
Applied Mathematics Letters18 (2005) 1312–1318

www.elsevier.com/locate/aml

Designing a neutral elliptic inhomogeneity in the case of a general
non-uniform loading
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Abstract

We derivea general expression for an interface parameter which makes possible the design of a neutral elliptic
inhomogeneity when the stress field in the surrounding matrix is a polynomial function ofnth order and the
composite is subjected to antiplane shear deformations.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A hole introduced into an elastic body will inevitably disturb the body’s original stress field and often
lead to a stress concentration. Mansfield [1] was among the first to recognize the feasibility of designing
a reinforced ‘neutral’ hole which eliminates any stress concentrations introduced by the hole and hence
does not disturb the original stress field in the uncut body.

The analogous problem of a neutral elastic inhomogeneity was studied by Ru in [2]. Here, it was
shown that neutral elastic inhomogeneities cannot exist when a conventional perfectly bonded material
interface is assumed to exist between the inhomogeneity and the surrounding elastic body. In addition,
Ru introduced a method for the design of neutral inhomogeneities based on an established spring–layer
model of an imperfect interface (see, for example, [3–10]). The neutral inhomogeneities designed in [2],
however, assume the existence of a uniform stress field in the surrounding matrix. Of more practical
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interest is the case where the stress field in the matrix isnon-uniform. In [11], Van Vliet etal. extended
the techniques used in [2] to the case where the stress field in the matrix isnon-uniform when the
inhomogeneity is circular or elliptic and the composite is subjected to antiplane shear deformations.
Here, however, the elliptic inhomogeneity is consideredonly for the simplest non-uniform (linear) stress
field in the surrounding matrix, mainly because the complicated nature of the analysis involved precludes
the extension of the method to cases of higher order. In [12], Schiavone employed a semi-analytical
method to extend the results of [11] to the case of a quadratic stress field in the surrounding matrix.

In this work, we derive a general expression for an (imperfect) interface parameter which allows us to
generalize the results in [12] to the case where the stress field in the surrounding matrix is characterized
by a general polynomial ofnth order.

2. Formulation

Consider a homogeneous and isotropic, linearly elastic body, finite or infinite in extent, simply or
multiply connected, which is subjected to a given state of stress under a prescribed loading system.
Assume that the same elastic body is then cut into a number of simply connected sub-domains each of
which is filled with a different homogeneous and isotropic linearly elastic material (each sub-domain is
now referred to as an inhomogeneity). Here, we are concerned with the design of the material interface
between any single inhomogeneity and the elastic body such that the corresponding inhomogeneity is
“neutral” in the sense that it does not disturb the original prescribed stress field in the uncut elastic
body.

Considering antiplane shear deformations (see, for example, [13]), we represent the matrix by the
domain S1 and assume that the inhomogeneity occupies a regionS2, with associated shear moduli
µ1 (>0) andµ2 (>0), respectively. The inhomogeneity–matrix interface will be denoted by the curve
Γ . Let (x, y) denote a generic point inR2 and z = x + iy = reiθ the complex coordinate. In what
follows, the subscripts 1 and 2 will refer to the regionsS1 andS2, respectively anduα(x, y), α = 1, 2,
will denote the (harmonic) elastic (antiplane) displacement at the point(x, y) in Sα, respectively.

The ‘spring–layer type’ interfaceΓ can be defined by the condition [14]

β(x, y)[u1 − u2] = µ2
∂u2

∂n
= µ1

∂u1

∂n
, on Γ , (1)

wheren is the outwardunit normal toΓ andβ(x, y) : Γ (⊂ R
2) −→ R

+ is the imperfect interface
function. Practically, the interfaceΓ will represent the adhesive layer between the inhomogeneity and the
body. Hence,β should be inversely proportional to the thickness or directly proportional to the density
of the adhesive layer (see, for example, [3,4] and [7]). In accordance with [6] we note that ifβ = 0,
the condition (1) reduces to the case of a traction free interface while ifβ is infinite (1) corresponds
to a perfectly bonded interface. Thus, the functionβ can be selected by varying the properties of the
adhesive layer. The only restriction is thatβ must be non-negative everywhere. The following boundary
value problem describes the antiplane deformation of an inhomogeneity with an imperfect interface of
the form (1):

∇2u1 = 0 in S1, (2)

and ∇2u2 = 0 in S2,

β(x, y)(u1 − u2) = µ2
∂u2

∂n
, on Γ
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µ1
∂u1

∂n
= µ2

∂u2

∂n
, on Γ .

Denote byυi(x, y) the harmonic functions conjugate toui(x, y). Since the external loading is self-
equilibrated,υi(x, y) are single-valued and uniquely determined to within an integration constant and
the corresponding complex potentialsφ1(z) andφ2(z), with z = x + iy, are analytic within S1 andS2,
respectively. Thus,

2ui(z) = φi(z) + φi (z), (3)

σ13 − iσ23 = µiφ
′
i (z), z ∈ Si (i = 1, 2).

Noting that

2
∂u2

∂n
= φ′

2(z)e
in(z) + φ′

2(z)e
−in(z), z ∈ Γ , (4)

where ein(z) represents (in complex form) theoutward unit normal toΓ at z, the boundary value problem
(2) can be written in the following form:

φ1(z) = δφ2(z) + (1 − δ)φ2(z) + h(z)[φ′
2(z)e

in(z) + φ′
2(z)e

−in(z)], z ∈ Γ . (5)

Here,

h(z) ≡ µ2

2β(z)
≥ 0, δ ≡ µ1 + µ2

2µ1
>

1

2
. (6)

Taking the imaginary part of (5) yields

Im φ1(z) = (2δ − 1)Im φ2(z). (7)

Let the prescribed stress field be characterized byφ1 = ∑N
n=0 Anzn, where An ∈ C are given

and N = 1, 2, . . .. According to the definition of a neutral inhomogeneity, the original stress field in
the uncut elastic body remains undisturbed when the neutral inhomogeneity is inserted; then we have
φ1 = ∑N

n=0 Anzn in S1. Hence, for a neutral inhomogeneity, we require, from (5),

N∑
n=0

Anzn = δφ2(z) + (1 − δ)φ2(z) + h(z)[φ′
2(z)e

in(z) + φ′
2(z)e

−in(z)], z ∈ Γ . (8)

3. Elliptic inhomogeneity

Consider an elliptic inhomogeneity, centered at the origin, with axes of lengthsa andb (a 	= b),
coincidentwith the x and y axes, respectively. Suppose that the regionS1 (in the z-plane) is mapped
onto the regionσ = {|ξ | ≥ 1} (in theξ -plane) by the function [15]

z = w(ξ) = R

(
ξ + k2

ξ

)
, k ∈ (0, 1), R > 0. (9)

Then

zm = Rm
(

ξ + k2

ξ

)m

= Rm
m∑

s=0

(
m
s

)
ξm−2sk2s, m = 1, 2, 3, . . . .
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Suppose the stress field inside the inhomogeneity is characterized by

φ2(z) =
N∑

n=0

Bnzn,

whereBn are complex coefficients to be determined. The interface condition in (8) now becomes

N∑
n=0

Anzn − δ

N∑
n=0

Bnzn − (1 − δ)

N∑
n=0

Bnzn = h(z)[φ′
2(z)e

in(z) + φ′
2(z)e

−in(z)], z ∈ Γ .

In theξ -plane, this is

N∑
n=0

An Rn
n∑

s=0

(
n
s

)
ξn−2sk2s − δ

N∑
n=0

Bn Rn
n∑

s=0

(
n
s

)
ξn−2sk2s

− (1 − δ)

N∑
n=0

Bn Rn
n∑

s=0

(
n
s

)
ξ2s−nk2s

= h(w(ξ))[φ′
2(w(ξ))ein(w(ξ)) + φ′

2(w(ξ))e−in(w(ξ))] (10)

whereξ ∈ ∂σ = {|ξ | = 1}. Next, weexpandh(w(ξ))[φ′
2(w(ξ))ein(w(ξ)) + φ′

2(w(ξ))e−in(w(ξ))] in
Laurent’s series to obtain

h(w(ξ)) = [φ′
2(w(ξ))ein(w(ξ)) + φ′

2(w(ξ))e−in(w(ξ))]−1
∞∑

n=−∞
Enξ

n, (11)

where

En = 1

2π i

∫
∂σ

h(w(ξ))[φ′
2(w(ξ))ein(w(ξ)) + φ′

2(w(ξ))e−in(w(ξ))] dξ

ξn+1

are fixed. The interface condition (10) now becomes

N∑
n=0

An Rn
n∑

s=0

(
n
s

)
ξn−2sk2s − δ

N∑
n=0

Bn Rn
n∑

s=0

(
n
s

)
ξn−2sk2s

− (1 − δ)

N∑
n=0

Bn Rn
n∑

s=0

(
n
s

)
ξ2s−nk2s

=
∞∑

n=−∞
Enξ

n. (12)

Since theAn are given and theEn are fixed, we can equate coefficients ofξn in (12) and establish
equations for theBn in terms of theEn andAn.

Next [16], on ∂σ ,

ein(w(ξ)) = ξ
w′(ξ)

|w′(ξ)|
= ξ − k2ξ−1

|1 − k2ξ−2| .
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Thus, from (11), the interface function is given by

h(w(ξ)) = [φ′
2(w(ξ))ein(w(ξ)) + φ′

2(w(ξ))e−in(w(ξ))]−1
∞∑

n=−∞
Enξ

n

=
|1 − k2ξ−2|

∞∑
n=−∞

Enξ
n

φ′
2(w(ξ))(ξ − k2ξ−1) + φ′

2(w(ξ))(ξ−1 − k2ξ)
. (13)

Finally, we must impose the conditions:

Im h(w(ξ)) = 0, Reh(w(ξ)) > 0 (14)

in order to maintain the physical meaning of the interface functionβ.
The conditions (14) allow us to write theBn (found above) entirely in terms of theAn and the (known)

material constants. Finally, we can construct the interface function from (13).

4. General solution

Equating coefficients ofξn on both sides of the interface condition (12) weobtain the coefficientsEn
as follows:

E N
n =

N∑
i=n,n+2,n+4,...

Ai Ri ki−n
(

i
i−n

2

)
− δ ×

N∑
i=n,n+2,n+4,...

Bi Ri ki−n
(

i
i−n

2

)

− (1 − δ) ×
N∑

i=n,n+2,n+4,...

B̄i Ri ki+n
(

i
i−n

2

)
, n = −N , . . . , N (15)

En = 0, n < −N , n > N .

(This result can be proved using mathematical induction—the details have been omitted for brevity.)
Let h0 = µ2

2β
> 0 corresponding to the case whereβ > 0 is uniform. The conditions (14) are satisfied

if the coefficients in (15) take the form

E N
n = h0C N

n , (16)

E N−n = h0C̄ N
n , n = −N , . . . , N ,

where

C N
n = nBn Rn−1 +

N∑
i=n+2,n+4,...

Bi Ri−1ki−1
(

i
i−n

2

)
− n B̄n Rn−1k2n

+
N∑

i=n+2,n+4,...

B̄i Ri−1ki+1
(

i
i−n

2

)
.

Since the constantsA0 andB0 do not affect the stresses, we set them to zero. Eqs. (15) and (16) can
now be solved to obtain the constantsBi , i = 0, . . . , N , in terms of theknown constantsAi . In particular,

A0 = B0 = BN−1 = AN−1 = 0,
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h0 = R(1 − k2N )(δ − 1)

N (k2N + 1)
, N = 2, 3, . . . . (17)

Note thath0 > 0, whenµ2 > µ1. This requires that, for neutrality, the inhomogeneity has to be harder
than the surrounding matrix material.

From (13), the interface function is characterized by

h(w(ξ)) = h0

∣∣∣∣1 − k2

ξ2

∣∣∣∣ > 0.

Writing a = R(1 + k2) andb = R(1 − k2), the interface function becomes

h(x, y) = h0b

R

[
1 + a2

b2

(
1

b2
− 1

a2

)
y2

] 1
2

= µ2

2β(x, y)

which leads to the interface parameter

β(x, y) = Rµ2

2h0b
[
1 + a2

b2

(
1
b2 − 1

a2

)
y2

] 1
2

.

Example

Let N = 3. From (15) weobtain

E−3 = A3R3k6 − δB3R3k6 − (1 − δ)B̄3R3

E−2 = A2R2k4 − δB2R2k4 − (1 − δ)B̄2R2,

E−1 = A1Rk2 − δB1Rk2 − (1 − δ)B̄1R + 3k4A3R3 − 3δB3R3k4 − 3(1 − δ)B̄3R3k2

E0 = (A0 + 2A2R2k2) − δ(B0 + 2B2R2k2) − (1 − δ)(B̄0 + 2B̄2R2k2),

E1 = A1R − δB1R − (1 − δ)B̄1Rk2 + 3A3R3k2 − 3δB3R3k2 − 3(1 − δ)B̄3R3k4, (18)

E2 = A2R2 − δB2R2 − (1 − δ)B̄2R2k4,

E3 = A3R3 − δB3R3 − (1 − δ)B̄3R3k6,

En = 0, n < −3, n > 3.

From (16), we have

E−3 = 3h0R2(B̄3 − k6B3)

E−2 = 2h0R(B̄2 − B2k4)

E−1 = h0

(
B̄1 − B1k2 + 3B̄3R2k2 − 3B3R2k4

)
E0 = 0, (19)

E1 = h0

(
B1 − B̄1k2 + 3B3R2k2 − 3B̄3R2k4

)
,

E2 = 2h0R(B2 − B̄2k4),

E3 = 3h0R2(B3 − k6 B̄3).
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Since the constantsA0 andB0 do not affect the stresses, we set them to zero. Eqs. (18) and (19) can now
be solved to obtain

A0 = B0 = B2 = A2 = 0,

ReA1 = ReB1 = ReA3 = ReB3 = 0,

B1 = iIm A1

(2δ − 1)
, B3 = iIm A3

(2δ − 1)

h0 = R(1 − k6)(δ − 1)

3(k6 + 1)
.

In other words, if the (quadratic) stress in the matrix is characterized byφ1(z) = A1z + A3z3

(Re(A1, A3) = 0) then the elliptic inhomogeneity is neutral with interior stress described byφ2(z) =
iIm A1
(2δ−1)

z + iIm A3
(2δ−1)

z3. The interface function is given by

β(x, y) = Rµ2

2h0b
[
1 + a2

b2

(
1
b2 − 1

a2

)
y2

] 1
2

.

This agrees with the results obtained in [12].
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