Cdc14 phosphatase in
budding yeast
Although not all levels of regulation of the Cdc14 phos-

phatase in budding yeast may yet be understood, its

dominant and most striking control is exerted via its

sequestration in the nucleolus by its inhibitor Net1 (also

called Cfi1) [14,15]. Net1 phosphorylation during ana-

phase reduces its affinity for Cdc14, thus releasing the

active phosphatase [16,17]. After release from the nucleo-

lus, Cdc14 is initially seen distributed all over the

nucleus, and shortly thereafter, also spreads throughout
Figure 1

A model for mitotic exit in budding yeast. At the centre of the scheme is reve

inhibitor Net1. At anaphase onset, separase-dependent downregulation of PP

leads to Cdc14 early anaphase release from nucleolar inhibition by Net1 (FE

elongation-mediated Tem1 activation by Lte1, contribute to activation of the

maintain Cdc14 release by sustaining Cdc5-amplified Net1 phosphorylation
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the cytoplasm. While much attention has been given to

the control of Cdc14 release from the nucleolus, little is

known whether and how export of the phosphatase from

the nucleus is regulated. Cdc14 can probably reach most

of its substrates relevant to cell cycle progression within

the nucleus as suggested by largely unaltered cell cycle

progression, if Cdc14 nuclear export is prevented by

mutation of its nuclear export sequence [18]. In such

cells, however, cytokinesis fails. This is indicative of

essential Cdc14 targets at the cytokinetic machinery,

outside the nucleus, that the phosphatase needs to gain

access to.

A collection of genes required for mitotic exit has been

ordered both genetically and biochemically into the

MEN signalling cascade that culminates in the release

of the Cdc14 phosphatase from the nucleolus. This

includes the Ras-like GTPase Tem1 and its downstream

kinases Cdc15 and Mob1/Dbf2 [19–21] (Figure 1). The

GTPase at the top of this signalling cascade is thought to

be a spatial positioning sensor for mitotic spindle

elongation. Tem1 is concentrated at the daughter cell-
rsible phosphorylation and dephosphorylation of the Cdc14 phosphatase

2ACdc55 promotes Cdk phosphorylation of Net1, amplified by Cdc5. This

AR). PP2ACdc55 downregulation, together with Cdc14 and spindle

mitotic exit network (MEN). Kinases of the MEN cascade (e.g. Dbf2) may

.
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bound spindle pole body, and elongation of the anaphase

spindle into the daughter cell brings the GTPase in proxi-

mity to the GDP/GTP nucleotide exchange factor Lte1

that is enriched at the daughter cell cortex [5,6]. Lte1

interacts with Tem1 [22], and while it is tempting to

speculate that it thus activates MEN in a spindle

elongation-dependent manner, this remains to be demon-

strated. Counteracting Tem1 activation is the GTPase

activating protein complex Bfa1/Bub2 [23], a potent nega-

tive regulator of mitotic exit. Its inhibitory effect on Tem1

is turned off by anaphase-specific phosphorylation of Bfa1

by the Polo-like kinase, Cdc5 (see below) [23,24]. Tem1

needs to interact with the Cdc15 kinase to activate MEN

[25], and Cdc15, in turn, is able to activate the Mob1/Dbf2

kinase complex [26]. The components of this signalling

cascade are concentrated at the SPB that may act as a

catalyst for signal transduction. How Dbf2 finally promotes

Cdc14 nucleolar release has not been ascertained. An

obvious possibility is that Dbf2 itself phosphorylates

Net1 to promote Cdc14 dissociation [27]. Direct evidence

for this, or an alternative mechanism, is not yet available.

In cells in which MEN is inactive, Cdc14 does not remain

entirely confined to the nucleolus. Instead, a transient

release of Cdc14 is observed during early anaphase [28].

This observation led to the discovery of the second Cdc14

activatory FEAR network (Figure 1). At anaphase onset,

the release of separase from its inhibitor securin not only

leads to proteolytic cleavage of cohesin, but separase at the

same time utilises a second, non-proteolytic activity to

activate Cdc14 [29]. At this stage, high mitotic Cdk activity

itself sets Cdc14 release into motion by phosphorylating

at least 6 Cdk recognition sites on Net1 [30]. The

link between separase and Cdk-dependent Net1 phos-

phorylation comes through the PP2A phosphatase in con-

junction with its substrate specificity subunit Cdc55

(PP2ACdc55), which until metaphase counteracts Net1

phosphorylation [31�,32]. Separase-dependent downregu-

lation of PP2ACdc55 at anaphase onset now allows Cdk-

dependent Net1 phosphorylation. How separase leads to

PP2ACdc55 downregulation and what the nature of its

second non-proteolytic activity is, are as yet poorly under-

stood.Separase cooperates with two PP2A interactors, Zds1

and Zds2, to promote Cdc14 release [33]. Zds1 and Zds2

(zillion different screens) appear to be ascomycete-specific

proteins involved innumerousphysiologicpathways.Their

ability to regulate PP2ACdc55 suggests that they may act as

common PP2A modulators. A number of additional

proteins have been found to contribute to Cdc14 regulation

during early anaphase. These include the kinetochore

protein and separase substrate Slk19, and the Net1 inter-

actor Fob1 as well as its binding partner Spo12 [28,34]. The

mechanism by which these proteins contribute to Cdc14

activation is not understood.

A multilayered role is played by the Polo-like kinase Cdc5

during mitotic exit. Cdc5 activity is essential for Cdc14
www.sciencedirect.com
activation, and it contributes to Cdc14 release at all stages,

as part of FEAR, as well as both upstream and down-

stream of the MEN cascade [19,20,28,29]. The so far best

characterised effect of Cdc5 is inhibition of Bfa1, thus

contributing to Tem1 activation [23,24]. Bfa1 phosphoryl-

ation is counteracted by PP2ACdc55 during metaphase, so

that PP2ACdc55 downregulation at anaphase onset not

only directly promotes Cdk-dependent Net1 phosphoryl-

ation but also activates the MEN cascade [31�]. Another

Cdc5 target is probably the Cdc14 inhibitor Net1 itself

[16,17], both early and late during mitotic exit. The

multiple roles of Cdc5 could be explained by this kinase’s

characteristic mode of action. Cdc5 requires a priming

phosphorylation event by another kinase to be recruited

to its substrates [35]. In this way, Cdc5 would not exert

specific regulation onto mitotic exit, but rather act as an

essential but generic phosphorylation amplifier. The

regulatory priming phosphorylation on Net1 may be

under the control of Cdk/PP2ACdc55 in early anaphase,

and maybe Dbf2 or another MEN kinase later during exit.

In addition, Cdc5 may contribute to the build-up of Cdk

activity during mitotic entry, a prerequisite for Cdk-de-

pendent Net1 phosphorylation, as cdc5 mutant cells are

deficient in Net1 Cdk phosphorylation [30]. While Cdc5

may, therefore, not be regulating the onset of Cdc14

activation, it remains a limiting factor for Cdc14 release

throughout anaphase, and APCCdh1-mediated Cdc5

destruction at the end of mitosis is sufficient to cause

Cdc14 resequestration in the nucleolus [36�].

Additional regulators of Cdc14 activation during mitotic

exit include the mother cell restricted kinase Kin4 that

prevents Bfa1 phosphorylation by Cdc5 if the mitotic

spindle fails to enter the daughter cell [37,38]. Less well

understood contributions have also been documented for

a number of cell polarity effectors and the budding yeast

orthologues of the human Chfr tumour suppressor, Dma1

and Dma2 [22,39,40].

A quantitative view of mitotic exit
How do these multiple levels of regulation cooperate to

control Cdc14 activity during mitotic exit, and why does

the regulation appear so complex? During mitotic exit, a

multitude of Cdk phosphorylation events need to be

reversed in an ordered series of reactions over the

duration of anaphase, cytokinesis and return into G1.

This requires that the Cdc14 phosphatase is activated

at anaphase onset, exported from the nucleus at the right

time, and maintained active throughout mitotic exit as

Cdk activity declines and until cells successfully com-

plete cell division. Mitotic exit integrates both temporal

and spatial information, and the output may not simply be

Cdc14 activation, but quantitatively regulated levels of

Cdc14 activity over the course of mitotic exit. It has been

argued that budding yeast mitotic exit is a prime example

of an evolved complex system [41]. Multiple, distinct, but

partly redundant, pathways and regulatory circuits have
Current Opinion in Cell Biology 2008, 20:661–668



664 Cell division, growth and death
come together to reinforce each other, selected for the

addition of robustness and resistance to noise. While this

adds complexity to the overall network, the main reaction

pathways and their effects can be relatively succinctly

described [31�].

Mitotic exit begins when the APCCdc20 initiates anaphase

by causing degradation of the separase inhibitor securin.

Sister chromatids split, and the mitotic spindle must be

stabilised to successfully segregate chromosomes to daugh-

ter cells. This is one of the first mitotic exit tasks, and it

requires Cdc14 activation at the time when Cdk activity is

still high. It is achieved by separase-dependent PP2ACdc55

downregulation, allowing Cdk-dependent Net1 phos-

phorylation. Note that early Cdk-dependent Cdc14 acti-

vation (FEAR) is based on the fact that complete securin

destruction precedes complete cyclin degradation, at least

in budding yeast. Possible explanations for selective and

rapid securin destruction at anaphase onset have been put

forward [13,42�]. The fact that some of the FEAR con-

tributors are non-essential, for example, Spo12, Slk19, or a

minimal set of 6 Cdk phosphorylation sites on Net1, has led

to the assumption that FEAR is a dispensable pathway

during mitotic exit [28,30]. However, cells progressing

through anaphase with delayed Cdc14 activation due to

FEAR mutations incur a considerable loss in viability,

probably due to chromosome segregation defects [8].

Quantitative numerical simulations of mitotic exit driven

only by the FEAR pathway show that Cdk-dependent

Cdc14 activation is not sufficient to complete mitotic exit.

This is because Cdk downregulation will lead to Cdc14

resequestration in the nucleolus before mitotic exit is

complete, a situation that has been described as transient

Cdc14 release in cells lacking MEN function [28,31�].
MEN activity is inhibited by high Cdk levels, and activated

by Cdc14 at the level of the Cdc15 kinase, though the

biochemical consequences of Cdc15 phosphoregulation

remain to be fully understood [28,43]. The essential nature

of the MEN ,therefore, stems from its requirement to

sustain Cdc14 release as Cdk activity declines during the

progression of mitotic exit. Spatial information on the

successful elongation of the anaphase spindle is integrated

into MEN activation at the level of the Tem1 GTPase on

the top of the signalling pathway that may limit Cdc15

activity. Spindle elongation by itself, however, is not suffi-

cient to activate Cdc14, and mitotic exit can proceed in the

absence of spindle elongation in cells harbouring proteo-

lytically inactive separase [29]. The relative contributions

of spindle elongation, Polo/PP2ACdc55 regulation of Bfa1,

Cdc14/Cdk-mediated Cdc15 activation, and possibly

additional levels of regulation on the control of MEN

activity during anaphase remain to be determined.

Mitotic exit in higher eukaryotes
Cdk substrate dephosphorylation is a hallmark of mitotic

exit probably in all eukaryotes. Although most of the
Current Opinion in Cell Biology 2008, 20:661–668
relevant substrates whose dephosphorylation drives the

execution of mitotic exit remain unknown, persistent Cdk

activity prevents mitotic exit and return to interphase in

all eukaryotes studied [3,44–46]. Many of the depho-

sphorylation-dependent anaphase events, described

above in budding yeast, also take place in a similar fashion

in other eukaryotes. This includes stabilisation of micro-

tubules at anaphase onset, relocalisation of the Aurora B

kinase complex, spindle midzone assembly and upon

completion of chromosome segregation spindle disassem-

bly, cytokinesis and cell abscission.

A few known examples of Cdk substrates whose depho-

sphorylation contributes to successful anaphase pro-

gression in higher eukaryotes include the C. elegans
kinesin ZEN-4 [47], and the human Ase1 orthologue

PRC1 [48], both involved in the assembly of the anaphase

spindle midzone. The nature of the phosphatase(s) that

act to reverse Cdk phosphorylation during mitotic exit in

organisms other than budding yeast is not well under-

stood. ZEN-4 dephosphorylation requires the C. elegans
Cdc14 orthologue, CDC-14, and this phosphatase has

been furthermore reported to play a role during the

completion of C. elegans cytokinesis [49]. On the contrary,

worms lacking CDC-14 are viable, but show defects in

accumulating the Cdk inhibitor CKI-1 during develop-

mentally programmed G1 cell cycle arrest [50]. The latter

observation is reminiscent of budding yeast Cdc14’s role

in stabilising the Cdk inhibitor Sic1.

Vertebrate genomes encode for two Cdc14 orthologues,

Cdc14A and Cdc14B (Figure 2). Their overexpression

causes mitotic defects [51,52], but a thorough loss of

function analysis of the two paralogues, that may have

overlapping substrate specificities, remains to be com-

pleted and systematic substrate identification has just

begun [53]. Reduced human Cdc14B levels have been

reported to lead to centriole amplification [54], while

human cells carrying a homozygous disruption of the

Cdc14B locus display no apparent cell cycle progression

defect, but show an increased incidence of rDNA ana-

phase bridges [55��]. Introduction of both human Cdc14A

and Cdc14B into budding or fission yeast, rescues the

respective cdc14 yeast mutant phenotypes, suggesting

some functional conservation between these phospha-

tases [56,57].

The fission yeast Cdc14 homologue Clp1 (Flp1) is not

essential for normal cell cycle progression. Like human

Cdc14B, Clp1 is nucleolar for much of the cell cycle but,

unlike budding yeast Cdc14, these phosphatases are

released from the nucleolus already as cells enter mitosis

[58,59]. At this stage Clp1 remains inhibited by Cdk

phosphorylation, and Cdk downregulation during mitotic

exit is thought to initiate Clp1 activation by self-catalysed

dephosphorylation [60�] (Figure 2). Clp1, in turn, con-

tributes to Cdk downregulation by dephosphorylation
www.sciencedirect.com
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Figure 2

Comparison of budding yeast mitotic exit regulators with their counterparts in fission yeast and higher eukaryotes. The fission yeast Cdc14 orthologue

Clp1 is released from the nucleolus already during mitotic entry, but remains inhibited by Cdk phosphorylation. Its activation is independent of the SIN

signalling cascade, made up of the MEN orthologues, but SIN maintains Clp1 activity during completion of cytokinesis. While cytokinesis is linked to

mitotic exit, as defined by re-entry into G1, both processes can be uncoupled. SIN is required for cytokinesis, but not for re-entry into the next cell

cycle. The Clp1 phosphatase is not essential, raising the question as to the phosphatase(s) that reverse Cdk phosphorylation. In higher eukaryotes,

Cdc14 phosphatases contribute to spindle midzone formation and cytokinesis, but are not essential at least in some organisms. Orthologues of the

MEN components form part of the Hippo signalling cascade that controls transcription of cell proliferation and apoptosis genes.
and destabilisation of the Cdk activating phosphatase

Cdc25, a mechanism that may be also at work in higher

eukaryotes, but used to control mitotic entry more than

exit [57,61]. It is noteworthy that fission yeast cells

possess a signalling cascade of remarkable conservation

to the budding yeast MEN, the Septation Initiation

Network (SIN). The SIN controls cytokinesis, but its

downstream effectors are not yet known. The SIN is not

required for Clp1 activation, but contributes to sustain

Clp1 nucleolar release until the completion of cytokinesis

[59]. Orthologues of the MEN kinases Cdc15 and Mob1/

Dbf2 are also found in higher eukaryotes. They form part

of the Hippo pathway that has been best characterised in

Drosophila where it controls cell proliferation by regulat-

ing the transcription factor Yorkie [62]. Whether this

pathway involves a Cdc14 phosphatase or whether it also

impinges on mitotic regulation is not known. No Cdc14

orthologues have been found encoded in the genomes of

higher plants [63].

If in several, if not most, eukaryotes Cdc14 is dispensable

for mitotic exit, which are the phosphatases that reverse

mitotic Cdk phosphorylation? One possibility is that a

range of constitutive, broad-specificity phosphatases con-

tinuously counteract Cdk phosphorylation in these organ-

isms. In this case mitotic exit would be driven solely by

downregulation of Cdk activity, with substrate depho-
www.sciencedirect.com
sphorylation as the consequence. While this scenario is

possible, it is difficult to explain how some Cdk substrates

may be dephosphorylated more rapidly at anaphase onset

than the decline of Cdk activity itself. Recent obser-

vations using chemical Cdk inhibition in human mitotic

cells have confirmed that phosphatase activity directed

against Cdk substrates is largely quiescent during meta-

phase but activated during mitotic exit [64�]. The nature

of these phosphatase(s) is not yet known, but it was shown

to be sensitive to the phosphatase inhibitor Okadaic acid,

a compound that only marginally affects Cdc14. Another

striking example is the upregulation of the calcium-de-

pendent phosphatase calcineurin during exit of Xenopus
oocytes from metaphase of meiosis II. An increase of

cytoplasmic calcium upon fertilisation triggers meiosis II

exit in these oocytes, which involves calmodulin-acti-

vated kinase-dependent activation of the APC. The

APC, however, is not sufficient to drive Cdk substrate

dephosphorylation and meiosis II exit, if at the same time

calcineurin is not activated [65��,66��]. Once meiosis II

exit is complete, calcineurin is no longer required during

the mitotic cell cycles. Instead a second, again Okadaic

acid sensitive, phosphatase activity appears in a cyclic

fashion during interphase that is downregulated again in

mitosis [65��]. A survey of phosphatase contributions to

cell cycle progression in Drosophila has failed to identify a

specific candidate for a mitotic exit phosphatase [67],
Current Opinion in Cell Biology 2008, 20:661–668
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suggesting that more than one phosphatase may act

redundantly, or that its involvement in mitotic exit is

not the only function of the phosphatase.

Conclusions
It is becoming increasingly clear that in addition to the

downregulation of Cdk activity, control of mitotic phos-

phatases plays an important role in regulating mitotic exit.

The identity of mitotic exit phosphatase(s) in most organ-

isms is not yet known. Once identified, the elucidation of

their quantitative regulation will have important implica-

tions. Simple antagonistic feedback between Cdk and a

phosphatase, as observed with fission yeast Clp1, could

provide sharpness to mitotic exit processes. A Cdk-inde-

pendent input to phosphatase activation, as exemplified

by separase-induced Cdc14 activation at budding yeast

anaphase onset, opens the opportunity for additional

time-resolved regulation that is probably important for

ordered progression of mitotic exit. We are just at the

beginning of understanding the regulatory pathways that

control the faithful completion of chromosome segre-

gation into newborn daughter cells.
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