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Abstract

We derive a general expression for an interface parameter which makes possible the design of a neutral elliptic
inhomogeneity when the stress field in the surrounding matrix is a polynomial functioth afrder and the
composite is subjected to antiplane shear deformations.
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1. Introduction

A hole introduced into an elastic body will inevitably disturb the body’s original stress field and often
lead to a strescorcentration. Mansfieldl] was among the first to recognize the feasibility of designing
a reinforced ‘neutral’ hole which eliminates any stress concentrations introduced by the hole and hence
does not disturb the original stress field in the uncut body.

The analogous problem of a neutral elastic inhomogeneity was studied by Rl Hefe, it was
shown that neutral elastic inhomogeneities cannot exist when a conventional perfectly bonded material
interface is assumed to exist between the inhomogeneity and the surrounding elastic body. In addition,
Ru introduced a method for the design of neutral inhomogeneities based on an established spring—laye
model of an impes#ct interface (see, for exampl&-1Q). The neutral inhomogeneities designed2h [
however, assume the existence of a uniform stress field in the surrounding matrix. Of more practical
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interest is the case where the stress field in the matrierisuniform. In [11], Van Vliet etal. extended
the tetiniques used inZ] to the case where the stress field in the matrixn@-uniform when the
inhomogeneity is circular or elliptic and the composite is subjected to antiplane shear deformations.
Here, however, the elliptic inhomogeneity is consatinly for the simplest non-uniform (linear) stress
field in the surrounding matrix, mainly because the complicated nature of the analysis involved precludes
the extensin of the method to cases of higher order. 11Z][ Schiawne employed a semi-analytical
method to extend the results dfl] to the case of a quadratic stress field in the surrounding matrix.

In this work, we derive a generakgression for an (imperfect) interface parameter which allows us to
generalize the results il to the case where the stress field in the surrounding matrix is characterized
by a general polynomial afth order.

2. Formulation

Consider a homogeneous and isotropic, linearly elastic body, finite or infinite in extent, simply or
multiply connected, which is subjected to a giveatstd stress under a prescribed loading system.
Assume that the same elastic body is then cut into a number of simply connected sub-domains each of
which is filled with a different homogeneous and isotropic linearly elastic material (each sub-domain is
now referred to as an inhomogeneity). Here, we are concerned with the design of the material interface
between any single inhomogeneity and the elastic body such that the corresponding inhomogeneity is
“neutral” in the sense that it does not disturb the original prescribed stress field in the uncut elastic
body.

Considering antiplane shear deformations (see, for exami8h, ve representite matrix by the
domain § and assume that the inhomogeneity occupies a re§omvith associated shear moduli
w1 (>0) anduz (>0), respectively. The inhomogeneity—matrix interface will be denoted by the curve
I'. Let (x, y) denote a generic point iRZ andz = x + iy = re? the conplex coordinate. In what
follows, the subscripts 1ral 2 will refer to the region& and S, respectively andu, (X, y), = 1, 2,
will denote the (harmonic) elastic (antiplane) displacement at the pojy) in S, resgectively.

The ‘spring—layer type’ interfac€ can be defined by the conditioh4]

au au
BX, YUy — Ug] = o —2 = u1=—,  onT, 1)

an on’
wheren is the outwardunit normal toI” and8(x, y) : I'(C R?) — RT is the imperfect interface
function. Practically, the interfacE will represent the adhesive layer between the inhomogeneity and the
body. Henceg should be inversely proportional to the thickness or directly proportional to the density
of the adhesive layer (see, for exampl&4] and [7]). In accordance withd] we note that if3 = 0,
the condition (1) redwces to the case of a traction free interface whil@ iis infinite (1) corresponds
to a perfectly bonded interface. Thus, the functi@rcan be selected by varying the properties of the
adhesive layer. The only restriction is thlamust be non-negative everywhere. The following boundary
value problem describes the antiplane deformation of an inhomogeneity with an imperfect interface of
the form (U):

V2U1 =0 inS, (2)
and V2u,=0 in S,
dus
BX, y)(Ur —U2) = po—— onl’

on’
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ouq dus

— = — onIl'.
K1 an H2 an

Denote byvi (X, y) the harnonic functions conjugate to; (x, y). Since the exrnal loading is self-
equilibrated v (x, y) are single-valued and uniquely determined to within an integration constant and
the corresponding complex potentiajg (z) andg»(z), with z = x + iy, are amlytic within $§; and S,
respectively. Thus,

Ui (2) = ¢i (2 + ¢i (2), 3)
o13—io23=pi¢{(2), ze€§ (i =12.
Noting that
@ Y iN2) | 17/ na—in(2)
2 o = $(€e™Y + ph(0e ", zel, (4)

where @@ represents (in complex fodnthe outward unit normal td” atz, the boundary value problem
(2) can be written in thedllowing form:

$1(2) = 8¢2(2) + (1 — 8)$2(2) + h(D)[p5(2€"? + ph(2)e "P], zeT. (5)
Here,
M2 _matpe 1
Taking the imaginary part of) yields
Im ¢1(2) = (25 — 1)Im ¢2(2). 7)

Let the prescribed stress field be characterizedpby= Z,’}':o AnZ", where A, € C are given
andN = 1, 2,.... According to the definition of a neutral inhomogeneity, the original stress field in
the uncut elastic body remains undisturbed when the neutral inhomogeneity is inserted; then we have

P11 = Z,’}':o AnZ" in S;. Hence, for a neutral inhomogeneity, we require, fré (

N _
D AnZ" =8¢2(2) + (1 - 6)$2(2) + h(D)[p5(De"? + ph(2e " ?], zeT. 8)
n=0

3. Elliptic inhomogeneity

Consider an elliptic inhomogeneity, centered at the origin, with axes of lergémib (a £ b),
coincidentwith the x andy axes, respectively. Suppose that the redgipr{in the z-plane) is mgped
onto the regionwr = {|&| > 1} (in the&-plane) by the function [L5]

2
z:w(é):R(§+k?>, ke ©,1, R>D0. 9)

Then

m _ k2 ¢ m2525
Z g+ = Z k®, m=123,....

s=0
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Suppose the stress field inside the inhomogeneity is characterized by

N
$2(2) =) BnZ"
n=0

whereBy, are complex coefficients to be determined. The interface conditid8) imofv becomes

N N N
D AN —58) Bz — (1-8) ) BnZ'=h@[¢y2e"? + ¢p5(e "?], zeT.
n=0 n=0 n=0

In the&-plane, this is

Z AR Z ( ) £n- 2512 _ g Z B,R" Xn: <2) é__n—ZSkZS

=0 s=0

—(1-36) Z BnR" Z <2) g2
=0 s=0
= h<w<s>>[¢2<w<s>>é“<w@” + ¢ (w(E))e N EN] (10)

whereé € 9o = {|&] = 1). Next, weexpandh(w())[¢5(w(&))eNWE) + ¢l (w(£))e "@EN] in
Laurent’s series to obtain

h(w(&)) = [powENE"E 4+ gL w(E)e MPETE " Eng", (11)
where
E_L [ q / nwE) | g Eye-newen; %
"= ), (w(é)[pr(w(é))e + 5w (é))e E“”
are fixed. The interface conditio@ now becomes
n
Z AR Z ( ) EN-25K25 _ g Z B,R" Z <2) £N-25)2s
n=0 s=0
—(1-93) Z BnR" Z (S) g2y
=0 s=0
= Y Epg". 12)

Since theA, are given and thé&,, are fixed, we can equate coefficients&dfin (12) and esthlish
equations for thé,, in terms of theE, and Ay.
Next [16], on do,

dNw®) _ g w:(‘é)
lw'(§)]
B g _ kZEfl
11—k
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Thus, from (1), the interfice function is given by

h(w(&)) = [ppw(E)NEE) + g (w(&)e MPEL Y~ Epg”

N=—00

o0
11-K%672] 3 Epg"
nN=—o0

— : (13)
Po(w(€)) (€ — k2~ 4 p5(w(&)) (51 — k%)
Finally, we must impose the conditions:
Imhw(€)) =0, Reh(w()) >0 (14)

in order to maintain the physical meaning of the interface fungtion
The conditions14) allow us to write theB,, (found above) entirely in terms of thig, and the (known)
material constants. Finally, we can construct the interface function fi@n (

4, General solution

Equating coefficients af" on both sides of the interface conditiak?| we obtain the coefficientg,
as fdlows:

En = XN: AiRikiﬂ(iin)—(SX ZN: BiRiki”<iin)

i=n,n+2,n+4,... 2 i=n,n+2,n+4,... 2
N .
NEEDPEEDY E‘;iR'w"(i'n), n=N.....N (15)
i=n,n+2,n+4,... 2

Eh=0, n<—N, n>N.

(This result can be proved using mathematical induction—the details have been omitted for brevity.)
Lethg = ”—g > 0 corresponding to the case whefe- 0 is uniform. The conditionsl(4) are sésfied
if the coefficients in {5) take he fam
EN =hoCN, (16)
EN =hoCN, n=-N,....N,

where
N .
Ca =nB,R"t4+ Y BR W ('IT") — nB, Rk
i=n+2,n+4,...
N .
4 Z B R 1K+l (Il_n) ‘
i=n+2,n+4,... 2

Since the constani&y and Bg do not affect the stresses, we set them to zero. B&sahd (L6) can
now be solved to obtain the constaBisi = 0, ..., N, in terms of th&known constantg\;. In paticular,

Ag=Bgp=Bn-1=An-1=0,
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ho— R — k2N — 1)
°T T NN+
Note thathg > 0, whenuo > 1. This requires that, for neutrality, the inhomogeneity has to be harder

than the surrounding matrix material.
From (13), the inteface function is characterized by

—=2,3,.... (17)

k2
h(w(&)) =hg|1l— 5—2 > 0.

Writing a = R(1 + k?) andb = R(1 — k?), the irterface function becomes

1
hob a2 /1 1\ ,]? w2

h =1+ (= _- = _
oY) R[+b2(b2 a2>y] 26(X.Y)

which leads to the interface parameter

R

mofur§(3-3)7]

BX,y) =

Example
Let N = 3. From (5) we obtain

E_3 = A3R%k® — §B3R%k® — (1 — §)B3R®
E_» = AoR%k?* — §BoR%k* — (1 — §)ByR?,
E_1 = A1RK? — §B1RKk? — (1 — §)B1R + 3k*A3R® — 3§ B3R3k* — 3(1 — §)B3R3k?
Eo = (Ap + 2A2R%k?) — §(Bp + 2B2R?%k?) — (1 — 8)(Bg + 2B2R?k?),
E1 = AiR— §B1R — (1 — §)B1Rk? + 3A3R3k® — 3§ B3R3k? — 3(1 — §) B3R3k*, (18)
E, = AsR%2 — §BoR? — (1 — 8) BoR2K4,
Es = AsR® — §B3R® — (1 — §)B3R3K®,
Enzo, n<—3, n>3

From (16), we have
E_3=3hg RZ(Bg — Kb Bz)
E_> = 2hgR( By, — sz4)
E_1=hg <B1 — Blk2 + 3B3R2k2 - 3B3R2k4>
Eo =0, (19)
Ei1=hg <Bl — Blkz + 383R2k2 — 3B3R2k4> R
Ez = 2hoR(By — Bok?),
Ez = 3hoR2(B3 — K8 33)
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Since the constan#y andBg do not affect the stresses, we set them to zero. E&safd (L9) can now
be solved to obtain

Ao=Bo=By=A=0,

ReA; = ReB; = ReA3 = ReB3 =0,

ilm Az ilm Az
Bi=——.B3=——
25 -1 25 -1
ho— R - k8 —1)
0T T3+ 1
In other words, if the (quadratic) stress in the matrix is characterizedty) = A1z + AsZ®

(Re(A1, Az) = 0) then the elliptic inhomogeneity is neutral with interior stress describeghbl® =

ilm A ilm Az _3 . . . .
o512+ 52 - Theirterface function is given by

Ruz
-
2ol 3 (3 )]

This agrees with the results obtained 1r2].

BX,y) =
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